

Table of Contents
Cover
Introduction

How This Book Is Organized
Conventions Used in This Book
Jumping into Linux
How to Contact Wiley or the Author

Part I: Getting Started
CHAPTER 1: Starting with Linux

Understanding What Linux Is
Understanding How Linux Differs from Other Operating
Systems
Exploring Linux History
Understanding How Linux Distributions Emerged
Finding Professional Opportunities with Linux Today
Summary

CHAPTER 2: Creating the Perfect Linux Desktop
Understanding Linux Desktop Technology
Starting with the Fedora GNOME Desktop Live image
Using the GNOME 3 Desktop
Using the GNOME 2 Desktop
Summary
Exercises

Part II: Becoming a Linux Power User
CHAPTER 3: Using the Shell

About Shells and Terminal Windows
Choosing Your Shell
Running Commands

kindle:embed:0001?mime=image/jpg

Recalling Commands Using Command History
Connecting and Expanding Commands
Using Shell Variables
Creating Your Shell Environment
Getting Information about Commands
Summary
Exercises

CHAPTER 4: Moving Around the Filesystem
Using Basic Filesystem Commands
Using Metacharacters and Operators
Listing Files and Directories
Understanding File Permissions and Ownership
Moving, Copying, and Removing Files
Summary
Exercises

CHAPTER 5: Working with Text Files
Editing Files with vim and vi
Finding Files
Summary
Exercises

CHAPTER 6: Managing Running Processes
Understanding Processes
Listing Processes
Managing Background and Foreground Processes
Killing and Renicing Processes
Limiting Processes with cgroups
Summary
Exercises

CHAPTER 7: Writing Simple Shell Scripts

Understanding Shell Scripts
Summary
Exercises

Part III: Becoming a Linux System Administrator
CHAPTER 8: Learning System Administration

Understanding System Administration
Using Graphical Administration Tools
Using the root User Account
Exploring Administrative Commands, Configuration
Files, and Log Files
Using Other Administrative Accounts
Checking and Configuring Hardware
Summary
Exercises

CHAPTER 9: Installing Linux
Choosing a Computer
Installing Fedora from Live Media
Installing Red Hat Enterprise Linux from Installation
Media
Understanding Cloud-Based Installations
Installing Linux in the Enterprise
Exploring Common Installation Topics
Summary
Exercises

CHAPTER 10: Getting and Managing Software
Managing Software on the Desktop
Going Beyond the Software Window
Understanding Linux RPM and DEB Software Packaging
Managing RPM Packages with YUM
Installing, Querying, and Verifying Software with the

rpm Command
Managing Software in the Enterprise
Summary
Exercises

CHAPTER 11: Managing User Accounts
Creating User Accounts
Understanding Group Accounts
Managing Users in the Enterprise
Centralizing User Accounts
Summary
Exercises

CHAPTER 12: Managing Disks and Filesystems
Understanding Disk Storage
Partitioning Hard Disks
Using Logical Volume Manager Partitions
Mounting Filesystems
Using the mkfs Command to Create a Filesystem
Managing Storage with Cockpit
Summary
Exercises

Part IV: Becoming a Linux Server Administrator
CHAPTER 13: Understanding Server Administration

Starting with Server Administration
Checking and Setting Servers
Managing Remote Access with the Secure Shell Service
Configuring System Logging
Checking System Resources with sar
Checking System Space
Managing Servers in the Enterprise

Summary
Exercises

CHAPTER 14: Administering Networking
Configuring Networking for Desktops
Configuring Networking from the Command Line
Configuring Networking in the Enterprise
Summary
Exercises

CHAPTER 15: Starting and Stopping Services
Understanding the Initialization Daemon (init or
systemd)
Checking the Status of Services
Stopping and Starting Services
Enabling Persistent Services
Configuring a Default Runlevel or Target Unit
Adding New or Customized Services
Summary
Exercises

CHAPTER 16: Configuring a Print Server
Common UNIX Printing System
Setting Up Printers
Working with CUPS Printing
Using Printing Commands
Configuring Print Servers
Summary
Exercises

CHAPTER 17: Configuring a Web Server
Understanding the Apache Web Server
Getting and Installing Your Web Server

Starting Apache
Troubleshooting Your Web Server
Summary
Exercises

CHAPTER 18: Configuring an FTP Server
Understanding FTP
Installing the vsftpd FTP Server
Starting the vsftpd Service
Securing Your FTP Server
Configuring Your FTP Server
Using FTP Clients to Connect to Your Server
Summary
Exercises

CHAPTER 19: Configuring a Windows File Sharing (Samba)
Server

Understanding Samba
Installing Samba
Starting and Stopping Samba
Securing Samba
Configuring Samba
Accessing Samba Shares
Using Samba in the Enterprise
Summary
Exercises

CHAPTER 20: Configuring an NFS File Server
Installing an NFS Server
Starting the NFS service
Sharing NFS Filesystems
Securing Your NFS Server

Using NFS Filesystems
Unmounting NFS filesystems
Summary
Exercises

CHAPTER 21: Troubleshooting Linux
Boot-Up Troubleshooting
Troubleshooting Software Packages
Troubleshooting Networking
Troubleshooting Memory
Troubleshooting in Rescue Mode
Summary
Exercises

Part V: Learning Linux Security Techniques
CHAPTER 22: Understanding Basic Linux Security

Implementing Physical Security
Monitoring Your Systems
Auditing and Reviewing Linux
Summary
Exercises

CHAPTER 23: Understanding Advanced Linux Security
Implementing Linux Security with Cryptography
Implementing Linux Security with PAM
Summary
Exercises

CHAPTER 24: Enhancing Linux Security with SELinux
Understanding SELinux Benefits
Understanding How SELinux Works
Configuring SELinux
Monitoring and Troubleshooting SELinux

Putting It All Together
Obtaining More Information on SELinux
Summary
Exercises

CHAPTER 25: Securing Linux on a Network
Auditing Network Services
Working with Firewalls
Summary
Exercises

Part VI: Engaging with Cloud Computing
CHAPTER 26: Shifting to Clouds and Containers

Understanding Linux Containers
Starting with Linux Containers
Summary
Exercises

CHAPTER 27: Using Linux for Cloud Computing
Overview of Linux and Cloud Computing
Trying Basic Cloud Technology
Setting Up a Small Cloud
Summary
Exercises

CHAPTER 28: Deploying Linux to the Cloud
Getting Linux to Run in a Cloud
Creating Linux Images for Clouds
Using OpenStack to Deploy Cloud Images
Using Amazon EC2 to Deploy Cloud Images
Summary
Exercises

CHAPTER 29: Automating Apps and Infrastructure with

Ansible
Understanding Ansible
Exploring Ansible Components
Stepping Through an Ansible Deployment
Installing Ansible
Running Ad-Hoc Ansible Commands
Automating Tasks with Ansible Tower Automation
Framework
Summary
Exercises

CHAPTER 30: Deploying Applications as Containers with
Kubernetes

Understanding Kubernetes
Trying Kubernetes
Enterprise-Quality Kubernetes with OpenShift
Summary
Exercises

Part VII: Appendixes
APPENDIX A: MediaMedia

Getting Fedora
Getting Red Hat Enterprise Linux
Getting Ubuntu
Booting Linux from a USB Drive
Creating Linux CDs and DVDs

APPENDIX B: Exercise AnswersExercise Answers
Chapter 1: Starting with Linux
Chapter 2: Creating the Perfect Linux Desktop
Chapter 3: Using the Shell
Chapter 4: Moving Around the Filesystem
Chapter 5: Working with Text Files

Chapter 6: Managing Running Processes
Chapter 7: Writing Simple Shell Scripts
Chapter 8: Learning System Administration
Chapter 9: Installing Linux
Chapter 10: Getting and Managing Software
Chapter 11: Managing User Accounts
Chapter 12: Managing Disks and Filesystems
Chapter 13: Understanding Server Administration
Chapter 14: Administering Networking
Chapter 15: Starting and Stopping Services
Chapter 16: Configuring a Print Server
Chapter 17: Configuring a Web Server
Chapter 18: Configuring an FTP Server
Chapter 19: Configuring a Windows File Sharing
(Samba) Server
Chapter 20: Configuring an NFS File Server
Chapter 21: Troubleshooting Linux
Chapter 22: Understanding Basic Linux Security
Chapter 23: Understanding Advanced Linux Security
Chapter 24: Enhancing Linux Security with SELinux
Chapter 25: Securing Linux on a Network
Chapter 26: Shifting to Clouds and Containers
Chapter 27: Using Linux for Cloud Computing
Chapter 28: Deploying Linux to the Cloud
Chapter 29: Automating Apps and Infrastructure with
Ansible
Chapter 30: Deploying Applications as Containers with
Kubernetes

Index
End User License Agreement

List of Tables
Chapter 2

TABLE 2.1 Keyboard Shortcuts

Chapter 3

TABLE 3.1 Keystrokes for Navigating Command Lines

TABLE 3.2 Keystrokes for Editing Command Lines

TABLE 3.3 Keystrokes for Cutting and Pasting Text from
within Command Lines

TABLE 3.4 Keystrokes for Using Command History

TABLE 3.5 Common Shell Environment Variables

TABLE 3.6 Bash Configuration Files

TABLE 3.7 Characters to Add Information to Bash Prompt

TABLE 3.8 Manual Page Sections

Chapter 4

TABLE 4.1 Commands to Create and Use Files

TABLE 4.2 Setting Read, Write, and Execute Permissions

Chapter 6

TABLE 6.1 Signals Available in Linux

Chapter 7

TABLE 7.1 Operators for Test Expressions

Chapter 9

TABLE 9.1 Boot Options for Disabling Features

TABLE 9.2 Boot Options for Video Problems

TABLE 9.3 Boot Options for VNC Installations

TABLE 9.4 Assigning Partitions to Particular Directories

Chapter 11

TABLE 11.1 Commands to Create and Use Files

Chapter 13

TABLE 13.1 Commands to Determine sshd Status

TABLE 13.2 Commands to Start sshd

TABLE 13.3 Commands to Start sshd at Boot

Chapter 15

TABLE 15.1 Standard Linux Runlevels

Chapter 22

TABLE 22.1 Ideas for Good Passwords

TABLE 22.2 chage Options

TABLE 22.3 Log Files in the /var/log Directory

TABLE 22.4 Viewing Log Files That Need Special Commands

TABLE 22.5 Package Verification Discrepancies

TABLE 22.6 Additional Filesystem Scans

TABLE 22.7 Popular Linux Intrusion Detection Systems

Chapter 23

TABLE 23.1 Cryptography Ciphers

TABLE 23.2 Linux Miscellaneous Cryptography Tools

TABLE 23.3 PAM Contexts

TABLE 23.4 PAM Configuration Control Flags and Response
Handling

Chapter 24

TABLE 24.1 secon Command Options

TABLE 24.2 File Security Context Label Management
Commands

TABLE 24.3 SELinux Policy Package Tools

Chapter 25

TABLE 25.1 Chains Available for Each netfilter/iptables
Table

List of Illustrations
Chapter 2

FIGURE 2.1 Starting with the GNOME 3 desktop in Fedora.

FIGURE 2.2 Show all windows on the desktop minimized.

FIGURE 2.3 Show the list of available applications.

FIGURE 2.4 Click the middle mouse button to display an
application's selecti...

FIGURE 2.5 As new desktops are used, additional ones
appear on the right.

FIGURE 2.6 Press Ctrl+Alt+Tab to display additional
desktop areas to select....

FIGURE 2.7 Press Alt+Tab to select which running
application to go to.

FIGURE 2.8 Change desktop settings from the System
Settings window.

FIGURE 2.9 Extensions add features to the GNOME 3
desktop.

FIGURE 2.10 Change desktop settings using the GNOME
Tweak Tool (Appearance s...

FIGURE 2.11 Manage files and folders from the Nautilus
window.

FIGURE 2.12 Access remote folders using the Nautilus
Connect to Server featu...

FIGURE 2.13 Download and install software from the huge
Fedora repository.

FIGURE 2.14 Play music, podcasts, and Internet radio from
Rhythmbox.

FIGURE 2.15 The GNOME 2 desktop environment

FIGURE 2.16 The GNOME Panel menu

FIGURE 2.17 Placing applets on the panel makes accessing
them easy.

FIGURE 2.18 Add launchers or applets to a drawer on your
GNOME 2 panel.

FIGURE 2.19 Rotate workspaces on a cube with AIGLX
desktop effects enabled....

Chapter 4

FIGURE 4.1 The Linux filesystem is organized as a hierarchy
of directories....

Chapter 6

FIGURE 6.1 Displaying running processes with top

FIGURE 6.2 Use the System Monitor window to view and
change running processe...

FIGURE 6.3 Renice, kill, or pause a process from the System
Monitor window....

Chapter 8

FIGURE 8.1 Logging in to Cockpit

FIGURE 8.2 View system activity and other topics from the
Cockpit dashboard....

Chapter 9

FIGURE 9.1 Start the installation process from Live media.

FIGURE 9.2 Select configuration options from the
Installation Summary screen...

FIGURE 9.3 Choose from Localization, Software, and System
topics on the Inst...

Chapter 10

FIGURE 10.1 Install and manage software packages from the
Software window.

Chapter 11

FIGURE 11.1 Add and modify user accounts from Cockpit.

Chapter 12

FIGURE 12.1 LVM logical volumes can be mounted like
regular partitions on a ...

FIGURE 12.2 View storage devices, filesystems, and activities
from the Cockp...

FIGURE 12.3 View and change disk partitions for a select
storage device.

FIGURE 12.4 Creating a new partition table

Chapter 13

FIGURE 13.1 Log in to Cockpit

Chapter 14

FIGURE 14.1 Checking network interfaces with
NetworkManager

FIGURE 14.2 Viewing network settings with
NetworkManager

FIGURE 14.3 Viewing and changing network settings from
Cockpit

FIGURE 14.4 View services that are accessible through the
firewall from Cock...

FIGURE 14.5 Changing network settings with
NetworkManager

FIGURE 14.6 Setting up Firefox to use a proxy server

FIGURE 14.7 Configuring networking with NetworkManager
TUI

FIGURE 14.8 Set static IP addresses by selecting Manual
from the Edit Connec...

Chapter 16

FIGURE 16.1 CUPS provides a web-based administration
tool.

FIGURE 16.2 You can do administration tasks from the
Printers tab.

FIGURE 16.3 The Printer Properties window after adding a
printer

Chapter 17

FIGURE 17.1 Access Apache documentation directly from the
local Apache serve...

FIGURE 17.2 Accessing an SSL website with a default
certificate

Chapter 18

FIGURE 18.1 Open access to your FTP service from the
Firewall Configuration ...

FIGURE 18.2 Accessing an FTP server from Firefox

FIGURE 18.3 The gFTP FTP client lets you see both sides of
an FTP session.

Chapter 19

FIGURE 19.1 Identify a Samba share from the Nautilus
Connect to Server box....

FIGURE 19.2 Add your Samba credentials.

FIGURE 19.3 Displaying a Samba share from Connect to
Server in Nautilus

FIGURE 19.4 Accessing Samba shares from Windows

Chapter 20

FIGURE 20.1 View NFS shares mounted locally using Cockpit
Web UI

FIGURE 20.2 Add a new NFS mount using Cockpit Web UI

FIGURE 20.3 Use the Firewall Configuration window to open

your firewall to a...

Chapter 21

FIGURE 21.1 Interrupt the GRUB bootloader to modify the
boot process.

FIGURE 21.2 Confirm each service in RHEL interactive
startup mode.

FIGURE 21.3 Snippet from systemd-analyze startup plot

FIGURE 21.4 Monitor RAM and Swap usage in real time with
Cockpit.

Chapter 23

FIGURE 23.1 The Fedora ISO security page tells how to get
and check with sha...

FIGURE 23.2 Basic asymmetric key cryptography

FIGURE 23.3 Red Hat Enterprise Linux installation
encryption option

FIGURE 23.4 Linux Fedora encryption symmetric key
password

FIGURE 23.5 Asking for the encryption symmetric key
password at boot

Chapter 25

FIGURE 25.1 Firewall Configuration window

FIGURE 25.2 Firewall Configuration

Chapter 27

FIGURE 27.1 Start Virtual Machine Manager and check
connection details.

FIGURE 27.2 Open the virtual machine and begin using it.

FIGURE 27.3 Choose which hypervisor to migrate the VM to.

Chapter 28

FIGURE 28.1 Cloning lets you save a permanent copy of a
cloud instance.

FIGURE 28.2 Log in to the OpenStack Dashboard.

FIGURE 28.3 View your network topology from the
OpenStack Dashboard.

FIGURE 28.4 Launch cloud instances using the Amazon EC2
Management Console....

FIGURE 28.5 Configure and launch a RHEL 8 instance on
AWS.

Chapter 30

FIGURE 30.1 Step through the Kubernetes project tutorials

FIGURE 30.2 OpenShift features an intuitive web UI for
deploying and managin...

Appendix A

FIGURE A.1 Download Fedora ISO images from the Get
Fedora page.

FIGURE A.2 Download Ubuntu Live ISO images, or choose
an alternative downloa...

FIGURE A.3 Use K3b to burn your Linux CDs or DVDs.

kindle:embed:0001?mime=image/jpg

Linux® BIBLE
Tenth Edition

Christopher Negus

Introduction
You can't learn Linux without using it.

I've come to that conclusion after more than two decades of teaching
people how to use Linux. You can't just read a book; you can't just
listen to a lecture. You need someone to guide you, and you need to
jump in and do it yourself.

In 1999, I wrote my first Linux book, the Red Hat Linux Bible. The
book's huge success gave me the opportunity to become a full-time,
independent Linux author. For about a decade, I wrote dozens of
Linux books and explored the best ways to explain Linux from the
quiet of my small home office.

In 2008, I hit the road. I was hired by Red Hat, Inc., as a full-time
instructor, teaching Linux to professional system administrators
seeking Red Hat Certified Engineer (RHCE) certification. In my three
years as a Linux instructor, I honed my teaching skills in front of a live
audience whose Linux experience ranged from none to experienced
professionals. Over time, I was able to broaden my own knowledge of
Linux by acquiring about 10 certifications, including the Red Hat
Certified Architect (RHCA) certification.

In the previous edition of the Linux Bible, I turned my teaching
experience into text to take a reader from someone who has never
used Linux to someone with the foundational skills to become a Linux
professional. The skills that you could acquire from that edition
remain in effect in this edition as well. They include the following:

Beginner to certified professional: As long as you have used
a computer, mouse, and keyboard, you can start with this book. I
tell you how to get Linux, begin using it, step through critical
topics, and ultimately excel at administering and securing it.

System administrator focused: When you are finished with
this book, you will know how to use Linux and how to modify and
maintain it. Almost all of the topics needed to become a Red Hat
Certified Engineer are introduced in this book. That said, many

software developers have also used this book to understand how
to work on a Linux system as a development platform or target for
their applications.

Emphasis on command-line tools: Although point-and-click
windows for managing Linux have improved greatly in recent
years, many advanced features can only be utilized by entering
commands and editing configuration files manually. I teach you
how to become proficient with the Linux command-line shell, and
I occasionally compare shell features with graphical tools for
accomplishing the same tasks.

Aimed at fewer Linux distributions: In past editions, I
described about 18 different Linux distributions. With only a few
notable exceptions, most popular Linux distributions are either
Red Hat based (Red Hat Enterprise Linux, Fedora, CentOS, and
so on) or Debian based (Ubuntu, Linux Mint, KNOPPIX, and so
forth). Although this book most thoroughly covers Red Hat
distributions, I increased the coverage of Ubuntu throughout the
book, because that's where many of the biggest Linux fans begin.

Many, many demos and exercises: Instead of just telling you
what Linux does, I actually show you what it does. Then, to make
sure that you got it, you have the opportunity to try Linux
exercises yourself. Every procedure and exercise has been tested
to work in Fedora or Red Hat Enterprise Linux. Most work in
Ubuntu as well.

For this 10th edition, major enhancements include a focus on
simplified Linux administration, automating tasks, and managing
containerized applications (individually or at scale):

Cockpit administration web UI: Since Linux was created,
people have tried to develop simple graphical or browser-based
interfaces for managing Linux systems. I believe that Cockpit is
the best web UI ever created for managing most basic Linux
features. Throughout this book, I have replaced most older
system-config* tool descriptions with those focusing on Cockpit.
With Cockpit, you can now add users, manage storage, monitor
activities, and do many other administrative tasks through a

single interface.

Lead into cloud technologies: After introducing cloud
technologies in the previous edition, I've expanded on that
coverage here. This coverage includes setting up your own Linux
host for running virtual machines and running Linux in a cloud
environment, such as Amazon Web Services. Linux is at the heart
of most technological advances in cloud computing today. That
means you need a solid understanding of Linux to work effectively
in tomorrow's data centers. I help you learn Linux basics in the
front of this book. Then in the last few chapters, I demonstrate
how you can try out Linux systems as hypervisors, cloud
controllers, and virtual machines as well as manage virtual
networks and networked storage.

Ansible: Automating tasks for managing systems is becoming
more and more essential in modern data centers. Using Ansible,
you can create playbooks that define the state of a Linux system.
This includes things like setting which packages are installed,
which services are running, and how features are configured. A
playbook can configure one system or a thousand systems, be
combined to form a set of system services, and be run again to
return a system to a defined state. In this edition, I introduce you
to Ansible, help you create your first Ansible playbook, and show
you how to run ad-hoc Ansible commands.

Containers: Packaging and running applications in containers is
becoming the preferred method for deploying, managing, and
updating small, scalable software services and features. I describe
how to pull containers to your system, run them, stop them, and
even build your own container images using podman and docker
commands.

Kubernetes and OpenShift: While containers are nice on their
own, to be able to deploy, manage, and upgrade containers in a
large enterprise, you need an orchestration platform. The
Kubernetes project provides that platform. For a commercial,
supported Kubernetes platform, you can use a product such as
OpenShift.

How This Book Is Organized
The book is organized to enable you to start off at the very beginning
with Linux and grow to become a professional Linux system
administrator and power user.

Part I, “Getting Started,” includes two chapters designed to help you
understand what Linux is and get you started with a Linux desktop:

Chapter 1, “Starting with Linux,” covers topics such as what the
Linux operating system is, where it comes from, and how to get
started using it.

Chapter 2, “Creating the Perfect Linux Desktop,” provides
information on how you can create a desktop system and use
some of the most popular desktop features.

Part II, “Becoming a Linux Power User,” provides in-depth details on
how to use the Linux shell, work with filesystems, manipulate text
files, manage processes, and use shell scripts:

Chapter 3, “Using the Shell,” includes information on how to
access a shell, run commands, recall commands (using history),
and do tab completion. The chapter also describes how to use
variables, aliases, and man pages (traditional Linux command
reference pages).

Chapter 4, “Moving Around the Filesystem,” includes commands
for listing, creating, copying, and moving files and directories.
More advanced topics in this chapter include filesystem security,
such as file ownership, permissions, and access control lists.

Chapter 5, “Working with Text Files,” includes everything from
basic text editors to tools for finding files and searching for text
within files.

Chapter 6, “Managing Running Processes,” describes how to see
what processes are running on your system and change them.
Ways of changing processes include killing, pausing, and sending
other types of signals.

Chapter 7, “Writing Simple Shell Scripts,” includes shell
commands and functions that you can gather together into a file
to run as a command itself.

In Part III, “Becoming a Linux System Administrator,” you learn how
to administer Linux systems:

Chapter 8, “Learning System Administration,” provides
information on basic graphical tools, commands, and
configuration files for administering Linux systems. It introduces
the Cockpit web UI for simplified, centralized Linux
administration.

Chapter 9, “Installing Linux,” covers common installation tasks,
such as disk partitioning and initial software package selection, as
well as more advanced installation tools, such as installing from
kickstart files.

Chapter 10, “Getting and Managing Software,” provides an
understanding of how software packages work and how to get and
manage software packages.

Chapter 11, “Managing User Accounts,” discusses tools for adding
and deleting users and groups as well as how to centralize user
account management.

Chapter 12, “Managing Disks and Filesystems,” provides
information on adding partitions, creating filesystems, and
mounting filesystems, as well as working with logical volume
management.

In Part IV, “Becoming a Linux Server Administrator,” you learn to
create powerful network servers and the tools needed to manage them:

Chapter 13, “Understanding Server Administration,” covers
remote logging, monitoring tools, and the Linux boot process.

Chapter 14, “Administering Networking” discusses how to
configure networking.

Chapter 15, “Starting and Stopping Services,” provides
information on starting and stopping services.

Chapter 16, “Configuring a Print Server,” describes how to
configure printers to use locally on your Linux system or over the
network from other computers.

Chapter 17, “Configuring a Web Server,” describes how to
configure an Apache web server.

Chapter 18, “Configuring an FTP Server,” covers procedures for
setting up a vsftpd FTP server that can be used to enable others to
download files from your Linux system over the network.

Chapter 19, “Configuring a Windows File Sharing (Samba)
Server,” covers Windows file server configuration with Samba.

Chapter 20, “Configuring an NFS File Server,” describes how to
use Network File System features to share folders of files among
systems over a network.

Chapter 21, “Troubleshooting Linux,” covers popular tools for
troubleshooting your Linux system.

In Part V, “Learning Linux Security Techniques,” you learn how to
secure your Linux systems and services:

Chapter 22, “Understanding Basic Linux Security,” covers basic
security concepts and techniques.

Chapter 23, “Understanding Advanced Linux Security,” provides
information on using Pluggable Authentication Modules (PAM)
and cryptology tools to tighten system security and
authentication.

Chapter 24, “Enhancing Linux Security with SELinux,” shows you
how to enable Security Enhanced Linux (SELinux) to secure
system services.

Chapter 25, “Securing Linux on a Network,” covers network
security features, such as firewalld and iptables firewalls, to
secure system services.

In Part VI,” Engaging with Cloud Computing” the book pivots from a
single-system focus toward containerization, cloud computing, and
automation:

Chapter 26, “Shifting to Clouds and Containers,” describes how to
pull, push, start, stop, tag, and build container images.

Chapter 27, “Using Linux for Cloud Computing,” introduces
concepts of cloud computing in Linux by describing how to set up
hypervisors, build virtual machines, and share resources across
networks.

Chapter 28, “Deploying Linux to the Cloud,” describes how to
deploy Linux images to different cloud environments, including
OpenStack, Amazon EC2, or a local Linux system that is
configured for virtualization.

Chapter 29, “Automating Apps and Infrastructure with Ansible,”
tells you how to create Ansible playbooks and run ad-hoc Ansible
commands to automate the configuration of Linux systems and
other devices.

Chapter 30, “Deploying Applications as Containers with
Kubernetes,” describes the Kubernetes project and how it is used
to orchestrate container images, with the potential to massively
scale up for large data centers.

Part VII contains two appendixes to help you get the most from your
exploration of Linux. Appendix A, “Media,” provides guidance on
downloading Linux distributions. Appendix B, “Exercise Answers,”
provides sample solutions to the exercises included in Chapters 2
through 30.

Conventions Used in This Book
Throughout the book, special typography indicates code and
commands. Commands and code are shown in a monospaced font:

This is how code looks.

In the event that an example includes both input and output, the
monospaced font is still used, but input is presented in bold type to
distinguish the two. Here's an example:

$ ftp ftp.handsonhistory.com

Name (home:jake): jake

Password: ******

As for styles in the text:

New terms and important words appear in italic when
introduced.

Keyboard strokes appear like this: Ctrl+A. This convention
indicates to hold the Ctrl key as you also press the "a" key.

Filenames, URLs, and code within the text appear as follows:
persistence.properties.

The following items call your attention to points that are particularly
important.

NOTE
A Note box provides extra information to which you need to pay
special attention.

TIP
A Tip box shows a special way of performing a particular task.

CAUTION
A Caution box alerts you to take special care when executing a
procedure or damage to your computer hardware or software could
result.

Jumping into Linux
If you are new to Linux, you might have vague ideas about what it is
and where it came from. You may have heard something about it being
free (as in cost) or free (as in freedom to use it as you please). Before
you start putting your hands on Linux (which we will do soon enough),
Chapter 1 seeks to answer some of your questions about the origins
and features of Linux.

Take your time and work through this book to get up to speed on
Linux and how you can make it work to meet your needs. This is your
invitation to jump in and take the first step toward becoming a Linux
expert!

Visit the Linux Bible website
To find links to various Linux distributions, tips on gaining Linux
certification, and corrections to the book as they become available,
go to www.wiley.com/go/linuxbible10e.

http://www.wiley.com/go/linuxbible10e

How to Contact Wiley or the Author
You can contact Christopher Negus at striker57@gmail.com.

If you believe you have found an error in this book, and it is not listed
on the book's page at www.wiley.com, you can report the issue to our
customer technical support team at support.wiley.com.

mailto:striker57@gmail.com
http://www.wiley.com
http://support.wiley.com

Part I
Getting Started

IN THIS PART
Chapter 1 Starting with Linux

Chapter 2 Creating the Perfect Linux Desktop

CHAPTER 1
Starting with Linux

IN THIS CHAPTER
Learning what Linux is

Learning where Linux came from

Choosing Linux distributions

Exploring professional opportunities with Linux

Becoming certified in Linux

The operating systems war is over, and Linux has won. Proprietary
operating systems simply cannot keep up with the pace of
improvements and quality that Linux can achieve with its culture of
sharing and innovation. Even Microsoft, whose former CEO Steve
Ballmer once referred to Linux as “a cancer,” now says that Linux's use
on its Microsoft's Azure cloud computing service has surpassed the use
of Windows.

Linux is one of the most important technological advancements of the
twenty-first century. Beyond its impact on the growth of the Internet
and its place as an enabling technology for a range of computer-driven
devices, Linux development has become a model for how collaborative
projects can surpass what single individuals and companies can do
alone.

Google runs thousands upon thousands of Linux servers to power its
search technology. Its Android phones are based on Linux. Likewise,
when you download and run Google's Chrome OS, you get a browser
that is backed by a Linux operating system.

Facebook builds and deploys its site using what is referred to as a
LAMP stack (Linux, Apache web server, MySQL database, and PHP

web scripting language)—all open source projects. In fact, Facebook
itself uses an open source development model, making source code for
the applications and tools that drive Facebook available to the public.
This model has helped Facebook shake out bugs quickly, get
contributions from around the world, and fuel its exponential growth.

Financial organizations that have trillions of dollars riding on the
speed and security of their operating systems also rely heavily on
Linux. These include the New York Stock Exchange, Chicago
Mercantile Exchange, and the Tokyo Stock Exchange.

As cloud continues to be one of the hottest buzzwords today, a part of
the cloud groundswell that isn't hype is that Linux and other open
source technologies continue to be the foundation on which today's
greatest cloud innovations are being built. Every software component
that you need to build a private or public cloud (such as hypervisors,
cloud controllers, network storage, virtual networking, and
authentication) is freely available for you to start using from the open
source world.

The widespread adoption of Linux around the world has created huge
demand for Linux expertise. This chapter starts you down a path to
becoming a Linux expert by helping you understand what Linux is,
where it came from, and what your opportunities are for becoming
proficient in it.

The rest of this book provides you with hands-on activities to help you
gain that expertise. Finally, I show you how to apply that expertise to
cloud technologies, including automation tools, such as Ansible, and
containerization orchestration technologies, such as Kubernetes and
OpenShift.

Understanding What Linux Is
Linux is a computer operating system. An operating system consists of
the software that manages your computer and lets you run
applications on it. The features that make up Linux and similar
computer operating systems include the following:

Detecting and preparing hardware: When the Linux system
boots up (when you turn on your computer), it looks at the
components on your computer (CPU, hard drive, network cards,
and so on) and loads the software (drivers and modules) needed
to access those particular hardware devices.

Managing processes: The operating system must keep track of
multiple processes running at the same time and decide which
have access to the CPU and when. The system also must offer
ways of starting, stopping, and changing the status of processes.

Managing memory: RAM and swap space (extended memory)
must be allocated to applications as they need memory. The
operating system decides how requests for memory are handled.

Providing user interfaces: An operating system must provide
ways of accessing the system. The first Linux systems were
accessed from a command-line interpreter called a shell. Today,
graphical desktop interfaces are commonly available as well.

Controlling filesystems: Filesystem structures are built into
the operating system (or loaded as modules). The operating
system controls ownership and access to the files and directories
(folders) that the filesystems contain.

Providing user access and authentication: Creating user
accounts and allowing boundaries to be set between users is a
basic feature of Linux. Separate user and group accounts enable
users to control their own files and processes.

Offering administrative utilities: In Linux, hundreds
(perhaps thousands) of commands and graphical windows are
available to do such things as add users, manage disks, monitor

the network, install software, and generally secure and manage
your computer. Web UI tools, such as Cockpit, have lowered the
bar for doing complex administrative tasks.

Starting up services: To use printers, handle log messages, and
provide a variety of system and network services, processes called
daemon processes run in the background, waiting for requests to
come in. Many types of services run in Linux. Linux provides
different ways of starting and stopping these services. In other
words, while Linux includes web browsers to view web pages, it
can also be the computer that serves up web pages to others.
Popular server features include web, mail, database, printer, file,
DNS, and DHCP servers.

Programming tools: A wide variety of programming utilities
for creating applications and libraries for implementing specialty
interfaces are available with Linux.

As someone managing Linux systems, you need to learn how to work
with those features just described. While many features can be
managed using graphical interfaces, an understanding of the shell
command line is critical for someone administering Linux systems.

Modern Linux systems now go way beyond what the first UNIX
systems (on which Linux was based) could do. Advanced features in
Linux, often used in large enterprises, include the following:

Clustering: Linux can be configured to work in clusters so that
multiple systems can appear as one system to the outside world.
Services can be configured to pass back and forth between cluster
nodes while appearing to those using the services that they are
running without interruption.

Virtualization: To manage computing resources more
efficiently, Linux can run as a virtualization host. On that host,
you could run other Linux systems, Microsoft Windows, BSD, or
other operating systems as virtual guests. To the outside world,
each of those virtual guests appears as a separate computer. KVM
and Xen are two technologies in Linux for creating virtual hosts.

Cloud computing: To manage large-scale virtualization

environments, you can use full-blown cloud computing platforms
based on Linux. Projects such as OpenStack and Red Hat
Virtualization (and its upstream oVirt project) can simultaneously
manage many virtualization hosts, virtual networks, user and
system authentication, virtual guests, and networked storage.
Projects such as Kubernetes can manage containerized
applications across massive data centers.

Real-time computing: Linux can be configured for real-time
computing, where high-priority processes can expect fast,
predictable attention.

Specialized storage: Instead of just storing data on the
computer's hard disk, you can store it on many specialized local
and networked storage interfaces that are available in Linux.
Shared storage devices available in Linux include iSCSI, Fibre
Channel, and Infiniband. Entire open source storage platforms
include projects such as Ceph (https://ceph.io) and GlusterFS
(https://www.gluster.org).

Some of these advanced topics are not covered in this book. However,
the features covered here for using the shell, working with disks,
starting and stopping services, and configuring a variety of servers
should serve as a foundation for working with those advanced
features.

https://ceph.io
https://www.gluster.org

Understanding How Linux Differs from Other
Operating Systems
If you are new to Linux, chances are good that you have used a
Microsoft Windows or MacOS operating system. Although MacOS had
its roots in a free software operating system, referred to as the
Berkeley Software Distribution (more on that later), operating systems
from both Microsoft and Apple are considered proprietary operating
systems. What that means is the following:

You cannot see the code used to create the operating system, and
therefore, you cannot change the operating system at its most
basic levels if it doesn't suit your needs, and you can't use the
operating system to build your own operating system from source
code.

You cannot check the code to find bugs, explore security
vulnerabilities, or simply learn what that code is doing.

You may not be able to plug your own software easily into the
operating system if the creators of that system don't want to
expose the programming interfaces you need to the outside world.

You might look at those statements about proprietary software and
say, “What do I care? I'm not a software developer. I don't want to see
or change how my operating system is built.”

That may be true. However, the fact that others can take free and open
source software and use it as they please has driven the explosive
growth of the Internet (think Google), mobile phones (think Android),
special computing devices (think TiVo), and hundreds of technology
companies. Free software has driven down computing costs and
allowed for an explosion of innovation.

Maybe you don't want to use Linux—as Google, Facebook, and other
companies have done—to build the foundation for a multi-billion-
dollar company. Nonetheless, those companies and others who now
rely on Linux to drive their computer infrastructures need more and
more people with the skills to run those systems.

You may wonder how a computer system that is so powerful and
flexible has come to be free as well. To understand how that could be,
you need to see where Linux came from. Thus the next sections of this
chapter describe the strange and winding path of the free software
movement that led to Linux.

Exploring Linux History
Some histories of Linux begin with the following message entitled
“What would you like to see most in minix?” posted by Linus Torvalds
to the comp.os.minix newsgroup on August 25, 1991, at
https://groups.google.com/forum/#!msg/comp.os.minix/dlNtH7RRrGA/SwRavCzVE7gJ

Linus Benedict Torvalds

Hello everybody out there using minix -

I'm doing a (free) operating system (just a hobby, won't be big and
professional like gnu) for 386(486) AT clones. This has been
brewing since april, and is starting to get ready. I'd like any
feedback on things people like/dislike in minix, as my OS
resembles it somewhat (same physical layout of the file-system
(due to practical reasons, among other things)…Any suggestions
are welcome, but I won't promise I'll implement them :-)

Linus (torvalds@kruuna.helsinki.fi)

PS. Yes — it's free of any minix code, and it has a multi-threaded
fs. It is NOT protable[sic] (uses 386 task switching etc), and it
probably never will support anything other than AT-harddisks, as
that's all I have :-(.

Minix was a UNIX-like operating system that ran on PCs in the early
1990s. Like Minix, Linux was also a clone of the UNIX operating
system. With few exceptions, such as Microsoft Windows, most
modern computer systems (including MacOS and Linux itself) were
derived from UNIX operating systems, created originally by AT&T.

To truly appreciate how a free operating system could have been
modeled after a proprietary system from AT&T Bell Laboratories, it
helps to understand the culture in which UNIX was created and the
chain of events that made the essence of UNIX possible to reproduce
freely.

https://groups.google.com/forum/#!msg/comp.os.minix/dlNtH7RRrGA/SwRavCzVE7gJ
mailto:torvalds@kruuna.helsinki.fi

NOTE
To learn more about how Linux was created, pick up the book Just
for Fun: The Story of an Accidental Revolutionary by Linus
Torvalds (Harper Collins Publishing, 2001).

Free-flowing UNIX culture at Bell Labs
From the very beginning, the UNIX operating system was created and
nurtured in a communal environment. Its creation was not driven by
market needs but by a desire to overcome impediments to producing
programs. AT&T, which owned the UNIX trademark originally,
eventually made UNIX into a commercial product. By that time,
however, many of the concepts (and even much of the early code) that
made UNIX special had fallen into the public domain.

If you are not old enough to remember when AT&T split up in 1984,
you may not remember a time when AT&T was the phone company.
Up until the early 1980s, AT&T didn't have to think much about
competition because if you wanted a phone in the United States, you
had to go to AT&T. It had the luxury of funding pure research projects.
The mecca for such projects was the Bell Laboratories site in Murray
Hill, New Jersey.

After a project called Multics failed around 1969, Bell Labs employees
Ken Thompson and Dennis Ritchie set off on their own to create an
operating system that would offer an improved environment for
developing software. Up to that time, most programs were written on
paper punch cards that had to be fed in batches to mainframe
computers. In a 1980 lecture on “The Evolution of the UNIX Time-
sharing System,” Dennis Ritchie summed up the spirit that started
UNIX:

What we wanted to preserve was not just a good environment in
which to do programming, but a system around which a
fellowship could form. We knew from experience that the essence
of communal computing as supplied by remote-access, time-

shared machines is not just to type programs into a terminal
instead of a keypunch, but to encourage close communication.

The simplicity and power of the UNIX design began breaking down
barriers that, until this point, had impeded software developers. The
foundation of UNIX was set with several key elements:

The UNIX filesystem: Because it included a structure that
allowed levels of subdirectories (which, for today's desktop users,
look like folders inside of folders), UNIX could be used to
organize the files and directories in intuitive ways. Furthermore,
complex methods of accessing disks, tapes, and other devices
were greatly simplified by representing those devices as individual
device files that you could also access as items in a directory.

Input/output redirection: Early UNIX systems also included
input redirection and pipes. From a command line, UNIX users
could direct the output of a command to a file using a right-arrow
key (>). Later, the concept of pipes (|) was added where the
output of one command could be directed to the input of another
command. For example, the following command line
concatenates (cat) file1 and file2, sorts (sort) the lines in those
files alphabetically, paginates the sorted text for printing (pr), and
directs the output to the computer's default printer (lpr):

 $ cat file1 file2 | sort | pr | lpr

This method of directing input and output enabled developers to
create their own specialized utilities that could be joined with
existing utilities. This modularity made it possible for lots of code
to be developed by lots of different people. A user could just put
together the pieces they needed.

Portability: Simplifying the experience of using UNIX also led to
it becoming extraordinarily portable to run on different computer
hardware. By having device drivers (represented by files in the
filesystem tree), UNIX could present an interface to applications
in such a way that the programs didn't have to know about the
details of the underlying hardware. To port UNIX later to another
system, developers had only to change the drivers. The

application programs didn't have to change for different
hardware!

To make portability a reality, however, a high-level programming
language was needed to implement the software needed. To that end,
Brian Kernighan and Dennis Ritchie created the C programming
language. In 1973, UNIX was rewritten in C. Today, C is still the
primary language used to create the UNIX (and Linux) operating
system kernels.

As Ritchie went on to say in a 1979 lecture (https://www.bell-
labs.com/usr/dmr/www/hist.html):

Today, the only important UNIX program still written in
assembler is the assembler itself; virtually all the utility programs
are in C, and so are most of the application's programs, although
there are sites with many in Fortran, Pascal, and Algol 68 as well.
It seems certain that much of the success of UNIX follows from
the readability, modifiability, and portability of its software that
in turn follows from its expression in high-level languages.

If you are a Linux enthusiast and are interested in what features from
the early days of Linux have survived, an interesting read is Dennis
Ritchie's reprint of the first UNIX programmer's manual (dated
November 3, 1971). You can find it at Dennis Ritchie's website:
https://www.bell-labs.com/usr/dmr/www/1stEdman.html. The form of
this documentation is UNIX man pages, which is still the primary
format for documenting UNIX and Linux operating system commands
and programming tools today.

What's clear as you read through the early documentation and
accounts of the UNIX system is that the development was a free-
flowing process, lacked ego, and was dedicated to making UNIX
excellent. This process led to a sharing of code (both inside and
outside of Bell Labs), which allowed rapid development of a high-
quality UNIX operating system. It also led to an operating system that
AT&T would find difficult to reel back in later.

Commercial UNIX

https://www.bell-labs.com/usr/dmr/www/hist.html
https://www.bell-labs.com/usr/dmr/www/1stEdman.html

Before the AT&T divestiture in 1984, when it was split up into AT&T
and seven “Baby Bell” companies, AT&T was forbidden to sell
computer systems. Companies that would later become Verizon,
Qwest, Nokia, and Alcatel-Lucent were all part of AT&T. As a result of
AT&T's monopoly of the telephone system, the US government was
concerned that an unrestricted AT&T might dominate the fledgling
computer industry.

Because AT&T was restricted from selling computers directly to
customers before its divestiture, UNIX source code was licensed to
universities for a nominal fee. This allowed UNIX installations to grow
in size and mindshare among top universities. However, there was still
no UNIX operating system for sale from AT&T that you didn't have to
compile yourself.

Berkeley Software Distribution arrives
In 1975, UNIX V6 became the first version of UNIX available for
widespread use outside of Bell Laboratories. From this early UNIX
source code, the first major variant of UNIX was created at University
of California, Berkeley. It was named the Berkeley Software
Distribution (BSD).

For most of the next decade, the BSD and Bell Labs versions of UNIX
headed off in separate directions. BSD continued forward in the free-
flowing, share-the-code manner that was the hallmark of the early Bell
Labs UNIX, whereas AT&T started steering UNIX toward
commercialization. With the formation of a separate UNIX
Laboratory, which moved out of Murray Hill and down the road to
Summit, New Jersey, AT&T began its attempts to commercialize
UNIX. By 1984, divestiture was behind AT&T and it was really ready
to start selling UNIX.

UNIX Laboratory and commercialization
The UNIX Laboratory was considered a jewel that couldn't quite find a
home or a way to make a profit. As it moved between Bell Laboratories
and other areas of AT&T, its name changed several times. It is
probably best remembered by the name it had as it began its spin-off
from AT&T: UNIX System Laboratories (USL).

The UNIX source code that came out of USL, the legacy of which was
sold in part to Santa Cruz Operation (SCO), was used for a time as the
basis for ever-dwindling lawsuits by SCO against major Linux vendors
(such as IBM and Red Hat, Inc.). Because of that, I think the efforts
from USL that have contributed to the success of Linux are lost on
most people.

During the 1980s, of course, many computer companies were afraid
that a newly divested AT&T would pose more of a threat to controlling
the computer industry than would an upstart company in Redmond,
Washington. To calm the fears of IBM, Intel, Digital Equipment
Corporation, and other computer companies, the UNIX Lab made the
following commitments to ensure a level playing field:

Source code only: Instead of producing its own boxed set of
UNIX, AT&T continued to sell source code only and to make it
available equally to all licensees. Each company would then port
UNIX to its own equipment. It wasn't until about 1992, when the
lab was spun off as a joint venture with Novell (called Univel), and
then eventually sold to Novell, that a commercial boxed set of
UNIX (called UnixWare) was produced directly from that source
code.

Published interfaces: To create an environment of fairness and
community to its OEMs (original equipment manufacturers),
AT&T began standardizing what different ports of UNIX had to be
able to do to still be called UNIX. To that end, Portable Operating
System Interface (POSIX) standards and the AT&T UNIX System
V Interface Definition (SVID) were specifications UNIX vendors
could use to create compliant UNIX systems. Those same
documents also served as road maps for the creation of Linux.

NOTE
In an early email newsgroup post, Linus Torvalds made a
request for a copy, preferably online, of the POSIX standard. I
think that no one from AT&T expected someone actually to be
able to write their own clone of UNIX from those interfaces
without using any of its UNIX source code.

Technical approach: Again, until the very end of USL, most
decisions on the direction of UNIX were made based on technical
considerations. Management was promoted up through the
technical ranks, and to my knowledge there was never any talk of
writing software to break other companies' software or otherwise
restrict the success of USL's partners.

When USL eventually started taking on marketing experts and
creating a desktop UNIX product for end users, Microsoft Windows
already had a firm grasp on the desktop market. Also, because the
direction of UNIX had always been toward source-code licensing
destined for large computing systems, USL had pricing difficulties for
its products. For example, on software that it was including with
UNIX, USL found itself having to pay out per-computer licensing fees
that were based on $100,000 mainframes instead of $2,000 PCs. Add
to that the fact that no application programs were available with
UnixWare and you can see why the endeavor failed.

Successful marketing of UNIX systems at the time, however, was
happening with other computer companies. SCO had found a niche
market, primarily selling PC versions of UNIX running dumb
terminals in small offices. Sun Microsystems was selling lots of UNIX
workstations (originally based on BSD but merged with UNIX in
SVR4) for programmers and high-end technology applications (such
as stock trading).

Other commercial UNIX systems were also emerging by the 1980s.
This new ownership assertion of UNIX was beginning to take its toll
on the spirit of open contributions. Lawsuits were being initiated to

protect UNIX source code and trademarks. In 1984, this new,
restrictive UNIX gave rise to an organization that eventually led the
path to Linux: the Free Software Foundation.

GNU transitions UNIX to freedom
In 1984, Richard M. Stallman started the GNU project
(https://gnu.org), recursively named by the phrase GNU is Not UNIX.
As a project of the Free Software Foundation (FSF), GNU was
intended to become a recoding of the entire UNIX operating system
that could be freely distributed.

The GNU Project page (https://gnu.org/gnu/thegnuproject.html) tells
the story of how the project came about in Stallman's own words. It
also lays out the problems that proprietary software companies were
imposing on those software developers who wanted to share, create,
and innovate.

Although rewriting millions of lines of code might seem daunting for
one or two people, spreading the effort across dozens or even
hundreds of programmers made the project possible. Remember that
UNIX was designed to be built in separate pieces that could be piped
together. Because they were reproducing commands and utilities with
well-known, published interfaces, that effort could easily be split
among many developers.

It turned out that not only could the same results be gained by all new
code, but in some cases that code was better than the original UNIX
versions. Because everyone could see the code being produced for the
project, poorly written code could be corrected quickly or replaced
over time.

If you are familiar with UNIX, try searching the hundreds of GNU
software packages, which contain thousands of commands, for your
favorite UNIX command from the Free Software Directory
(https://directory.fsf.org/wiki/GNU). Chances are good that you will
find it there, along with many, many other available software projects.

Over time, the term free software has been mostly replaced by the
term open source software. The term free software is preferred by the

https://gnu.org
https://gnu.org/gnu/thegnuproject.html
http://directory.fsf.org/wiki/GNU

Free Software Foundation, while open source software is promoted by
the Open Source Initiative (https://opensource.org).

To accommodate both camps, some people use the term Free and
Open Source Software (FOSS) instead. An underlying principle of
FOSS, however, is that although you are free to use the software as you
like, you have some responsibility to make the improvements that you
make to the code available to others. This way, everyone in the
community can benefit from your work, as you have benefited from
the work of others.

To define clearly how open source software should be handled, the
GNU software project created the GNU Public License, or GPL.
Although many other software licenses cover slightly different
approaches to protecting free software, the GPL is the most well
known—and it's the one that covers the Linux kernel itself. The GNU
Public License includes the following basic features:

Author rights: The original author retains the rights to their
software.

Free distribution: People can use the GNU software in their
own software, changing and redistributing it as they please. They
do, however, have to include the source code with their
distribution (or make it easily available).

Copyright maintained: Even if you were to repackage and
resell the software, the original GNU agreement must be
maintained with the software, which means that all future
recipients of the software have the opportunity to change the
source code, just as you did.

There is no warranty on GNU software. If something goes wrong, the
original developer of the software has no obligation to fix the problem.
However, many organizations, large and small, offer paid support
(often in subscription form) for the software when it is included in
their Linux or other open source software distribution. (See the
section “OSI open source definition” later in this chapter for a more
detailed definition of open source software.)

Despite its success in producing thousands of UNIX utilities, the GNU

https://opensource.org

project itself failed to produce one critical piece of code: the kernel. Its
attempts to build an open source kernel with the GNU Hurd project
(https://gnu.org/software/hurd/) were unsuccessful at first, so it
failed to become the premier open source kernel.

BSD loses some steam
The one software project that had a chance of beating out Linux to be
the premier open source kernel was the venerable BSD project. By the
late 1980s, BSD developers at University of California (UC), Berkeley
realized that they had already rewritten most of the UNIX source code
they had received a decade earlier.

In 1989, UC Berkeley distributed its own UNIX-like code as Net/1 and
later (in 1991) as Net/2. Just as UC Berkeley was preparing a
complete, UNIX-like operating system that was free from all AT&T
code, AT&T hit them with a lawsuit in 1992. The suit claimed that the
software was written using trade secrets taken from AT&T's UNIX
system.

It's important to note here that BSD developers had completely
rewritten the copyright-protected code from AT&T. Copyright was the
primary means AT&T used to protect its rights to the UNIX code.
Some believe that if AT&T had patented the concepts covered in that
code, there might not be a Linux (or any UNIX clone) operating
system today.

The lawsuit was dropped when Novell bought UNIX System
Laboratories from AT&T in 1994. Nevertheless, during that critical
period there was enough fear and doubt about the legality of the BSD
code that the momentum that BSD had gained to that point in the
fledgling open source community was lost. Many people started
looking for another open source alternative. The time was ripe for a
college student from Finland who was working on his own kernel.

https://gnu.org/software/hurd/

NOTE
Today, BSD versions are available from three major projects:
FreeBSD, NetBSD, and OpenBSD. People generally characterize
FreeBSD as the easiest to use, NetBSD as available on the most
computer hardware platforms, and OpenBSD as fanatically secure.
Many security-minded individuals still prefer BSD to Linux. Also,
because of its licensing, BSD code can be used by proprietary
software vendors, such as Microsoft and Apple, who don't want to
share their operating system code with others. MacOS is built on a
BSD derivative.

Linus builds the missing piece
Linus Torvalds started work on Linux in 1991, while he was a student
at the University of Helsinki, Finland. He wanted to create a UNIX-
like kernel so that he could use the same kind of operating system on
his home PC that he used at school. At the time, Linus was using
Minix, but he wanted to go beyond what the Minix standards
permitted.

As noted earlier, Linus announced the first public version of the Linux
kernel to the comp.os.minix newsgroup on August 25, 1991, although
Torvalds guesses that the first version didn't actually come out until
mid-September of that year.

Although Torvalds stated that Linux was written for the 386 processor
and probably wasn't portable, others persisted in encouraging (and
contributing to) a more portable approach in the early versions of
Linux. By October 5, 1991, Linux 0.02 was released with much of the
original assembly code rewritten in the C programming language,
which made it possible to start porting it to other machines.

The Linux kernel was the last—and the most important—piece of code
that was needed to complete a whole UNIX-like operating system
under the GPL. So when people started putting together distributions,
the name Linux and not GNU is what stuck. Some distributions, such

as Debian, however, refer to themselves as GNU/Linux distributions.
(Not including GNU in the title or subtitle of a Linux operating system
is also a matter of much public grumbling by some members of the
GNU project. See https://gnu.org.)

Today, Linux can be described as an open source UNIX-like operating
system that reflects a combination of SVID, POSIX, and BSD
compliance. Linux continues to aim toward compliance with POSIX as
well as with standards set by the owner of the UNIX trademark, The
Open Group (https://opengroup.org).

The nonprofit Open Source Development Labs, renamed the Linux
Foundation after merging with the Free Standards Group
(https://linuxfoundation.org), which employs Linus Torvalds,
manages the direction today of Linux development efforts. Its
sponsors list is like a Who's Who of commercial Linux system and
application vendors, including IBM, Red Hat, SUSE, Oracle, HP, Dell,
Computer Associates, Intel, Cisco Systems, and hundreds of others.
The Linux Foundation's primary charter is to protect and accelerate
the growth of Linux by providing legal protection and software
development standards for Linux developers.

Although much of the thrust of corporate Linux efforts is on enterprise
computing, huge improvements are continuing in the desktop arena as
well. The KDE and GNOME desktop environments continuously
improve the Linux experience for casual users. Newer lightweight
desktop environments such as Chrome OS, Xfce, and LXDE now offer
efficient alternatives that today bring Linux to thousands of netbook
owners.

Linus Torvalds continues to maintain and improve the Linux kernel.

https://gnu.org
https://opengroup.org
https://linuxfoundation.org

NOTE
For a more detailed history of Linux, see the book Open Sources:
Voices from the Open Source Revolution (O'Reilly, 1999). The
entire first edition is available online at
https://oreilly.com/openbook/opensources/book/

OSI open source definition
Linux provides a platform that lets software developers change the
operating system as they like and get a wide range of help creating the
applications they need. One of the watchdogs of the open source
movement is the Open Source Initiative, or OSI
(https://opensource.org).

Although the primary goal of open source software is to make source
code available, other goals of open source software are also defined by
OSI in its open source definition. Most of the following rules for
acceptable open source licenses serve to protect the freedom and
integrity of the open source code:

Free distribution: An open source license can't require a fee
from anyone who resells the software.

Source code: The source code must be included with the
software, and there can be no restrictions on redistribution.

Derived works: The license must allow modification and
redistribution of the code under the same terms.

Integrity of the author's source code: The license may
require that those who use the source code remove the original
project's name or version if they change the source code.

No discrimination against persons or groups: The license
must allow all people to be equally eligible to use the source code.

No discrimination against fields of endeavor: The license
can't restrict a project from using the source code because it is

https://oreilly.com/openbook/opensources/book/
https://opensource.org

commercial, or because it is associated with a field of endeavor
that the software provider doesn't like.

Distribution of license: No additional license should be
needed to use and redistribute the software.

License must not be specific to a product: The license can't
restrict the source code to a particular software distribution.

License must not restrict other software: The license can't
prevent someone from including the open source software on the
same medium as non-open source software.

License must be technology neutral: The license can't
restrict methods in which the source code can be redistributed.

Open source licenses used by software development projects must
meet these criteria to be accepted as open source software by OSI.
About 70 different licenses are accepted by OSI to be used to label
software as “OSI Certified Open Source Software.” In addition to the
GPL, other popular OSI-approved licenses include the following:

LGPL: The GNU Lesser General Public License (LGPL) is often
used for distributing libraries that other application programs
depend upon.

BSD: The Berkeley Software Distribution License allows
redistribution of source code, with the requirement that the
source code keep the BSD copyright notice and not use the names
of contributors to endorse or promote derived software without
written permission. A major difference from GPL, however, is that
BSD does not require people modifying the code to pass those
changes on to the community. As a result, proprietary software
vendors such as Apple and Microsoft have used BSD code in their
own operating systems.

MIT: The MIT license is like the BSD license, except that it
doesn't include the endorsement and promotion requirement.

Mozilla: The Mozilla license covers the use and redistribution of
source code associated with the Firefox web browser and other
software related to the Mozilla project

(https://www.mozilla.org/en-US/). It is a much longer license
than the others just mentioned because it contains more
definitions of how contributors and those reusing the source code
should behave. This includes submitting a file of changes when
submitting modifications and that those making their own
additions to the code for redistribution should be aware of patent
issues or other restrictions associated with their code.

The end result of open source code is software that has more flexibility
to grow and fewer boundaries in how it can be used. Many believe that
the fact that numerous people look over the source code for a project
results in higher-quality software for everyone. As open source
advocate Eric S. Raymond says in an often-quoted line, “Given enough
eyeballs, all bugs are shallow.”

https://www.mozilla.org/en-US/

Understanding How Linux Distributions
Emerged
Having bundles of source code floating around the Internet that could
be compiled and packaged into a Linux system worked well for geeks.
More casual Linux users, however, needed a simpler way to put
together a Linux system. To respond to that need, some of the best
geeks began building their own Linux distributions.

A Linux distribution consists of the components needed to create a
working Linux system and the procedures needed to get those
components installed and running. Technically, Linux is really just
what is referred to as the kernel. Before the kernel can be useful, you
must have other software, such as basic commands (GNU utilities),
services that you want to offer (such as remote login or web servers),
and possibly a desktop interface and graphical applications. Then you
must be able to gather all that together and install it on your
computer's hard disk.

Slackware (http://www.slackware.com) is one of the oldest Linux
distributions still supported today. It made Linux friendly for less
technical users by distributing software already compiled and grouped
into packages. (Those packages of software components were in a
format called tarballs.) Then you would use basic Linux commands to
do things like format your disk, enable swap, and create user accounts.

Before long, many other Linux distributions were created. Some Linux
distributions were created to meet special needs, such as KNOPPIX (a
live CD Linux), Gentoo (a cool customizable Linux), and Mandrake
(later called Mandriva, which was one of several desktop Linux
distributions). But two major distributions rose to become the
foundation for many other distributions: Red Hat Linux and Debian.

Choosing a Red Hat distribution
When Red Hat Linux appeared in the late 1990s, it quickly became the
most popular Linux distribution for several reasons:

http://www.slackware.com

RPM package management: Tarballs are fine for dropping
software on your computer, but they don't work as well when you
want to update, remove, or even find out about that software. Red
Hat created the RPM packaging format so that a software package
could contain not only the files to be shared but also information
about the package version, who created it, which files were
documentation or configuration files, and when it was created. By
installing software packaged in RPM format, you could store that
information about each software package in a local RPM
database. It became easy to find what was installed, update it, or
remove it.

Simple installation: The Anaconda installer made it much
simpler to install Linux. As a user, you could step through some
simple questions, in most cases accepting defaults, to install Red
Hat Linux.

Graphical administration: Red Hat added simple graphical
tools to configure printers, add users, set time and date, and do
other basic administrative tasks. As a result, desktop users could
use a Linux system without even having to run commands.

For years, Red Hat Linux was the preferred Linux distribution for both
Linux professionals and enthusiasts. Red Hat, Inc., gave away the
source code, as well as the compiled, ready-to-run versions of Red Hat
Linux (referred to as the binaries). But as the needs of its Linux
community users and big-ticket customers began to move further
apart, Red Hat abandoned Red Hat Linux and began developing two
operating systems instead: Red Hat Enterprise Linux and Fedora.

Using Red Hat Enterprise Linux
In March 2012, Red Hat, Inc., became the first open source software
company to bring in more than $1 billion in yearly revenue. It
achieved that goal by building a set of products around Red Hat
Enterprise Linux (RHEL) that would suit the needs of the most
demanding enterprise computing environments. After expanding its
product line to include many components of hybrid cloud computing,
Red Hat was purchased by IBM in July 2019 for $34 billion.

While other Linux distributions focused on desktop systems or small
business computing, RHEL worked on those features needed to handle
mission-critical applications for big business and government. It built
systems that could speed transactions for the world's largest financial
exchanges and be deployed as clusters and virtual hosts.

Instead of just selling RHEL, Red Hat offers an ecosystem of benefits
upon which Linux customers could draw. To use RHEL, customers
buy subscriptions that they can use to deploy any version of RHEL
that they desire. If they decommission a RHEL system, they can use
the subscription to deploy another system.

Different levels of support are available for RHEL, depending on
customer needs. Customers can be assured that, along with support,
they can get hardware and third-party software that is certified to
work with RHEL. They can get Red Hat consultants and engineers to
help them put together the computing environments they need. They
can also get training and certification exams for their employees (see
the discussion of RHCE certification later in this chapter).

Red Hat has also added other products as natural extensions to Red
Hat Enterprise Linux. JBoss is a middleware product for deploying
Java-based applications to the Internet or company intranets. Red Hat
Virtualization comprises the virtualization hosts, managers, and guest
computers that allow you to install, run, manage, migrate, and
decommission huge virtual computing environments.

In recent years, Red Hat has extended its portfolio into cloud
computing. Red Hat OpenStack Platform and Red Hat Virtualization
offer complete platforms for running and managing virtual machines.
However, the technology with the biggest impact in recent years is Red
Hat OpenShift, which provides a hybrid cloud suite of software that
has Kubernetes, the most popular container orchestration platform
project, as its foundation. With the Red Hat acquisition, IBM has set a
goal to containerize most of its applications to run on OpenShift.

There are those who have tried to clone RHEL, using the freely
available RHEL source code, rebuilding and rebranding it. Oracle
Linux is built from source code for RHEL but currently offers an
incompatible kernel. CentOS is a community-sponsored Linux

distribution that is built from RHEL source code. Recently, Red Hat
took over support of the CentOS project.

I've chosen to use Red Hat Enterprise Linux for many of the examples
in this book because, if you want a career working on Linux systems,
there is a huge demand for those who can administer RHEL systems.
If you are starting out with Linux, however, Fedora can provide an
excellent entry point to the same skills that you need to use and
administer RHEL systems.

Using Fedora
While RHEL is the commercial, stable, supported Linux distribution,
Fedora is the free, cutting-edge Linux distribution that is sponsored by
Red Hat, Inc. Fedora is the Linux system that Red Hat uses to engage
the Linux development community and encourage those who want a
free Linux for personal use and rapid development.

Fedora includes tens of thousands of software packages, many of
which keep up with the latest available open source technology. As a
user, you can try the latest Linux desktop, server, and administrative
interfaces in Fedora for free. As a software developer, you can create
and test your applications using the latest Linux kernel and
development tools.

Because the focus of Fedora is on the latest technology, it focuses less
on stability. So, expect that you might need to do some extra work to
get everything working and that not all the software will be fully
baked.

I recommend that you use Fedora or RHEL for most of the examples
in this book for the following reasons:

Fedora is used as a proving ground for Red Hat Enterprise Linux.
Red Hat tests many new applications in Fedora before
committing them to RHEL. By using Fedora, you will learn the
skills you need to work with features as they are being developed
for Red Hat Enterprise Linux.

For learning, Fedora is more convenient than RHEL, yet still
includes many of the more advanced, enterprise-ready tools that

are in RHEL.

Fedora is free, not only as in “freedom,” but also as in “you don't
have to pay for it.”

Fedora is extremely popular with those who develop open source
software. However, in the past few years, another Linux distribution
has captured the attention of many people starting out with Linux:
Ubuntu.

Choosing Ubuntu or another Debian distribution
Like Red Hat Linux, the Debian GNU/Linux distribution was an early
Linux distribution that excelled at packaging and managing software.
Debian uses the deb packaging format and tools to manage all of the
software packages on its systems. Debian also has a reputation for
stability.

Many Linux distributions can trace their roots back to Debian.
According to DistroWatch (https://distrowatch.com), more than 130
active Linux distributions can be traced back to Debian. Popular
Debian-based distributions include Linux Mint, elementary OS, Zorin
OS, LXLE, Kali Linux, and many others. However, the Debian
derivative that has achieved the most success is Ubuntu
(https://ubuntu.com).

By relying on stable Debian software development and packaging, the
Ubuntu Linux distribution (sponsored by Canonical Ltd.) was able to
come along and add those features that Debian lacked. In pursuit of
bringing new users to Linux, the Ubuntu project added a simple
graphical installer and easy-to-use graphical tools. It also focused on
full-featured desktop systems while still offering popular server
packages.

Ubuntu was also an innovator in creating new ways to run Linux.
Using live CDs or live USB drives offered by Ubuntu, you could have
Ubuntu up and running in just a few minutes. Often included on live
CDs were open source applications, such as web browsers and word
processors, that actually ran in Windows. This made the transition to
Linux from Windows easier for some people.

https://distrowatch.com
https://ubuntu.com

If you are using Ubuntu, don't fear. Most of subject matter covered in
this book will work as well in Ubuntu as it does in Fedora or RHEL.

Finding Professional Opportunities with Linux
Today
If you want to develop an idea for a computer-related research project
or technology company, where do you begin? You begin with an idea.
After that, you look for the tools that you need to explore and
eventually create your vision. Then you look for others to help you
during that creation process.

Today, the hard costs of starting a company like Google or Facebook
include just a computer, a connection to the Internet, and enough
caffeinated beverage of your choice to keep you up all night writing
code. If you have your own world-changing idea, Linux and thousands
of software packages are available to help you build your dreams. The
open source world also comes with communities of developers,
administrators, and users who are available to help you.

If you want to get involved with an existing open source project,
projects are always looking for people to write code, test software, or
write documentation. In those projects, you will find people who use
the software, work on that software, and are usually willing to share
their expertise to help you as well.

Whether you seek to develop the next great open source software
project, or you simply want to gain the skills needed to compete for the
thousands of well-paying Linux administrator or development jobs, it
will help you to know how to install, secure, and maintain Linux
systems.

In March 2020, more than 60,000 jobs requiring Linux skills were
listed at Indeed.com. Nearly half of those offered pay of $100,000 per
year or more. Site such as Fossjobs.net provide a venue for posting and
finding jobs associated with Linux and other free and open source
software skills.

The message to take from these job sites is that Linux continues to
grow and create demands for Linux expertise. Companies that have
begun using Linux have continued to move forward with it. Those

http://Indeed.com

using Linux continue to expand its use and find that cost savings,
security, and the flexibility it offers continue to make Linux a good
investment.

Understanding how companies make money with Linux
Open source enthusiasts believe that better software can result from
an open source software development model than from proprietary
development models. So, in theory, any company creating software for
its own use can save money by adding its software contributions to
those of others to gain a much better end product for themselves.

Companies that want to make money by selling software need to be
more creative than they were in the old days. Although you can sell the
software you create, which includes GPL software, you must pass the
source code of that software forward. Of course, others can then
recompile that product, basically using and even reselling your
product without charge. Here are a few ways that companies are
dealing with that issue:

Software subscriptions: Red Hat, Inc., sells its Red Hat
Enterprise Linux products on a subscription basis. For a certain
amount of money per year, you get binary code to run Linux (so
you don't have to compile it yourself), guaranteed support, tools
for tracking the hardware and software on your computer, access
to the company's knowledge base, and other assets.

Although Red Hat's Fedora project includes much of the same
software and is also available in binary form, there are no
guarantees associated with the software or future updates of that
software. A small office or personal user might take a risk on
using Fedora (which is itself an excellent operating system), but a
big company that's running mission-critical applications will
probably put down a few dollars for RHEL.

Training and certification: With Linux system use growing in
government and big business, professionals are needed to support
those systems. Red Hat offers training courses and certification
exams to help system administrators become proficient using Red
Hat Enterprise Linux systems. In particular, the Red Hat Certified

Engineer (RHCE) and Red Hat Certified System Administrator
(RHCSA) certifications have become popular
(https://www.redhat.com/en/services/training-and-
certification/why-get-certified). More on RHCE/RHCSA
certifications later in this chapter.

Other certification programs are offered by Linux Professional
Institute (https://www.lpi.org) and CompTIA
(wwww..comptia.org/). LPI and CompTIA are professional
computer industry associations.

Bounties: Software bounties are a fascinating way for open
source software companies to make money. Suppose that you are
using XYZ software package and you need a new feature right
away. By paying a software bounty to the project itself, or to other
software developers, you can have your required improvements
moved to the head of the queue. The software you pay for will
remain covered by its open source license, but you will have the
features you need—probably at a fraction of the cost of building
the project from scratch.

Donations: Many open source projects accept donations from
individuals or open source companies that use code from their
projects. Amazingly, many open source projects support one or
two developers and run exclusively on donations.

Boxed sets, mugs, and T-shirts: Some open source projects
have online stores where you can buy boxed sets (some people
still like physical DVDs and hard copies of documentation) and a
variety of mugs, T-shirts, mouse pads, and other items. If you
really love a project, for goodness sake, buy a T-shirt!

This is in no way an exhaustive list, because more creative ways are
being invented every day to support those who create open source
software. Remember that many people have become contributors to
and maintainers of open source software because they needed or
wanted the software themselves. The contributions they make for free
are worth the return they get from others who do the same.

Becoming Red Hat certified

https://www.redhat.com/en/services/training-and-certification/why-get-certified
https://www.lpi.org
https://wwww.comptia.org

Although this book is not focused on becoming certified in Linux, it
touches on the activities that you need to be able to master to pass
popular Linux certification exams. In particular, most of what is
covered in the Red Hat Certified Engineer (RHCE) and Red Hat
Certified System Administrator (RHCSA) exams for Red Hat
Enterprise Linux 8 is described in this book.

If you are looking for a job as a Linux IT professional, RHCSA or
RHCE certification is often listed as a requirement, or at least a
preference, for employment. The RHCSA exam (EX200) provides
basic certification, covering such topics as configuring disks and
filesystems, adding users, setting up a simple web and FTP server, and
adding swap space. The RHCE exam (EX300) tests for more advanced
server configuration as well an advanced knowledge of security
features, such as SELinux and firewalls.

Those of us who have taught RHCE/RHCSA courses and given exams
(as I did for three years) are not allowed to tell you exactly what is on
the exam. However, Red Hat gives an overview of how the exams work
as well as a list of topics that you can expect to see covered in the
exam. You can find those exam objectives on the following sites:

RHCSA
https://redhat.com/en/services/training/ex200-red-hat-

certified-system-administrator-rhcsa-exam

RHCE
https://redhat.com/en/services/training/ex294-red-hat-

certified-engineer-rhce-exam-red-hat-enterprise-linux-8

As the exam objectives state, the RHCSA and RHCE exams are
performance based, which means that you are given tasks to do and
you must perform those tasks on an actual Red Hat Enterprise Linux
system, as you would on the job. You are graded on how well you
obtained the results of those tasks.

If you plan to take the exams, check back to the exam objectives pages
often because they change from time to time. Also keep in mind that
the RHCSA is a standalone certification; however, you must pass the

https://redhat.com/en/services/training/ex200-red-hat-certified-system-administrator-rhcsa-exam
https://redhat.com/en/services/training/ex294-red-hat-certified-engineer-rhce-exam-red-hat-enterprise-linux-8

RHCSA and the RHCE exams to get an RHCE certification. Often, the
two exams are given on the same day.

You can sign up for RHCSA and RHCE training and exams at
https://redhat.com/en/services/training-and-certification.
Training and exams are given at major cities all over the United States
and around the world. The skills that you need to complete these
exams are described in the following sections.

RHCSA topics
As noted earlier, RHCSA exam topics cover basic system
administration skills. These are the current topics listed for Red Hat
Enterprise Linux 8 at the RHCSA exam objectives site (again, check
the exam objectives site in case they change) and where in this book
you can learn about them:

Understand essential tools: You are expected to have a
working knowledge of the command shell (bash), including how
to use proper command syntax and do input/output redirection (<
> >>). You need to know how to log in to remote and local
systems. Expect to have to create, edit, move, copy, link, delete,
and change permission and ownership on files. Likewise, you
should know how to look up information on man pages and
/usr/share/doc. Most of these topics are covered in Chapter 3 and
Chapter 4 in this book. Chapter 5 describes how to edit and find
files.

Operate running systems: In this category, you must
understand the Linux boot process, and how to shut down,
reboot, and change to different targets (previously called
runlevels). You need to identify processes and kill processes as
requested. You must be able to find and interpret log files.
Chapter 15 describes how to change targets and manage system
services. See Chapter 6 for information on managing and
changing processes. Logging is described in Chapter 13.

Configure local storage: Setting up disk partitions includes
creating physical volumes and configuring them to be used for
Logical Volume Management (LVM) or encryption (LUKS). You

https://redhat.com/en/services/training-and-certification

should also be able to set up those partitions as filesystems or
swap space that can be mounted or enabled at boot time. Disk
partitioning and LVM are covered in Chapter 12. LUKS and other
encryption topics are described in Chapter 23, “Understanding
Advanced Linux Security.”

Create and configure filesystems: Create and automatically
mount different kinds of filesystems, including regular Linux
filesystems (ext2, ext3, or ext4) and network filesystems (NFS).
Create collaborative directories using the set group ID bit feature.
You must also be able to use LVM to extend the size of a logical
volume. Filesystem topics are covered in Chapter 12. See Chapter
20 for NFS coverage.

Deploy, configure, and maintain systems: This covers a
range of topics, including configuring networking and creating
cron tasks. For software packages, you must be able to install
packages from Red Hat Content Delivery Network (CDN), a
remote repository, or the local filesystem. The cron facility is
described in Chapter 13.

Manage users and groups: You must know how to add, delete,
and change user and group accounts. Another topic that you
should know is password aging, using the chage command. See
Chapter 11 for information on configuring users and groups.

Manage security: You must have a basic understanding of how
to set up a firewall (firewalld, system-config-firewall, or
iptables) and how to use SELinux. You must be able to set up
SSH to do key-based authentication. Learn about SELinux in
Chapter 24. Firewalls are covered in Chapter 25. Chapter 13
includes a description of key-based authentication.

Most of these topics are covered in this book. Refer to Red Hat
documentation (https://access.redhat.com/documentation) under the
Red Hat Enterprise Linux heading for descriptions of features not
found in this book. In particular, the system administration guides
contain descriptions of many of the RHCSA-related topics.

RHCE topics

https://access.redhat.com/documentation

RHCE exam topics cover more advanced server configuration, along
with a variety of security features for securing those servers in Red Hat
Enterprise Linux 8. Again, check the RHCE exam objectives site for
the most up-to-date information on topics that you should study for
the exam.

System configuration and management
The system configuration and management requirement for the RHCE
exam covers a range of topics, including the following:

Firewalls: Block or allow traffic to selected ports on your system
that offer services such as web, FTP, and NFS, as well as block or
allow access to services based on the originator's IP address.
Firewalls are covered in Chapter 25, “Securing Linux on a
Network.”

Kerberos authentication: Use Kerberos to authenticate users
on a RHEL system.

System reports: Use features such as sar to report on system
use of memory, disk access, network traffic, and processor
utilization. Chapter 13 describes how to use the sar command.

Shell scripting: Create a simple shell script to take input and
produce output in various ways. Shell scripting is described in
Chapter 7.

SELinux: With Security Enhanced Linux in Enforcing mode,
make sure that all server configurations described in the next
section are properly secured with SELinux. SELinux is described
in Chapter 24.

Ansible: Understand core Ansible components (inventories,
modules, playbooks, and so on). Be able to install and configure
an Ansible control node. Work with Ansible roles and use
advanced Ansible features. See Chapter 29 for information on
using Ansible playbooks to install and manage Linux systems.

Installing and configuring network services
For each of the network services in the list that follows, make sure you

can go through the steps to install packages required by the service, set
up SELinux to allow access to the service, set the service to start at
boot time, secure the service by host or by user (using iptables or
features provided by the service itself), and configure it for basic
operation. These are the services:

Web server: Configure an Apache (HTTP/HTTPS) server. You
must be able to set up a virtual host, deploy a CGI script, use
private directories, and allow a particular Linux group to manage
the content. Chapter 17 describes how to configure a web server.

DNS server: Set up a DNS server (bind package) to act as a
caching-only name server that can forward DNS queries to
another DNS server. No need to configure master or slave zones.
DNS is described from the client side in Chapter 14. For
information on configuring a DNS server with Bind, see the RHEL
Networking Guide at
https://access.redhat.com/documentation/en-

us/red_hat_enterprise_linux/7/html-

single/networking_guide/index

NFS server: Configure an NFS server to share specific
directories to specific client systems so they can be used for group
collaboration. Chapter 20 covers NFS.

Windows file sharing server: Set up Linux (Samba) to
provide SMB shares to specific hosts and users. Configure the
shares for group collaboration. See Chapter 19 to learn about
configuring Samba.

Mail server: Configure postfix or sendmail to accept incoming
mail from outside of the local host. Relay mail to a smart host.
Mail server configuration is not covered in this book (and should
not be done lightly). See the RHEL System Administrator's Guide
for information on configuring mail servers at:
https://access.redhat.com/documentation/en-

us/red_hat_enterprise_linux/7/html-

single/system_administrators_guide/index#ch-Mail_Servers

Secure Shell server: Set up the SSH service (sshd) to allow
remote login to your local system as well as key-based

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html-single/networking_guide/index
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html-single/system_administrators_guide/index#ch-Mail_Servers

authentication. Otherwise, configure the sshd.conf file as needed.
Chapter 13 describes how to configure the sshd service.

Network Time server: Configure a Network Time Protocol
server (ntpd) to synchronize time with other NTP peers.

Database server: Configure the MariaDB database and manage
it in various ways. Learn how to configure the MariaDB from the
MariaDB.org site
(https://mariadb.com/kb/en/library/documentation/).

Although there are other tasks in the RHCE exam, as just noted, keep
in mind that most of the tasks have you configure servers and then
secure those servers using any technique that you need. Those can
include firewall rules (iptables), SELinux, or any features built into
configuration files for the particular service.

http://mariadb.org
https://mariadb.com/kb/en/library/documentation/

Summary
Linux is an operating system that is built by a community of software
developers around the world, which is led by its creator, Linus
Torvalds. It is derived originally from the UNIX operating system but
has grown beyond UNIX in popularity and power over the years.

The history of the Linux operating system can be tracked from early
UNIX systems that were distributed free to colleges and improved
upon by initiatives such as the Berkeley Software Distribution (BSD).
The Free Software Foundation helped make many of the components
needed to create a fully free UNIX-like operating system. The Linux
kernel itself was the last major component needed to complete the job.

Most Linux software projects are protected by one of a set of licenses
that fall under the Open Source Initiative umbrella. The most
prominent of these is the GNU Public License (GPL). Standards such
as the Linux Standard Base and world-class Linux organizations and
companies (such as Canonical Ltd. and Red Hat, Inc.) make it possible
for Linux to continue to be a stable, productive operating system into
the future.

Learning the basics of how to use and administer a Linux system will
serve you well in any aspect of working with Linux. The remaining
chapters provide a series of exercises with which you can test your
understanding. That's why, for the rest of the book, you will learn best
with a Linux system in front of you so that you can work through the
examples in each chapter and complete the exercises successfully.

The next chapter explains how to get started with Linux by describing
how to get and use a Linux desktop system.

CHAPTER 2
Creating the Perfect Linux Desktop

IN THIS CHAPTER
Understanding the X Window System and desktop
environments

Running Linux from a Live DVD image

Navigating the GNOME 3 desktop

Adding extensions to GNOME 3

Using Nautilus to manage files in GNOME 3

Working with the GNOME 2 desktop

Enabling 3D effects in GNOME 2

Using Linux as your everyday desktop system is becoming easier to do
all the time. As with everything in Linux, you have choices. There are
fully featured GNOME or KDE desktop environments or lightweight
desktops such as LXDE or Xfce. There are even simpler standalone
window managers.

After you have chosen a desktop, you will find that almost every major
type of desktop application you have on a Windows or Mac system has
equivalent applications in Linux. For applications that are not
available in Linux, you can often run a Windows application in Linux
using Windows compatibility software.

The goal of this chapter is to familiarize you with the concepts related
to Linux desktop systems and to give you tips for working with a Linux
desktop. In this chapter you do the following:

Step through the desktop features and technologies that are
available in Linux

Tour the major features of the GNOME desktop environment

Learn tips and tricks for getting the most out of your GNOME
desktop experience

To use the descriptions in this chapter, I recommend that you have a
Fedora system running in front of you. You can get Fedora in lots of
ways, including the following:

Running Fedora from a live medium Refer to Appendix A
for information on downloading and burning Fedora Live image
to a DVD or USB drive so that you can boot it live to use with this
chapter.

Installing Fedora permanently Install Fedora to your hard
disk and boot it from there (as described in Chapter 9, “Installing
Linux”).

Because the current release of Fedora uses the GNOME 3 interface,
most of the procedures described in this chapter work with other
Linux distributions that have GNOME 3 available. If you are using an
older Red Hat Enterprise Linux system (RHEL 6 uses GNOME 2, but
RHEL 7 and RHEL 8 use GNOME 3), I added descriptions of GNOME
2 that you can try as well.

NOTE
Ubuntu switched from its own Unity desktop as its default to
GNOME 3 with release 17.10. Unity is still available for newer
releases, but only from the unsupported, community-maintained
Universe repository.

Understanding Linux Desktop Technology
Modern computer desktop systems offer graphical windows, icons,
and menus that are operated from a mouse and keyboard. If you are
under 40 years old, you might think that there's nothing special about
that. However, the first Linux systems did not have graphical
interfaces available. Also, many Linux servers today that are tuned for
special tasks (for example, functioning as a web server or file server)
don't have desktop software installed.

Nearly every major Linux distribution that offers desktop interfaces is
based on the X Window System originally from the X.Org Foundation
(http://www.x.org). The X Window System provides a framework on
which different types of desktop environments or simple window
managers can be built. A replacement for X.Org called Wayland
(http://wayland.freedesktop.org) is being developed. Although
Wayland is the default X server for Fedora now, you can still choose
X.Org instead.

The X Window System (sometimes simply called X) was created before
Linux existed, and it even predates Microsoft Windows. It was built to
be a lightweight, networked desktop framework.

X works in sort of a backward client/server model. The X server runs
on the local system, providing an interface to your screen, mouse, and
keyboard. X clients (such as word processors, music players, and
image viewers) can be launched from the local system or from any
system on your network to which the X server gives permission to do
so.

X was created in a time when graphical terminals (thin clients) simply
managed the keyboard, mouse, and display. Applications, disk storage,
and processing power were all on larger centralized computers. So,
applications ran on larger machines but were displayed and managed
over the network on the thin client. Later, thin clients were replaced by
desktop personal computers. Most client applications on PCs ran
locally using local processing power, disk space, memory, and other
hardware features, while applications that did not start from the local

http://www.x.org
http://wayland.freedesktop.org

system were not allowed.

X itself provides a plain gray background and a simple “X” mouse
cursor. There are no menus, panels, or icons on a plain X screen. If
you were to launch an X client (such as a terminal window or word
processor), it would appear on the X display with no border around it
to move, minimize, or close the window. Those features are added by a
window manager.

A window manager adds the capability to manage the windows on
your desktop and often provides menus for launching applications and
otherwise working with the desktop. A full-blown desktop
environment includes a window manager, but it also adds menus,
panels, and usually an application programming interface that is used
to create applications that play well together.

So how does an understanding of how desktop interfaces work in
Linux help you when it comes to using Linux? Here are some of the
ways:

Because Linux desktop environments are not required to run a
Linux system, a Linux system may have been installed without a
desktop. It might offer only a plain-text, command-line interface.
You can choose to add a desktop later. After it is installed, you can
choose whether to start up the desktop when your computer boots
or start it as needed.

For a very lightweight Linux system, such as one meant to run on
less powerful computers, you can choose an efficient, though less
feature-rich, window manager (such as twm or fluxbox) or a
lightweight desktop environment (such as LXDE or Xfce).

For more robust computers, you can choose more powerful
desktop environments (such as GNOME and KDE) that can do
things such as watch for events to happen (such as inserting a
USB flash drive) and respond to those events (such as opening a
window to view the contents of the drive).

You can have multiple desktop environments installed and you
can choose which one to launch when you log in. In this way,
different users on the same computer can use different desktop

environments.

Many different desktop environments are available to choose from in
Linux. Here are some examples:

GNOME GNOME is the default desktop environment for Fedora,
Red Hat Enterprise Linux, and many others. Think of it as a
professional desktop environment focusing on stability more than
fancy effects.

K Desktop Environment KDE is probably the second most
popular desktop environment for Linux. It has more bells and
whistles than GNOME and offers more integrated applications.
KDE is also available with Fedora, Ubuntu, and many other Linux
systems. For RHEL 8, KDE was dropped from the distribution.

Xfce The Xfce desktop was one of the first lightweight desktop
environments. It is good to use on older or less powerful
computers. It is available with Fedora, Ubuntu, and other Linux
distributions.

LXDE The Lightweight X11 Desktop Environment (LXDE) was
designed to be a fast-performing, energy-saving desktop
environment. Often, LXDE is used on less-expensive devices
(such as netbook computers) and on live media (such as a live CD
or live USB stick). It is the default desktop for the KNOPPIX live
CD distribution. Although LXDE is not included with RHEL, you
can try it with Fedora or Ubuntu.

GNOME was originally designed to resemble the MacOS desktop,
while KDE was meant to emulate the Windows desktop environment.
Because it is the most popular desktop environment, and the one most
often used in business Linux systems, most desktop procedures and
exercises in this book use the GNOME desktop. Using GNOME,
however, still gives you the choice of several different Linux
distributions.

Starting with the Fedora GNOME Desktop Live
image
A live Linux ISO image is the quickest way to get a Linux system up
and running so that you can begin trying it out. Depending on its size,
the image can be burned to a CD, DVD, or USB drive and booted on
your computer. With a Linux live image, you can have Linux take over
the operation of your computer temporarily without harming the
contents of your hard drive.

If you have Windows installed, Linux just ignores it and takes control
of your computer itself. When you are finished with the Linux live
image, you can reboot the computer, pop out the CD or DVD, and go
back to running whatever operating system was installed on the hard
disk.

To try out a GNOME desktop along with the descriptions in this
section, I suggest that you get a Fedora Live DVD (as described in
Appendix A). Because a live DVD does all its work from the DVD and
in memory, it runs slower than an installed Linux system. Also,
although you can change files, add software, and otherwise configure
your system, by default, the work you do disappears when you reboot
unless you explicitly save that data to your hard drive or external
storage.

The fact that changes you make to the live environment go away on
reboot is very good for trying out Linux but not that great if you want
an ongoing desktop or server system. For that reason, I recommend
that if you have a spare computer, you install Linux permanently on
that computer's hard disk to use with the rest of this book (as
described in Chapter 9).

After you have a live CD or DVD in hand, do the following to get
started:

1. Get a computer. If you have a standard PC (32-bit or 64-bit)
with a CD/DVD drive, at least 1GB of memory (RAM), and at least
a 1GHz processor, you are ready to start. (Just make sure that the

image you download matches your computer's architecture—a 64-
bit medium does not run on a 32-bit computer. Fedora 31 and
RHEL 7 dropped 32-bit support, so you would need older versions
of those distributions to run on those older machines.)

2. Start the live CD/DVD. Insert the live CD/DVD or USB drive
into your computer and reboot your computer. Depending on the
boot order set on your computer, the live image might start up
directly from the BIOS (the code that controls the computer
before the operating system starts).

2. NOTE
If, instead of the live medium booting, your installed operating
system starts up instead, you need to perform an additional
step to start the live CD/DVD. Reboot again, and when you see
the BIOS screen, look for some words that say something like
“Boot Order.” The onscreen instructions may say to press the
F12 or F1 key. Press that key immediately from the BIOS
screen. Next, you should see a screen that shows available
selections. Highlight an entry for CD/DVD or USB drive, and
press Enter to boot the live image. If you don't see the drive
there, you may need to go into BIOS setup and enable the
CD/DVD or USB drive there.

3. Start Fedora. If the selected drive is able to boot, you see a boot
screen. For Fedora, with Start Fedora highlighted, press Enter to
start the live medium.

4. Begin using the desktop. For Fedora, the live medium lets you
choose between installing Fedora or booting it directly from the
medium to a GNOME 3 desktop.

You can now proceed to the next section, “Using the GNOME 3
Desktop” (which includes information on using GNOME 3 in Fedora,
Red Hat Enterprise Linux, and other operating systems). Following
that, I'll cover the GNOME 2 desktop.

Using the GNOME 3 Desktop
The GNOME 3 desktop offers a radical departure from its GNOME 2.x
counterparts. GNOME 2.x is serviceable, but GNOME 3 is elegant.
With GNOME 3, a Linux desktop now appears more like the graphical
interfaces on mobile devices, with less focus on multiple mouse
buttons and key combinations and more focus on mouse movement
and one-click operations.

Instead of feeling structured and rigid, the GNOME 3 desktop seems
to expand as you need it to. As a new application is run, its icon is
added to the Dash. As you use the next workspace, a new one opens,
ready for you to place more applications.

After the computer boots up
If you booted up a live image, when you reach the desktop, you are
assigned as the Live System User for your username. For an installed
system, you see the login screen, with user accounts on the system
ready for you to select and enter a password. Log in with the username
and password that you have defined for your system.

Figure 2.1 is an example of the GNOME 3 desktop screen that appears
in Fedora. Press the Windows key (or move the mouse cursor to the
upper-left corner of the desktop) to toggle between a blank desktop
and the Overview screen.

FIGURE 2.1 Starting with the GNOME 3 desktop in Fedora.

There is very little on the GNOME 3 desktop when you start out. The
top bar has the word “Activities” on the left, a clock in the middle, and
some icons on the right for such things as adjusting audio volume,
checking your network connection, and viewing the name of the
current user. The Overview screen is where you can select to open
applications, active windows, or different workspaces.

Navigating with the mouse
To get started, try navigating the GNOME 3 desktop with your mouse:

1. Toggle activities and windows. Move your mouse cursor to
the upper-left corner of the screen near the Activities button. Each
time you move there, your screen changes between showing you
the windows that you are actively using and a set of available
Activities. (This has the same effect as pressing the Windows key.)

2. Open windows from applications bar. Click to open some
applications from the Dash on the left (Firefox, File Manager,
Rhythmbox, or others). Move the mouse to the upper-left corner
again, and toggle between showing all active windows minimized
(Overview screen) and showing them overlapping (full-sized).

Figure 2.2 shows an example of the miniature windows view.

3. Open applications from Applications list. From the
Overview screen, select the Application button from the bottom of
the left column (the button has nine dots in a box). The view
changes to a set of icons representing the applications installed on
your system, as shown in Figure 2.3.

FIGURE 2.2 Show all windows on the desktop minimized.

FIGURE 2.3 Show the list of available applications.

4. View additional applications. From the Applications screen,
you can change the view of your applications in several ways, as
well as launch them in different ways:

a. Page through. To see icons representing applications that
are not onscreen, use the mouse to click dots on the right to
page through applications. If you have a wheel mouse, you
can use that instead to scroll the icons.

b. Frequent. Select the Frequent button on the bottom of the
screen to see often-run applications or the All button to see
all applications again.

c. Launching an application. To start the application you
want, left-click its icon to open the application in the current
workspace. Right-click to open a menu that lets you choose to
open a New Window, add or remove the application from
Favorites (so the application's icon appears on the Dash), or
Show Details about the application. Figure 2.4 shows an
example of the menu.

FIGURE 2.4 Click the middle mouse button to display an

application's selection menu.

5. Open additional applications. Start up additional
applications. Notice that as you open a new application, an icon
representing that application appears in the Dash bar on the left.
Here are other ways to start applications:

a. Application icon. Click any application icon to open that
application.

b. Drop Dash icons on workspace. From the Windows
view, you can drag any application icon from the Dash by
pressing and holding the left mouse button on it and
dragging that icon to any of the miniature workspaces on the
right.

6. Use multiple workspaces. Move the mouse to the upper-left
corner again to show a minimized view of all windows. Notice all
of the applications on the right jammed into a small
representation of one workspace while an additional workspace is
empty. Drag and drop a few of the windows to an empty desktop
space. Figure 2.5 shows what the small workspaces look like.
Notice that an additional empty workspace is created each time
the last empty one is used. You can drag and drop the miniature
windows to any workspace and then select the workspace to view
it.

FIGURE 2.5 As new desktops are used, additional ones appear
on the right.

7. Use the window menu. Move the mouse to the upper-left
corner of the screen to return to the active workspace (large
window view). Right-click the title bar on a window to view the
window menu. Try these actions from that menu:

a. Minimize. Remove window temporarily from view.

b. Maximize. Expand window to maximum size.

c. Move. Change window to moving mode. Moving your mouse
moves the window. Click to fix the window to a spot.

d. Resize. Change the window to resize mode. Moving your
mouse resizes the window. Click to keep the size.

e. Workspace selections. Several selections let you use
workspaces in different ways. Select Always on Top to make
the current window always on top of other windows in the
workspace. Select Always on Visible Workspace to always
show the window on the workspace that is visible, or select
Move to Workspace Up or Move to Workspace Down to move
the window to the workspace above or below, respectively.

If you don't feel comfortable navigating GNOME 3 with your mouse,

or if you don't have a mouse, the next section helps you navigate the
desktop from the keyboard.

Navigating with the keyboard
If you prefer to keep your hands on the keyboard, you can work with
the GNOME 3 desktop directly from the keyboard in a number of
ways, including the following:

Windows key. Press the Windows key on the keyboard. On most
PC keyboards, this is the key with the Microsoft Windows logo on
it next to the Alt key. This toggles the mini-window (Overview)
and active-window (current workspace) views. Many people use
this key often.

Select different views. From the Windows or Applications
view, hold Ctrl+Alt+Tab to see a menu of the different views (see
Figure 2.6). Still holding the Ctrl+Alt keys, press Tab again to
highlight one of the following icons from the menu and release to
select it:

FIGURE 2.6 Press Ctrl+Alt+Tab to display additional desktop
areas to select.

Top Bar. Highlights the top bar. After it is selected, you can

tab between items on that bar (Activities, Calendar, and the
Top Bar menu).

Dash. Highlights the first application in the application bar
on the left. Use arrow keys to move up and down that menu,
and press Enter to open the highlighted application.

Windows. Selects the Windows view.

Applications. Selects the Applications view.

Search. Highlights the search box. Type a few letters to show
only icons for applications that contain the letters you type.
When you have typed enough letters to uniquely identify the
application you want, press Enter to launch the application.

Select an active window. Return to any of your workspaces
(press the Windows key if you are not already on an active
workspace). Press Alt+Tab to see a list of all active windows (see
Figure 2.7). Continue to hold the Alt key as you press the Tab key
(or right or left arrow keys) to highlight the application that you
want from the list of active desktop application windows. If an
application has multiple windows open, press Alt+` (back-tick,
located above the Tab key) to choose among those sub-windows.
Release the Alt key to select it.

FIGURE 2.7 Press Alt+Tab to select which running application
to go to.

Launch a command or application. From any active

workspace, you can launch a Linux command or a graphical
application. Here are some examples:

Applications. From the Overview screen, press Ctrl+Alt+Tab
and continue to press Tab until the Applications icon is
highlighted; then release Ctrl+Alt. The Applications view
appears, with the first icon highlighted. Use the Tab key or
arrow keys (up, down, right, and left) to highlight the
application icon you want, and press Enter.

Command box. If you know the name (or part of a name) of
a command that you want to run, press Alt+F2 to display a
command box. Type the name of the command that you want
to run into the box (try gnome-calculator to open a
calculator application, for example).

Search box. From the Overview screen, press Ctrl+Alt+Tab
and continue to press Tab until the magnifying glass (Search)
icon is highlighted; then release Ctrl+Alt. In the search box
now highlighted, type a few letters in an application's name or
description (type scr to see what you get). Keep typing until
the application you want is highlighted (in this case,
Screenshot), and press Enter to launch it.

Dash. From the Overview screen, press Ctrl+Alt+Tab and
continue to press Tab until the star (Dash) icon is highlighted;
then release Ctrl+Alt. From the Dash, move the up and down
arrows to highlight an application that you want to launch and
press Enter.

Escape. When you are stuck in an action that you don't want to
complete, try pressing the Esc key. For example, after pressing
Alt+F2 (to enter a command), opening an icon from the top bar,
or going to an overview page, pressing Esc returns you to the
active window on the active desktop.

I hope you now feel comfortable navigating the GNOME 3 desktop.
Next, you can try running some useful and fun desktop applications
from GNOME 3.

Setting up the GNOME 3 desktop
Much of what you need GNOME 3 to do for you is set up
automatically. However, you need to make a few tweaks to get the
desktop the way you want. Most of these setup activities are available
from the System Settings window (see Figure 2.8). Open the Settings
icon from the Applications list.

FIGURE 2.8 Change desktop settings from the System Settings
window.

Here are some suggestions for configuring a GNOME 3 desktop:

Configure networking. A wired network connection is often
configured automatically when you boot up your Fedora system.
For wireless, you probably have to select your wireless network
and add a password when prompted. An icon in the top bar lets
you do any wired or wireless network configuration that you need
to do. Refer to Chapter 14, “Administering Networking,” for
further information on configuring networking.

Bluetooth. If your computer has Bluetooth hardware, you can
enable that device to communicate with other Bluetooth devices
(such as a Bluetooth headset or printer).

Devices. From the Devices screen, you can configure your
keyboard, mouse and touchpad, printers, removable media, and
other settings.

Sound. Click the Sound settings button to adjust sound input and
output devices on your system.

Extending the GNOME 3 desktop
If the GNOME 3 shell doesn't do everything you'd like, don't despair.
You can add extensions to provide additional functionality to GNOME
3. Also, a tool called GNOME Tweaks lets you change advanced
settings in GNOME 3.

Using GNOME shell extensions
GNOME shell extensions are available to change the way your
GNOME desktop looks and behaves. Visit the GNOME Shell
Extensions site (http://extensions.gnome.org) from your Firefox
browser on your GNOME 3 desktop. That site tells you what
extensions you have installed and which ones are available for you to
install. (You must select to allow the site to see those extensions.)

Because the extensions page knows what extensions you have and the
version of GNOME 3 that you are running, it can present only those
extensions that are compatible with your system. Many of the
extensions help you add back in features from GNOME 2, including
the following:

Applications Menu. Adds an Applications menu to the top
panel, just as it was in GNOME 2.

Places Status Indicator. Adds a systems status menu, similar
to the Places menu in GNOME 2, to let you navigate quickly to
useful folders on your system.

Window list. Adds a list of active windows to the top panel,
similar to the Window list that appeared on the bottom panel in
GNOME 2.

To install an extension, simply select the ON button next to the name.
Or, you can click the extension name from the list to see the
extension's page and click the button on that page from OFF to ON.
Click Install when you are asked if you want to download and install
the extension. The extension is then added to your desktop.

Figure 2.9 shows an example of the Applications menu Window List
(showing several active applications icons), and Places Status
Indicator (with folders displayed from a drop-down menu) extensions

http://extensions.gnome.org

installed.

FIGURE 2.9 Extensions add features to the GNOME 3 desktop.

More than 100 GNOME shell extensions are available now, and more
are being added all the time. Other popular extensions include
Notifications Alert (which alerts you of unread messages),
Presentation Mode (which prevents the screensaver from coming on
when you are giving a presentation), and Music Integration (which
integrates popular music players into GNOME 3, so that you are
alerted about songs being played).

Because the Extensions site can keep track of your extensions, you can
click the Installed extensions button at the top of the page and see
every extension that is installed. You can turn the extensions off and
on from there and even delete them permanently.

Using the GNOME Tweak Tool
If you don't like the way some of the built-in features of GNOME 3
behave, you can change many of them with the GNOME Tweak Tool.
This tool is not installed by default with the Fedora GNOME Live CD,
but you can add it by installing the gnome-tweaks package. (See Chapter
10, “Getting and Managing Software,” for information on how to
install software packages in Fedora.) After installation, the GNOME

Tweak Tool is available by launching the Advanced Settings icon from
your Applications screen. Start with the Desktop category to consider
what you might want to change in GNOME 3. Figure 2.10 shows the
Tweak Tool displaying Appearance settings.

FIGURE 2.10 Change desktop settings using the GNOME Tweak
Tool (Appearance settings).

If fonts are too small for you, select the Fonts category and click the
plus sign next to the Scaling Factor box to increase the font size, or
change fonts individually for documents, window titles, or monospace
fonts.

Under Top Bar settings, you can change how clock information is
displayed in the top bar or set whether to show the week number in
the calendar. To change the look of the desktop, select the Appearance
category and change the Icons theme and GTK+ theme as you like
from drop-down boxes.

Starting with desktop applications
The Fedora GNOME 3 desktop live DVD comes with some cool
applications that you can start using immediately. To use GNOME 3 as

your everyday desktop, you should install it permanently to your
computer's hard disk and add the applications you need (a word
processor, image editor, drawing application, and so on). If you are
just getting started, the following sections list some cool applications
to try out.

Managing files and folders with Nautilus
To move, copy, delete, rename, and otherwise organize files and
folders in GNOME 3, you can use the Nautilus file manager. Nautilus
comes with the GNOME desktop and works like other file managers
that you may use in Windows or Mac.

To open Nautilus, click the Files icon from the GNOME Dash or
Applications list. Your user account starts with a set of folders
designed to hold the most common types of content: Music, Pictures,
Videos, and the like. These are all stored in what is referred to as your
Home directory. Figure 2.11 shows Nautilus open to a Home directory.

FIGURE 2.11 Manage files and folders from the Nautilus window.

When you want to save files that you downloaded from the Internet or
created with a word processor, you can organize them into these
folders. You can create new folders as needed, drag and drop files and

folders to copy and move them, and delete them.

Because Nautilus is not much different from most file managers that
you have used on other computer systems, this chapter does not go
into detail about how to use drag-and-drop and traverse folders to find
your content. However, I do want to make a few observations that may
not be obvious about how to use Nautilus:

Home folder You have complete control over the files and
folders that you create in your Home folder. Most other parts of
the filesystem are not accessible to you as a regular user.

Filesystem organization Although it appears under the name
Home, your Home folder is actually located in the filesystem
under the /home folder in a folder named after your username: for
example, /home/liveuser or /home/chris. In the next few chapters,
you learn how the filesystem is organized (especially in relation to
the Linux command shell).

Working with files and folders Right-click a file or folder icon
to see how you can act on it. For example, you can copy, cut, move
to trash (delete), or open any file or folder icon.

Creating folders To create a new folder, right-click in a folder
window and select New Folder. Type the new folder name over
the highlighted Untitled Folder, and press Enter to name the
folder.

Accessing remote content Nautilus can display content from
remote servers as well as the local filesystem. In Nautilus, select
Other Locations from the file menu. From the Connect to Server
box that appears, you can connect to a remote server via SSH
(secure shell), FTP with login, Public FTP, Windows share,
WebDav (HTTP), or Secure WebDav (HTTPS). Add appropriate
user and password information as needed, and the content of the
remote server appears in the Nautilus window. Figure 2.12 shows
an example of a Nautilus window prompting you for a password
to log into a remote server over SSH protocol
(ssh://192.168.122.81).

FIGURE 2.12 Access remote folders using the Nautilus Connect to
Server feature.

Installing and managing additional software
The Fedora Live Desktop comes with a web browser (Firefox), a file
manager (Nautilus), and a few other common applications. However,
there are many other useful applications that, because of their size,
just wouldn't fit on a live CD. If you install the live Fedora Workstation
to your hard disk (as described in Chapter 9), you almost certainly will
want to add some more software.

NOTE
You can try installing software if you are running the live medium.
However, keep in mind that because writeable space on a live
medium uses virtual memory (RAM), that space is limited and can
easily run out. Also, when you reboot your system, anything that
you install disappears.

When Fedora is installed, it is automatically configured to connect
your system to the huge Fedora software repository that is available on
the Internet. As long as you have an Internet connection, you can run
the Add/Remove software tool to download and install any of
thousands of Fedora packages.

Although the entire facility for managing software in Fedora (the yum
and rpm features) is described in detail in Chapter 10, you can start
installing some software packages without knowing much about how
the feature works. Begin by going to the applications screen and
opening the Software window. Figure 2.13 shows an example of the
Software window.

With the Software window open, you can select the applications that
you want to install by searching (type the name into the Find box) or
choosing a category. Each category offers packages sorted by
subcategories and featured packages in that category.

Select the spyglass icon in the upper-left corner, and then type a word
associated with the software package that you want to install. You can
read a description of each package that comes up in your search. When
you are ready, click Install to install the package and any dependent
packages needed to make it work.

FIGURE 2.13 Download and install software from the huge Fedora
repository.

By searching for and installing some common desktop applications,
you should be able to start using your desktop effectively. Refer to
Chapter 10 for details on how to add software repositories and use dnf,
yum, and rpm commands to manage software in Fedora and Red Hat
Enterprise Linux.

Playing music with Rhythmbox
Rhythmbox is the music player that comes on the Fedora GNOME
Live Desktop. You can launch Rhythmbox from the GNOME 3 Dash
and immediately play music CDs, podcasts, or Internet radio shows.
You can import audio files in WAV and Ogg Vorbis formats or add
plug-ins for MP3 or other audio formats.

Figure 2.14 shows an example of the Rhythmbox window with music
playing from an imported audio library.

FIGURE 2.14 Play music, podcasts, and Internet radio from
Rhythmbox.

Here are a few ways that you can get started with Rhythmbox:

Radio Double-click the Radio selection under Library and choose
a radio station from the list that appears to the right.

Podcasts Search for podcasts on the Internet and find the URL
for one that interests you. Right-click the Podcasts entry and
select New Podcast Feed. Paste or type in the URL to the podcast
and click Add. A list of podcasts from the site that you selected
appears to the right. Double-click the one to which you want to
listen.

Audio CDs Insert an audio CD, and press Play when it appears
in the Rhythmbox window. Rhythmbox also lets you rip and burn
audio CDs.

Audio files Rhythmbox can play WAV and Ogg Vorbis files. By
adding plug-ins, you can play many other audio formats,

including MP3. Because there are patent issues related to the MP3
format, the ability to play MP3s is not included with Fedora. In
Chapter 10, I describe how to get software that you need that is
not in the repository of your Linux distribution.

Plug-ins are available for Rhythmbox to get cover art, show
information about artists and songs, add support for music services
(such as Last.fm and Magnatune), and fetch song lyrics.

Stopping the GNOME 3 desktop
When you are finished with your GNOME 3 session, select the down
arrow button in the upper-right corner of the top bar. From there, you
can choose the On/Off button, which allows you to log out or switch to
a different user account without logging out.

Using the GNOME 2 Desktop
The GNOME 2 desktop is the default desktop interface used up
through Red Hat Enterprise Linux 6. It is well-known, stable, and
perhaps a bit boring.

GNOME 2 desktops provide the more standard menus, panels, icons,
and workspaces. If you are using a Red Hat Enterprise Linux system
up to RHEL 6, or an older Fedora or Ubuntu distribution, you are
probably looking at a GNOME 2 desktop. I will now provide a tour of
GNOME 2, along with some opportunities for sprucing it up a bit.
GNOME 2 releases include 3D effects (see “Adding 3D effects with
AIGLX” later in this chapter).

To use your GNOME desktop, you should become familiar with the
following components:

Metacity (window manager) The default window manager for
GNOME 2 is Metacity. Metacity configuration options let you
control such things as themes, window borders, and controls used
on your desktop.

Compiz (window manager) You can enable this window
manager in GNOME to provide 3D desktop effects.

Nautilus (file manager/graphical shell) When you open a
folder (by double-clicking the Home icon on your desktop, for
example), the Nautilus window opens and displays the contents of
the selected folder. Nautilus can also display other types of
content, such as shared folders from Windows computers on the
network (using SMB).

GNOME panels (application/task launcher) These panels,
which line the top and bottom of your screen, are designed to
make it convenient for you to launch the applications you use,
manage running applications, and work with multiple virtual
desktops. By default, the top panel contains menu buttons
(Applications, Places, and System), desktop application launchers
(Evolution email and Firefox web browser), a workspace switcher

(for managing four virtual desktops), and a clock. Icons appear in
the panel when you need software updates or SELinux detects a
problem. The bottom panel has a Show Desktop button, window
lists, a trash can, and workspace switcher.

Desktop area The windows and icons you use are arranged on
the desktop area, which supports drag-and-drop between
applications, a desktop menu (right-click to see it), and icons for
launching applications. A Computer icon consolidates CD drives,
floppy drives, the filesystem, and shared network resources in one
place.

GNOME also includes a set of Preferences windows that enable you to
configure different aspects of your desktop. You can change
backgrounds, colors, fonts, keyboard shortcuts, and other features
related to the look and behavior of the desktop. Figure 2.15 shows how
the GNOME 2 desktop environment appears the first time you log in,
with a few windows added to the screen.

FIGURE 2.15 The GNOME 2 desktop environment

The desktop shown in Figure 2.15 is for Red Hat Enterprise Linux. The
following sections provide details on using the GNOME 2 desktop.

Using the Metacity window manager
The Metacity window manager seems to have been chosen as the
default window manager for GNOME because of its simplicity. The
creator of Metacity refers to it as a “boring window manager for the
adult in you” and then goes on to compare other window managers to
colorful, sugary cereal, whereas Metacity is characterized as Cheerios.

NOTE
To use 3D effects, your best solution is to use the Compiz window
manager, described later in this chapter. You can't do much with
Metacity (except get your work done efficiently). You assign new
themes to Metacity and change colors and window decorations
through the GNOME preferences (described later).

Basic Metacity functions that might interest you are keyboard
shortcuts and the workspace switcher. Table 2.1 shows keyboard
shortcuts to get around the Metacity window manager.

TABLE 2.1 Keyboard Shortcuts

Actions Keystrokes
Cycle backward, without pop-up icons Alt+Shift+Esc
Cycle backward among panels Alt+Ctrl+Shift+Tab
Close menu Esc

You can use other keyboard shortcuts with the window manager as
well. Select System ➪ Preferences ➪ Keyboard Shortcuts to see a list
of shortcuts, such as the following:

Run Dialog To run a command to launch an application from
the desktop by command name, press Alt+F2. From the dialog
box that appears, type the command and press Enter. For
example, type gedit to run a simple graphical text editor.

Lock Screen If you want to step away from your screen and lock
it, press Ctrl+Alt+L. You need to type your user password to open
the screen again.

Show Main Menu To open an application from the
Applications, Places, or System menu, press Alt+F1. Then use the
up and down arrow keys to select from the current menu or use
the right and left arrow keys to select from other menus.

Print Screen Press the Print Screen key to take a picture of the

entire desktop. Press Alt+Print Screen to take a picture of the
current window.

Another Metacity feature of interest is the workspace switcher. Four
virtual workspaces appear in the workspace switcher on the GNOME 2
panel. You can do the following with the Workspace Switcher:

Choose current workspace Four virtual workspaces appear in
the workspace switcher. Click any of the four virtual workspaces
to make it your current workspace.

Move windows to other workspaces Click any window, each
represented by a tiny rectangle in a workspace, to drag and drop it
to another workspace. Likewise, you can drag an application from
the Window list to move that application to another workspace.

Add more workspaces Right-click the Workspace Switcher
and select Preferences. You can add workspaces (up to 32).

Name workspaces Right-click the Workspace Switcher and
select Preferences. Click in the Workspaces pane to change names
of workspaces to any names you choose.

You can view and change information about Metacity controls and
settings using the gconf-editor window (type gconf-editor from a
Terminal window). As the window says, it is not the recommended
way to change preferences, so when possible, you should change the
desktop through GNOME 2 preferences. However, gconf-editor is a
good way to see descriptions of each Metacity feature.

From the gconf-editor window, select apps ➪ metacity, and choose
from general, global_keybindings, keybindings_commands,
window_keybindings, and workspace:names. Click each key to see its
value, along with short and long descriptions of the key.

Changing GNOME's appearance
You can change the general look of your GNOME desktop by selecting
System ➪ Preferences ➪ Appearance. From the Appearance
Preferences window, select from three tabs:

Theme Entire themes are available for the GNOME 2 desktop

that change the colors, icons, fonts, and other aspects of the
desktop. Several different themes come with the GNOME
desktop, which you can simply select from this tab to use. Or click
“Get more themes online” to choose from a variety of available
themes.

Background To change your desktop background, select from a
list of backgrounds on this tab to have the one you choose
immediately take effect. To add a different background, put the
background you want on your system (perhaps download one by
selecting “Get more backgrounds online” and downloading it to
your Pictures folder). Then click Add and select the image from
your Pictures folder.

Fonts Different fonts can be selected to use by default with your
applications, documents, desktop, window title bar, and for fixed
width.

Using the GNOME panels
The GNOME panels are placed on the top and bottom of the GNOME
desktop. From those panels, you can start applications (from buttons
or menus), see what programs are active, and monitor how your
system is running. You can also change the top and bottom panels in
many ways—by adding applications or monitors or by changing the
placement or behavior of the panel, for example.

Right-click any open space on either panel to see the Panel menu.
Figure 2.16 shows the Panel menu on the top.

FIGURE 2.16 The GNOME Panel menu

From GNOME's Panel menu, you can choose from a variety of
functions, including these:

Use the menus:

The Applications menu displays most of the applications and
system tools that you will use from the desktop.

The Places menu lets you select places to go, such as the
Desktop folder, Home folder, removable media, or network
locations.

The System menu lets you change preferences and system
settings as well as get other information about GNOME.

Add to Panel. Add an applet, menu, launcher, drawer, or button.

Properties. Change the panel's position, size, and background
properties.

Delete This Panel. Delete the current panel.

New Panel. Add panels to your desktop in different styles and
locations.

You can also work with items on a panel. For example, you can do the
following:

Move items. To move an item on a panel, right-click it, select
Move, and drag and drop it to a new position.

Resize items. You can resize some elements, such as the
Window list, by clicking an edge and dragging it to the new size.

Use the Window list. Tasks running on the desktop appear in
the Window list area. Click a task to minimize or maximize it.

The following sections describe some things that you can do with the
GNOME panel.

Using the Applications and System menus
Click Applications on the panel and you see categories of applications
and system tools that you can select. Click the application that you

want to launch. To add an item from a menu so that it can launch from
the panel, drag and drop the item that you want to the panel.

You can add items to your GNOME 2 menus. To do that, right-click
any of the menu names and select Edit Menus. The window that
appears lets you add or delete menus associated with the Applications
and System menus. You can also add items to launch from those
menus by selecting New Item and typing the name, command, and
comment for the item.

Adding an applet
You can run several small applications, called applets, directly on the
GNOME panel. These applications can show information that you may
want to see on an ongoing basis or may just provide some amusement.
To see what applets are available and to add applets that you want to
your panel, follow these steps:

1. Right-click an open space in the panel so that the Panel
menu appears.

2. Click Add to Panel. An Add to Panel window appears.

3. Select from among several dozen applets, including a
clock, dictionary lookup, stock ticker, and weather
report. The applet you select appears on the panel, ready for you
to use.

Figure 2.17 shows (from left to right) eyes, system monitor, weather
report, terminal, and Wanda the fish.

FIGURE 2.17 Placing applets on the panel makes accessing them
easy.

After an applet is installed, right-click it on the panel to see what
options are available. For example, select Preferences for the stock

ticker and you can add or delete stocks whose prices you want to
monitor. If you don't like the applet's location, right-click it, click
Move, slide the mouse until the applet is where you want it (even to
another panel), and click to set its location.

If you no longer want an applet to appear on the panel, right-click it,
and click Remove From Panel. The icon representing the applet
disappears. If you find that you have run out of room on your panel,
you can add a new panel to another part of the screen, as described in
the next section.

Adding another panel
If you run out of space on the top or bottom panels, you can add more
panels to your desktop. You can have several panels on your GNOME
2 desktop. You can add panels that run along the entire bottom, top, or
side of the screen. To add a panel, follow these steps:

1. Right-click an open space in the panel so that the Panel
menu appears.

2. Click New Panel. A new panel appears on the side of the screen.

3. Right-click an open space in the new panel and select
Properties.

4. From the Panel Properties, select where you want the
panel from the Orientation box (Top, Bottom, Left, or Right).

After you've added a panel, you can add applets or application
launchers to it as you did with the default panel. To remove a panel,
right-click it and select Delete This Panel.

Adding an application launcher
Icons on your panel represent a web browser and several office
productivity applications. You can add your own icons to launch
applications from the panel as well. To add a new application launcher
to the panel, follow these steps:

1. Right-click in an open space on the panel.

2. Click Add to Panel ➪ Application Launcher from the

menu. All application categories from your Applications and
System menus appear.

3. Select the arrow next to the category of application you
want, and then select Add. An icon representing the
application appears on the panel.

To launch the application that you just added, simply click the icon on
the panel.

If the application that you want to launch is not on one of your menus,
you can build a launcher yourself as follows:

1. Right-click in an open space on the panel.

2. Click Add to Panel ➪ Custom Application Launcher ➪
Add. The Create Launcher window appears.

3. Provide the following information for the application
you want to add:

a. Type. Select Application (to launch a regular GUI
application) or Application in Terminal. Use Application in
Terminal if the application is a character-based or ncurses
application. (Applications written using the ncurses library
run in a Terminal window but offer screen-oriented mouse
and keyboard controls.)

b. Name. Choose a name to identify the application. (This
appears in the tooltip when your mouse is over the icon.)

c. Command. This identifies the command line that is run
when the application is launched. Use the full pathname, plus
any required options.

d. Comment. Enter a comment describing the application. It
also appears when you later move your mouse over the
launcher.

4. Click the Icon box (it might say No Icon), select one of
the icons shown, and click OK. Alternatively, you can browse
your filesystem to choose an icon.

5. Click OK.

The application should now appear in the panel. Click it to start the
application.

NOTE
Icons available to represent your application are contained in the
/usr/share/pixmaps directory. These icons are either in PNG or
XPM format. If there isn't an icon in the directory that you want to
use, create your own (in one of those two formats) and assign it to
the application.

Adding a drawer
A drawer is an icon that you can click to display other icons
representing menus, applets, and launchers; it behaves just like a
panel. Essentially, any item that you can add to a panel you can add to
a drawer. By adding a drawer to your GNOME panel, you can include
several applets and launchers that together take up the space of only
one icon. Click the drawer to show the applets and launchers as if they
were being pulled out of a drawer icon on the panel.

To add a drawer to your panel, right-click the panel and select Add to
Panel ➪ Drawer. A drawer appears on the panel. Right-click it and
add applets or launchers to it as you would to a panel. Click the icon
again to retract the drawer.

Figure 2.18 shows a portion of the panel with an open drawer that
includes an icon for launching a weather report, sticky notes, and
stock monitor.

FIGURE 2.18 Add launchers or applets to a drawer on your GNOME
2 panel.

Changing panel properties
You can change the orientation, size, hiding policy, and background
properties of your desktop panels. To open the Panel Properties
window that applies to a specific panel, right-click an open space on
the panel and choose Properties. The Panel Properties window that
appears includes the following values:

Orientation Move the panel to a different location on the screen
by clicking a new position.

Size Select the size of your panel by choosing its height in pixels
(48 pixels by default).

Expand Select this check box to have the panel expand to fill the
entire side or clear the check box to make the panel only as wide
as the applets it contains.

AutoHide Select whether a panel is automatically hidden
(appearing only when the mouse pointer is in the area).

Show Hide buttons Choose whether the Hide/Unhide buttons
(with pixmap arrows on them) appear on the edges of the panel.

Arrows on Hide buttons If you select Show Hide Buttons, you
can choose to have arrows on those buttons.

Background From the Background tab, you can assign a color to
the background of the panel, assign a pixmap image, or just leave
the default (which is based on the current system theme). Click
the Background Image check box if you want to select an Image
for the background, and then select an image, such as a tile from
/usr/share/backgrounds/tiles or another directory.

TIP
I usually turn on the AutoHide feature and turn off the Hide
buttons. Using AutoHide gives you more desktop space with which
you can work. When you move your mouse to the edge where the
panel is located, the panel pops up—so you don't need Hide
buttons.

Adding 3D effects with AIGLX
Several initiatives have made strides in recent years to bring 3D
desktop effects to Linux. Ubuntu, openSUSE, and Fedora used AIGLX
(https://fedoraproject.org/wiki/RenderingProject/aiglx).

The goal of the Accelerated Indirect GLX project (AIGLX) is to add 3D
effects to everyday desktop systems. It does this by implementing
OpenGL (http://opengl.org) accelerated effects using the Mesa
(http://www.mesa3d.org) open source OpenGL implementation.

Currently, AIGLX supports a limited set of video cards and
implements only a few 3D effects, but it does offer some insight into
the eye candy that is in the works.

If your video card was properly detected and configured, you may be
able simply to turn on the Desktop Effects feature to see the effects
that have been implemented so far. To turn on Desktop Effects, select
System ➪ Preferences ➪ Desktop Effects. When the Desktop Effects
window appears, select Compiz. (If the selection is not available,
install the compiz package.)

Enabling Compiz does the following:

Starts Compiz Stops the current window manager and starts the
Compiz window manager.

Enables the Windows Wobble When Moved effect With
this effect on, when you grab the title bar of the window to move
it, the window wobbles as it moves. Menus and other items that

https://fedoraproject.org/wiki/RenderingProject/aiglx
http://opengl.org
http://www.mesa3d.org

open on the desktop also wobble.

Enables the Workspaces on a Cube effect Drag a window
from the desktop to the right or the left, and the desktop rotates
like a cube, with each of your desktop workspaces appearing as a
side of that cube. Drop the window on the workspace where you
want it to go. You can also click the Workspace Switcher applet in
the bottom panel to rotate the cube to display different
workspaces.

Other nice desktop effects result from using the Alt+Tab keys to tab
among different running windows. As you press Alt+Tab, a thumbnail
of each window scrolls across the screen as the window it represents is
highlighted.

Figure 2.19 shows an example of a Compiz desktop with AIGLX
enabled. The figure illustrates a web browser window being moved
from one workspace to another as those workspaces rotate on a cube.

FIGURE 2.19 Rotate workspaces on a cube with AIGLX desktop
effects enabled.

The following are some interesting effects that you can get with your
3D AIGLX desktop:

Spin cube Hold Ctrl+Alt keys and press the right and left arrow
keys. The desktop cube spins to each successive workspace
(forward or back).

Slowly rotate cube Hold the Ctrl+Alt keys, press and hold the
left mouse button, and move the mouse around on the screen. The
cube moves slowly with the mouse among the workspaces.

Scale and separate windows If your desktop is cluttered, hold
Ctrl+Alt and press the up arrow key. Windows shrink down and
separate on the desktop. Still holding Ctrl+Alt, use your arrow
keys to highlight the window you want and release the keys to
have that window come to the surface.

Tab through windows Hold the Alt key and press the Tab key.
You will see reduced versions of all your windows in a strip in the
middle of your screen, with the current window highlighted in the
middle. Still holding the Alt key, press Tab or Shift+Tab to move

forward or backward through the windows. Release the keys when
the one you want is highlighted.

Scale and separate workspaces Hold Ctrl+Alt and press the
down arrow key to see reduced images of the workspace shown on
a strip. Still holding Ctrl+Alt, use the right and left arrow keys to
move among the different workspaces. Release the keys when the
workspace you want is highlighted.

Send current window to next workspace Hold
Ctrl+Alt+Shift keys together and press the left and right arrow
keys. The next workspace to the left or right, respectively, appears
on the current desktop.

Slide windows around Press and hold the left mouse button
on the window title bar, and then press the left, right, up, or down
arrow key to slide the current window around on the screen.

If you get tired of wobbling windows and spinning cubes, you can
easily turn off the AIGLX 3D effects and return to using Metacity as
the window manager. Select System ➪ Preferences ➪ Desktop Effects
again, and toggle off the Enable Desktop Effects button to turn off the
feature.

If you have a supported video card but find that you cannot turn on
the Desktop Effects, check that your X server started properly. In
particular, make sure that your /etc/X11/xorg.conf file is properly
configured. Make sure that dri and glx are loaded in the Module
section. Also, add an extensions section anywhere in the file (typically
at the end of the file) that appears as follows:

Section "extensions"

 Option "Composite"

EndSection

Another option is to add the following line to the /etc/X11/xorg.conf
file in the Device section:

Option "XAANoOffscreenPixmaps"

The XAANoOffscreenPixmaps option improves performance. Check your
/var/log/Xorg.log file to make sure that DRI and AIGLX features were

started correctly. The messages in that file can help you debug other
problems as well.

Summary
The GNOME desktop environment has become the default desktop
environment for many Linux systems, including Fedora and RHEL.
The GNOME 3 desktop (now used in Fedora and RHEL 7 and RHEL
8) is a modern, elegant desktop, designed to match the types of
interfaces available on many of today's mobile devices. The GNOME 2
desktop (used through RHEL 6) provides a more traditional desktop
experience.

Besides GNOME desktops, you can try out other popular and useful
desktop environments. The K Desktop Environment (KDE) offers
many more bells and whistles than GNOME, and it is used by default
in several Linux distributions. Netbooks and live CD distributions
sometimes use the LXDE or Xfce desktops.

Now that you have a grasp of how to get and use a Linux desktop, it's
time to start digging into the more professional administrative
interfaces. Chapter 3, “Using the Shell,” introduces you to the Linux
command-line shell interface.

Exercises
Use these exercises to test your skill in using a GNOME desktop. You
can use either a GNOME 2.x (Red Hat Enterprise Linux up until
RHEL 6.x) or GNOME 3.x (Fedora 16 or later or Ubuntu up to 11.10, or
later using the Ubuntu GNOME project) desktop. If you are stuck,
solutions to the tasks for both the GNOME 2 and GNOME 3 desktops
are shown in Appendix B.

1. Obtain a Linux system with either a GNOME 2 or GNOME 3
desktop available. Start the system and log in to a GNOME
desktop.

2. Launch the Firefox web browser and go to the GNOME home
page (http://gnome.org).

3. Pick a background you like from the GNOME art site
(http://gnome-look.org), download it to your Pictures folder, and
select it as your current background.

4. Start a Nautilus File Manager window and move it to the second
workspace on your desktop.

5. Find the image that you downloaded to use as your desktop
background and open it in any image viewer.

6. Move back and forth between the workspace with Firefox on it
and the one with the Nautilus file manager.

7. Open a list of applications installed on your system and select an
image viewer to open from that list. Use as few clicks or
keystrokes as possible.

8. Change the view of the windows on your current workspace to
smaller views you can step through. Select any window you'd like
to make it your current window.

9. From your desktop, using only the keyboard, launch a music
player.

10. Take a picture of your desktop, using only keystrokes.

http://gnome.org
http://gnome-look.org

Part II
Becoming a Linux Power User

IN THIS PART
Chapter 3 Using the Shell

Chapter 4 Moving Around the Filesystem

Chapter 5 Working with Text Files

Chapter 6 Managing Running Processes

Chapter 7 Writing Simple Shell Scripts

CHAPTER 3
Using the Shell

IN THIS CHAPTER
Understanding the Linux shell

Using the shell from consoles or Terminals

Using commands

Using command history and tab completion

Connecting and expanding commands

Understanding variables and aliases

Making shell settings permanent

Using man pages and other documentation

Before icons and windows took over computer screens, you typed
commands to interact with most computers. On UNIX systems, from
which Linux was derived, the program used to interpret and manage
commands was referred to as the shell.

No matter which Linux distribution you are using, you can always
count on the fact that the shell is available to you. It provides a way to
create executable script files, run programs, work with filesystems,
compile computer code, and manage the computer. Although the shell
is less intuitive than common graphical user interfaces (GUIs), most
Linux experts consider the shell to be much more powerful than GUIs.
Shells have been around a long time, and many advanced features that
aren't available from the desktop can be accessed by running shell
commands.

The Linux shell illustrated in this chapter is called the bash shell,
which stands for Bourne Again Shell. The name is derived from the
fact that bash is compatible with the one of the earliest UNIX shells:

the Bourne shell (named after its creator, Stephen Bourne, and
represented by the sh command).

Although bash is included with most distributions and considered a
standard, other shells are available, including the C shell (csh), which
is popular among BSD UNIX users, and the Korn shell (ksh), which is
popular among UNIX System V users. Ubuntu uses the dash shell by
default at boot time, which is designed to perform faster than the bash
shell. Linux also has a tcsh shell (an improved C shell) and an ash shell
(another Bourne shell look-alike).

The odds are strong that the Linux distribution you are using has more
than one shell available for your use. This chapter, however, focuses
primarily on the bash shell. That is because the Linux distributions
featured in this book, Fedora, Ubuntu, and Red Hat Enterprise Linux,
all use the bash shell by default when you open a Terminal window.

The following are a few major reasons to learn how to use the shell:

You will learn to get around any Linux or other UNIX-like
system. For example, I can log in to my Red Hat Enterprise Linux
web server, my home multimedia server, my home router, or my
wife's Mac and explore and use any of those computer systems
from a shell. I can even log in and run commands on my Android
phone. They all run Linux or similar systems on the inside.

Special shell features enable you to gather data input and direct
data output between commands and Linux filesystems. To save
on typing, you can find, edit, and repeat commands from your
shell history. Many power users hardly touch a graphical
interface, doing most of their work from a shell.

You can gather commands into a file using programming
constructs such as conditional tests, loops, and case statements
to perform complex operations quickly, which would be difficult
to retype over and over. Programs consisting of commands that
are stored and run from a file are referred to as shell scripts. Many
Linux system administrators use shell scripts to automate tasks
such as backing up data, monitoring log files, or checking system
health.

The shell is a command language interpreter. If you have used
Microsoft operating systems, you'll see that using a shell in Linux is
similar to, but generally much more powerful than, the PowerShell
interpreter used to run commands. You can happily use Linux from a
graphical desktop interface, but as you grow into Linux you will surely
need to use the shell at some point to track down a problem or
administer some features.

How to use the shell isn't obvious at first, but with the right help you
can quickly learn many of the most important shell features. This
chapter is your guide to working with the Linux system commands,
processes, and filesystem from the shell. It describes the shell
environment and helps you tailor it to your needs.

About Shells and Terminal Windows
There are several ways to get to a shell interface in Linux. Three of the
most common are the shell prompt, Terminal window, and virtual
console, which you learn more about in the following sections.

To start, boot up your Linux system. On your screen, you should see
either a graphical login screen or a plain-text login prompt similar to
the following:

Red Hat Enterprise Linux Server release 8.0 (Ootpa)

Kernel 4.18.0-42.el8.x86_64 on an X86

mylinuxhost login:

In either case, you should log in with a regular user account. If you
have a plain-text login prompt, continue to the next section, “Using
the shell prompt.” If you log in through a graphical screen, go to the
section “Using a Terminal window” to see how to access a shell from
the desktop. In either case, you can access more shells as described in
the section “Using virtual consoles,” which appears shortly in this
chapter.

Using the shell prompt
If your Linux system has no graphical user interface (or one that isn't
working at the moment), you will most likely see a shell prompt after
you log in. Typing commands from the shell will probably be your
primary means of using the Linux system.

The default prompt for a regular user is simply a dollar sign:

$

The default prompt for the root user is a pound sign (also called a
number sign or a hash tag):

#

In most Linux systems, the $ and # prompts are preceded by your
username, system name, and current directory name. For example, a

login prompt for the user named jake on a computer named pine with
/usr/share/ as the current working directory would appear as follows:

[jake@pine share]$

You can change the prompt to display any characters you like and even
read in pieces of information about your system. For example, you can
use the current working directory, the date, the local computer name,
or any string of characters as your prompt. To configure your prompt,
see the section “Setting your prompt” later in this chapter.

Although a tremendous number of features are available with the
shell, it's easy to begin by just entering a few commands. Try some of
the commands shown in the remaining sections to become familiar
with your current shell environment.

In the examples that follow, the dollar ($) and pound (#) symbols
indicate a prompt. A $ indicates that the command can be run by any
user, but a # typically means that you should run the command as the
root user; that is, many administrative tools require root permission to
be able to run them. The prompt is followed by the command that you
type (and then press Enter). The lines that follow show the output
resulting from the command.

NOTE
Although we use # to indicate that a command be run as the root
user, you do not need to log in as the root user to run a command
as root. In fact, the most common way to run a command as a root
user is to use the sudo command. See Chapter 8, “Learning System
Administration,” for further information about the sudo command.

Using a Terminal window
With the desktop GUI running, you can open a Terminal emulator
program (sometimes referred to as a Terminal window) to start a shell.
Most Linux distributions make it easy for you to get to a shell from the
GUI. Here are two common ways to launch a Terminal window from a
Linux desktop:

Right-click the desktop. In the context menu that appears, if
you see Open in Terminal, Shells, New Terminal, Terminal
Window, Xterm, or some similar item, select it to start a Terminal
window. (Some distributions have disabled this feature.)

Click the panel menu. Many Linux desktops include a panel at
the top or bottom of the screen from which you can launch
applications. For example, in some systems that use the GNOME
2 desktop, you can select Applications ➪ System Tools ➪
Terminal to open a Terminal window. In GNOME 3, click the
Activities menu, type Terminal, and press Enter.

In all cases, you should be able to type a command as you would from
a shell with no GUI. Different Terminal emulators are available with
Linux. In Fedora, Red Hat Enterprise Linux (RHEL), and other Linux
distributions that use the GNOME desktop, the default Terminal
emulator window is the GNOME Terminal (started by the gnome-
terminal command).

GNOME Terminal supports many features beyond the basic shell. For
example, you can cut and paste text to or from a GNOME Terminal

window, change fonts, set a title, choose colors or images to use as
background, and set how much text to save when text scrolls off the
screen.

To try some GNOME Terminal features, start up a Fedora or RHEL
system and log in to the desktop. Then follow this procedure:

1. Select Applications ➪ Utilities ➪ Terminal (or click on the
Activities menu and type Terminal). A Terminal window should
open on your desktop.

2. Select Edit ➪ Profile Preferences or Preferences.

3. On the General tab or current profile (depending on your version
of GNOME), check the “Custom font” box.

4. Select the Font field, try a different font and size, and then click
Select. The new font appears in the Terminal window.

5. Unselect the “Custom font” box. This takes you back to the
original font.

6. On the Colors tab, clear the “Use colors from system theme” check
box. From here, you can try some different font and background
colors.

7. Re-select the “Use colors from system theme” box to go back to
the default colors.

8. Go to your Profile window. There are other features with which
you may want to experiment, such as setting how much scrolled
data is kept.

9. Close the Profile window when you are finished. You are now
ready to use your Terminal window.

If you are using Linux from a graphical desktop, you will probably
most often access the shell from a Terminal window.

Using virtual consoles
Most Linux systems that include a desktop interface start multiple
virtual consoles running on the computer. Virtual consoles are a way
to have multiple shell sessions open at once in addition to the

graphical interface you are using.

You can switch between virtual consoles by holding the Ctrl and Alt
keys and pressing a function key between F1 and F6. For example, in
Fedora, press Ctrl+Alt+F1 (or F2, F3, F4, and so on up to F6 on most
Linux systems) to display one of seven virtual consoles. The GUI is
typically located on one of the first two virtual consoles, and the other
six virtual consoles are typically text-based virtual consoles.

You can return to the GUI (if one is running) by pressing Ctrl+Alt+F1.
On some systems, the GUI may run on a different virtual console, such
as virtual console 2 (Ctrl+Alt+F2). Newer systems, such as Fedora 29,
now start the gdm (the login screen) persistently on tty1 to allow
multiple simultaneous GUI sessions: the gdm is on tty1, the first
desktop is started on tty2, the second desktop is started on tty3, and so
on.

Try it right now. Hold down the Ctrl+Alt keys and press F3. You
should see a plain-text login prompt. Log in using your username and
password. Try a few commands. When you are finished, type exit to
exit the shell and then press Ctrl+Alt+F1 or Ctrl+Alt+F2 to return to
your graphical desktop interface. You can go back and forth between
these consoles as much as you like.

Choosing Your Shell
In most Linux systems, your default shell is the bash shell. To find out
what is your default login shell, enter the following commands:

$ who am i

chris pts/0 2019-10-21 22:45 (:0.0)

$ grep chris /etc/passwd

chris:x:13597:13597:Chris Negus:/home/chris:/bin/bash

Notice that the command-line examples shown here and throughout
the book show the command followed by output from that command.
When the command completes, you are presented with the command
prompt again.

The who am i command shows your username, and the grep command
(replacing chris with your username) shows the definition of your
user account in the /etc/passwd file. The last field in that entry shows
that the bash shell (/bin/bash) is your default shell (the one that starts
up when you log in or open a Terminal window).

It's possible, although not likely, that you might have a different
default shell set. To try a different shell, simply type the name of that
shell (examples include ksh, tcsh, csh, sh, dash, and others, assuming
that they are installed). You can try a few commands in that shell and
type exit when you are finished to return to the bash shell.

You might choose to use different shells for the following reasons:

You are used to using UNIX System V systems (often ksh by
default) or Sun Microsystems and other Berkeley UNIX-based
distributions (frequently csh by default), and you are more
comfortable using default shells from those environments.

You want to run shell scripts that were created for a particular
shell environment, and you need to run the shell for which they
were made so that you can test or use those scripts from your
current shell.

You simply prefer features in one shell over those in another. For
example, a member of my Linux Users Group prefers ksh over

bash because he doesn't like the way aliases are used with bash.

Although most Linux users have a preference for one shell or another,
when you know how to use one shell, you can quickly learn any of the
others by occasionally referring to the shell's man page (for example,
type man bash). The man pages (described later in the section “Getting
Information about Commands”) provide documentation for
commands, file formats, and other components in Linux. Most people
use bash just because they don't have a particular reason for using a
different shell. The rest of this chapter describes the bash shell.

Bash includes features originally developed for sh and ksh shells in
early UNIX systems, as well as some csh features. Expect bash to be
the default login shell in most Linux systems that you are using, with
the exception of some specialized Linux systems (such as some that
run on embedded devices) that may require a smaller shell that needs
less memory and requires fewer features. Most of the examples in this
chapter are based on the bash shell.

TIP
The bash shell is worth knowing not only because it is the default
in most installations, but because it is the one you will use with
most Linux certification exams.

Running Commands
The simplest way to run a command is just to type the name of the
command from a shell. From your desktop, open a Terminal window.
Then enter the following command:

$ date

Thu Jun 29 08:14:53 EDT 2019

Entering the date command, with no options or arguments, causes the
current day, month, date, time, time zone, and year to be displayed as
just shown.

Here are a few other commands you can try:

$ pwd

/home/chris

$ hostname

mydesktop

$ ls

Desktop Downloads Pictures Templates

Documents Music Public Videos

The pwd command shows your current working directory. Entering
hostname shows your computer's hostname. The ls command lists the
files and directories in your current directory. Although many
commands can be run by just entering command names, it's more
common to type other characters after the command to modify its
behavior. The characters and words that you can type after a
command are called options and arguments.

Understanding command syntax
Most commands have one or more options that you can add to change
the command's behavior. Options typically consist of a single letter
preceded by a hyphen. However, you can group single-letter options
together or precede each with a hyphen to use more than one option at
a time. For example, the following two uses of options for the ls
command are the same:

$ ls -l -a -t

$ ls -lat

In both cases, the ls command is run with the -l (long listing), -a
(show hidden dot files), and -t options (list by time).

Some commands include options that are represented by a whole
word. To tell a command to use a whole word as an option, you
typically precede it with a double hyphen (--). For example, to use the
help option on many commands, you enter --help on the command
line. Without the double hyphen, the letters h, e, l, and p would be
interpreted as separate options. There are some commands that don't
follow the double hyphen convention, using a single hyphen before a
word, but most commands use double hyphens for word options.

NOTE
You can use the --help option with most commands to see the
options and arguments that they support. For example, try typing
hostname --help.

Many commands also accept arguments after certain options are
entered or at the end of the entire command line. An argument is an
extra piece of information, such as a filename, directory, username,
device, or other item, that tells the command what to act on. For
example, cat /etc/passwd displays the contents of the /etc/passwd file
on your screen. In this case, /etc/passwd is the argument. Usually, you
can have as many arguments as you want on the command line,
limited only by the total number of characters allowed on a command
line. Sometimes, an argument is associated with an option. In that
case, the argument must immediately follow the option. With single-
letter options, the argument typically follows after a space. For full-
word options, the argument often follows an equal sign (=). Here are
some examples:

$ ls --hide=Desktop

Documents Music Public Videos

Downloads Pictures Templates

In the previous example, the --hide option tells the ls command not
to display the file or directory named Desktop when listing the contents
of the directory. Notice that the equal sign immediately follows the
option (no space) and then the argument (again, no space).

Here's an example of a single-letter option that is followed by an
argument:

$ tar -cvf backup.tar /home/chris

In the tar example just shown, the options say to create (c) a file (f)
named backup.tar that includes all of the contents of the /home/chris
directory and its subdirectories and show verbose (v) messages as the
backup is created. Because backup.tar is an argument to the f option,

backup.tar must immediately follow the option.

Here are a few commands that you can try out. See how they behave
differently with different options:

$ ls

Desktop Documents Downloads Music Pictures Public Templates

Videos

$ ls -a

. Desktop .gnome2_private .lesshst

Public

.. Documents .gnote .local

Templates

.bash_history Downloads .gnupg .mozilla

Videos

.bash_logout .emacs .gstreamer-0.10 Music

.xsession-errors

.bash_profile .esd_auth .gtk-bookmarks Pictures

.zshrc

.bashrc .fsync.log .gvfs Pictures

$ uname

Linux

$ uname -a

Linux mydesktop 5.3.7-301.fc31.x86_64 #1 SMP Mon Oct 21

19:18:58 UTC 2019 x86_64 x86_64 x86_64 GNU/Linux

$ date

Wed 04 Mar 2020 09:06:25 PM EST

$ date +'%d/%m/%y'

04/03/20

$ date +'%A, %B %d, %Y'

Wednesday, March 04, 2020

The ls command, by itself, shows all regular files and directories in the
current directory. By adding the -a, you can also see the hidden files in
the directory (those beginning with a dot). The uname command shows
the type of system you are running (Linux). When you add -a, you also
can see the hostname, kernel release, and kernel version.

The date command has some special types of options. By itself, date
simply prints the current day, date, and time as shown above. But the
date command supports a special + format option, which lets you
display the date in different formats. Enter date --help to see different
format indicators you can use.

Try the id and who commands to get a feel for your current Linux

environment, as described in the following paragraphs.

When you log in to a Linux system, Linux views you as having a
particular identity, which includes your username, group name, user
ID, and group ID. Linux also keeps track of your login session: It
knows when you logged in, how long you have been idle, and where
you logged in from.

To find out information about your identity, use the id command as
follows:

$ id

uid=1000(chris) gid=1000(chris) groups=1005(sales), 7(lp)

In this example, the username is chris, which is represented by the
numeric user ID (uid) 1000. The primary group for chris also is called
chris, which has a group ID (gid) of 1000. It is normal for Fedora and
Red Hat Enterprise Linux users to have the same primary group name
as their username. The user chris also belongs to other groups called
sales (gid 1005) and lp (gid 7). These names and numbers represent
the permissions that chris has to access computer resources.

NOTE
Linux distributions that have Security Enhanced Linux (SELinux)
enabled, such as Fedora and RHEL, show additional information
at the end of the id output. That output might look something like
the following:

 context=unconfined_u:unconfined_r:unconfined_t:s0-

s0:c0.c1023

SELinux provides a means of tightly locking down the security of a
Linux system. See Chapter 24, “Enhancing Linux Security with
SELinux,” if you want to learn about SELinux.

You can see information about your current login session by using the
who command. In the following example, the -u option says to add
information about idle time and the process ID and -H asks that a
header be printed:

$ who -uH

NAME LINE TIME IDLE PID COMMENT

chris tty1 Jan 13 20:57 . 2019

The output from this who command shows that the user chris is logged
in on tty1 (which is the first virtual console on the monitor connected
to the computer) and his login session began at 20:57 on January 13.
The IDLE time shows how long the shell has been open without any
command being typed (the dot indicates that it is currently active). PID
shows the process ID of the user's login shell. COMMENT would show the
name of the remote computer from which the user had logged in, if
that user had logged in from another computer on the network, or the
name of the local X display if that user were using a Terminal window
(such as :0.0).

Locating commands
Now that you have typed a few commands, you may wonder where
those commands are located and how the shell finds the commands

you type. To find commands you type, the shell looks in what is
referred to as your path. For commands that are not in your path, you
can type the complete identity of the location of the command.

If you know the directory that contains the command that you want to
run, one way to run it is to type the full, or absolute, path to that
command. For example, you run the date command from the /bin
directory by entering the following:

$ /bin/date

Of course, this can be inconvenient, especially if the command resides
in a directory with a long pathname. The better way is to have
commands stored in well-known directories and then add those
directories to your shell's PATH environment variable. The path consists
of a list of directories that are checked sequentially for the commands
you enter. To see your current path, enter the following:

$ echo $PATH

/usr/local/bin:/usr/bin:/bin:/usr/local/sbin:/usr/sbin:/sbin:↵

/home/chris/bin

The results show a common default path for a regular Linux user.
Directories in the path list are separated by colons. Most user
commands that come with Linux are stored in the /bin, /usr/bin, or
/usr/local/bin directory. The /sbin and /usr/sbin directories contain
administrative commands (some Linux systems don't put those
directories in regular users' paths). The last directory shown is the bin
directory in the user's home directory (/home/chris/bin).

TIP
If you want to add your own commands or shell scripts, place them
in the bin directory in your home directory (such as
/home/chris/bin for the user named chris). This directory is
automatically added to your path in some Linux systems, although
you may need to create that directory or add it to your PATH on
other Linux systems. So, as long as you add the command to your
bin with execute permission, you can begin using it by simply
typing the command name at your shell prompt. To make
commands available to all users, add them to /usr/local/bin.

Unlike some other operating systems, Linux does not, by default,
check the current directory for an executable before searching the
path. It immediately begins searching the path, and executables in the
current directory are run only if they are in the PATH variable or you
give their absolute (such as /home/chris/scriptx.sh) or relative (for
example, ./scriptx.sh) location.

The path directory order is important. Directories are checked from
left to right. So, in this example, if there is a command called foo
located in both the /usr/bin and /bin directories, the one in /usr/bin
is executed. To have the other foo command run, you either type the
full path to the command or change your PATH variable. (Changing
your PATH and adding directories to it are described later in this
chapter.)

Not all of the commands you run are located in directories in your PATH
variable. Some commands are built into the shell. Other commands
can be overridden by creating aliases that define any commands and
options that you want the command to run. There are also ways of
defining a function that consists of a stored series of commands. Here
is the order in which the shell checks for the commands you type:

1. Aliases. These are names set by the alias command that
represent a particular command and a set of options. Type alias
to see what aliases are set. Often, aliases enable you to define a

short name for a long, complicated command. (I describe how to
create your own aliases later in this chapter.)

2. Shell reserved word. These are words reserved by the shell for
special use. Many of these are words that you would use in
programming-type functions, such as do, while, case, and else. (I
cover some of these reserved words in Chapter 7, “Writing Simple
Shell Scripts.”)

3. Function. This is a set of commands that is executed together
within the current shell.

4. Built-in command. This is a command built into the shell. As a
result, there is no representation of the command in the
filesystem. Some of the most common commands that you will
use are shell built-in commands, such as cd (to change
directories), echo (to output text to the screen), exit (to exit from
a shell), fg (to bring a command running in the background to the
foreground), history (to see a list of commands that were
previously run), pwd (to list the present working directory), set (to
set shell options), and type (to show the location of a command).

5. Filesystem command. This command is stored in and executed
from the computer's filesystem. (These are the commands that are
indicated by the value of the PATH variable.)

To determine the location of a particular command, you can use the
type command. (If you are using a shell other than bash, use the which
command instead.) For example, to find out where the bash shell
command is located, enter the following:

$ type bash

bash is /bin/bash

Try these few words with the type command to see other locations of
commands: which, case, and return. If a command resides in several
locations, you can add the -a option to have all of the known locations
of the command printed. For example, the command type -a ls
should show an aliased and filesystem location for the ls command.

TIP
Sometimes, you run a command and receive an error message that
the command was not found or that permission to run the
command was denied. If the command was not found, check that
you spelled the command correctly and that it is located in your
PATH variable. If permission to run the command was denied, the
command may be in the PATH variable but may not be executable.
Also remember that case is important, so typing CAT or Cat will
not find the cat command.

If a command is not in your PATH variable, you can use the locate
command to try to find it. Using locate, you can search any part of the
system that is accessible to you. (Some files are only accessible to the
root user.) For example, if you wanted to find the location of the chage
command, you could enter the following:

$ locate chage

/usr/bin/chage

/usr/sbin/lchage

/usr/share/man/fr/man1/chage.1.gz

/usr/share/man/it/man1/chage.1.gz

/usr/share/man/ja/man1/chage.1.gz

/usr/share/man/man1/chage.1.gz

/usr/share/man/man1/lchage.1.gz

/usr/share/man/pl/man1/chage.1.gz

/usr/share/man/ru/man1/chage.1.gz

/usr/share/man/sv/man1/chage.1.gz

/usr/share/man/tr/man1/chage.1.gz

Notice that locate not only found the chage command, it also found
the lchage command and a variety of man pages associated with chage
for different languages. The locate command looks all over your
filesystem, not just in directories that contain commands. (If locate
does not find files recently added to your system, run updatedb as root
to update the locate database.)

In the coming chapters, you learn to use additional commands. For
now, I want you to become more familiar with how the shell itself

works. So next I discuss features for recalling commands, completing
commands, using variables, and creating aliases.

Recalling Commands Using Command History
Being able to repeat a command you ran earlier in a shell session can
be convenient. Recalling a long and complex command line that you
mistyped can save you some trouble. Fortunately, some shell features
enable you to recall previous command lines, edit those lines, or
complete a partially typed command line.

The shell history is a list of the commands that you have entered
before. Using the history command in a bash shell, you can view your
previous commands. Then using various shell features, you can recall
individual command lines from that list and change them however you
please.

The rest of this section describes how to do command-line editing,
how to complete parts of command lines, and how to recall and work
with the history list.

Command-line editing
If you type something wrong on a command line, the bash shell
ensures that you don't have to delete the entire line and start over.
Likewise, you can recall a previous command line and change the
elements to make a new command.

By default, the bash shell uses command-line editing that is based on
the emacs text editor. (Type man emacs to read about it, if you care to
do so.) If you are familiar with emacs, you probably already know most
of the keystrokes described here.

TIP
If you prefer the vi command for editing shell command lines, you
can easily make that happen. Add the following line to the .bashrc
file in your home directory:

 set -o vi

The next time you open a shell, you can use vi commands to edit
your command lines.

To do the editing, you can use a combination of control keys, meta
keys, and arrow keys. For example, Ctrl+F means to hold down the
Ctrl key, and type f. Alt+F means to hold down the Alt key, and type f.
(Instead of the Alt key, your keyboard may use a Meta key or the Esc
key. On a Windows keyboard, you can use the Windows key.)

To try out a bit of command-line editing, enter the following:

$ ls /usr/bin | sort -f | less

This command lists the contents of the /usr/bin directory, sorts the
contents in alphabetical order (regardless of case), and pipes the
output to less. The less command displays the first page of output,
after which you can go through the rest of the output a line (press
Enter) or a page (press spacebar) at a time. Simply press q when you
are finished. Now, suppose that you want to change /usr/bin to /bin.
You can use the following steps to change the command:

1. Press the up arrow (↑) key. This displays the most recent
command from your shell history.

2. Press Ctrl+A. This moves the cursor to the beginning of the
command line.

3. Press Ctrl+F or the right arrow (→) key. Repeat this
command a few times to position the cursor under the first slash
(/).

4. Press Ctrl+D. Type this command four times to delete /usr from

the line.

5. Press Enter. This executes the command line.

As you edit a command line, at any point you can type regular
characters to add those characters to the command line. The
characters appear at the location of your text cursor. You can use right
→ and left ← arrows to move the cursor from one end to the other on
the command line. You can also press the up ↑ and down ↓ arrow keys
to step through previous commands in the history list to select a
command line for editing. (See the section “Command-line recall” for
details on how to recall commands from the history list.) You can use
many keystrokes to edit your command lines. Table 3.1 lists the
keystrokes that you can use to move around the command line.

TABLE 3.1 Keystrokes for Navigating Command Lines

Keystroke Full Name Meaning
Ctrl+F Character

forward
Go forward one character.

Ctrl+B Character
backward

Go backward one character.

Alt+F Word forward Go forward one word.
Alt+B Word

backward
Go backward one word.

Ctrl+A Beginning of
line

Go to the beginning of the current line.

Ctrl+E End of line Go to the end of the line.
Ctrl+L Clear screen Clear screen and leave line at the top of

the screen.

The keystrokes in Table 3.2 can be used to edit command lines.

TABLE 3.2 Keystrokes for Editing Command Lines

Keystroke Full Name Meaning
Ctrl+D Delete

current
Delete the current character.

Backspace Delete
previous

Delete the previous character.

Ctrl+T Transpose
character

Switch positions of current and previous
characters.

Alt+T Transpose
words

Switch positions of current and previous
words.

Alt+U Uppercase
word

Change the current word to uppercase.

Alt+L Lowercase
word

Change the current word to lowercase.

Alt+C Capitalize
word

Change the current word to an initial
capital.

Ctrl+V Insert
special
character

Add a special character. For example, to
add a Tab character, press Ctrl+V+Tab.

Use the keystrokes in Table 3.3 to cut and paste text on a command
line.

TABLE 3.3 Keystrokes for Cutting and Pasting Text from
within Command Lines

Keystroke Full Name Meaning
Ctrl+K Cut end of line Cut text to the end of the line.
Ctrl+U Cut beginning of

line
Cut text to the beginning of the line.

Ctrl+W Cut previous
word

Cut the word located behind the
cursor.

Alt+D Cut next word Cut the word following the cursor.
Ctrl+Y Paste recent text Paste most recently cut text.
Alt+Y Paste earlier text Rotate back to previously cut text and

paste it.
Ctrl+C Delete whole line Delete the entire line.

Command-line completion
To save you a few keystrokes, the bash shell offers several different
ways of completing partially typed values. To attempt to complete a
value, type the first few characters and press Tab. Here are some of the
values you can type partially from a bash shell:

Command, alias, or function If the text you type begins with
regular characters, the shell tries to complete the text with a
command, alias, or function name.

Variable If the text you type begins with a dollar sign ($), the
shell completes the text with a variable from the current shell.

Username If the text you type begins with a tilde (~), the shell
completes the text with a username. As a result, ~username
indicates the home directory of the named user.

Hostname If the text you type begins with the at symbol (@), the
shell completes the text with a hostname taken from the
/etc/hosts file.

TIP
To add hostnames from an additional file, you can set the HOSTFILE
variable to the name of that file. The file must be in the same
format as /etc/hosts.

Here are a few examples of command completion. (When you see
<Tab>, it means to press the Tab key on your keyboard.) Enter the
following:

$ echo $OS<Tab>

$ cd ~ro<Tab>

$ userm<Tab>

The first example causes $OS to expand to the $OSTYPE variable. In the
next example, ~ro expands to the root user's home directory (~root/).
Next, userm expands to the usermod command.

Pressing Tab twice offers some wonderful possibilities. Sometimes,
several possible completions for the string of characters you have
entered are available. In those cases, you can check the possible ways
that text can be expanded by pressing Tab twice at the point where you
want to do completion.

The following shows the result you would get if you checked for
possible completions on $P:

$ echo $P<Tab><Tab>

$PATH $PPID $PS1 $PS2 $PS4 $PWD

$ echo $P

In this case, there are six possible variables that begin with $P. After
possibilities are displayed, the original command line returns, ready
for you to complete it as you choose. For example, if you typed another
P and hit Tab again, the command line would be completed with $PPID
(the only unique possibility).

Command-line recall

After you type a command, the entire command line is saved in your
shell's history list. The list is stored in the current shell until you exit
the shell. After that, it is written to a history file, from which any
command can be recalled to be run again in your next session. After a
command is recalled, you can modify the command line, as described
earlier.

To view your history list, use the history command. Enter the
command without options or followed by a number to list that many of
the most recent commands. For example:

$ history 8

 382 date

 383 ls /usr/bin | sort -a | more

 384 man sort

 385 cd /usr/local/bin

 386 man more

 387 useradd -m /home/chris -u 101 chris

 388 passwd chris

 389 history 8

A number precedes each command line in the list. You can recall one
of those commands using an exclamation point (!). Keep in mind that
when an exclamation point is used, the command runs blind without
presenting an opportunity to confirm the command you're
referencing. There are several ways to run a command immediately
from this list, including the following:

!n Run command number. Replace the n with the number of the
command line and that line is run. For example, here's how to
repeat the date command shown as command number 382 in the
preceding history listing:

 $!382

 date

 Fri Jun 29 15:47:57 EDT 2019

!!—!! Run previous command. Runs the previous command line.
Here's how you would immediately run that same date command:

 $!!

 date

 Fri Jun 29 15:53:27 EDT 2019

!?string—? Run command containing string. This runs the most
recent command that contains a particular string of characters.
For example, you can run the date command again by just
searching for part of that command line as follows:

 $!?dat?

 date

 Fri Jun 29 16:04:18 EDT 2019

Instead of just running a history command line immediately, you can
recall a particular line and edit it. You can use the following keys or
key combinations to do that, as shown in Table 3.4.

Another way to work with your history list is to use the fc command.
Type fc followed by a history line number, and that command line is
opened in a text editor (vi by default, type :wq to save and exit or :q!
to just exit if you are stuck in vi). Make the changes that you want.
When you exit the editor, the command runs. You can also give a
range of line numbers (for example, fc 100 105). All of the commands
open in your text editor and then run one after the other when you exit
the editor.

TABLE 3.4 Keystrokes for Using Command History

Key(s) Function
Name

Description

Arrow
keys (↑
and ↓)

Step Press the up and down arrow keys to step
through each command line in your history list
to arrive at the one you want. (Ctrl+P and
Ctrl+N do the same functions, respectively.)

Ctrl+R Reverse
incremental
search

After you press these keys, you enter a search
string to do a reverse search. As you type the
string, a matching command line appears that
you can run or edit.

Ctrl+S Forward
incremental
search

This is the same as the preceding function but
for forward search. (It may not work in all
instances.)

Alt+P Reverse After you press these keys, you enter a string to

search do a reverse search. Type a string and press
Enter to see the most recent command line that
includes that string.

Alt+N Forward
search

This is the same as the preceding function but
for forward search. (It may not work in all
instances.)

After you close your shell, the history list is stored in the .bash_history
file in your home directory. Up to 1,000 history commands are stored
for you by default.

NOTE
Some people disable the history feature for the root user by setting
the HISTFILE shell variable to /dev/null or simply leaving HISTSIZE
blank. This prevents information about the root user's activities
from potentially being exploited. If you are an administrative user
with root privileges, you may want to consider emptying your file
upon exiting as well for the same reasons. Also, because shell
history is stored permanently when the shell exits properly, you
can prevent storing a shell's history by killing a shell. For example,
to kill a shell with process ID 1234, type kill -9 1234 from any
shell.

Connecting and Expanding Commands
A truly powerful feature of the shell is the capability to redirect the
input and output of commands to and from other commands and files.
To allow commands to be strung together, the shell uses
metacharacters. A metacharacter is a typed character that has special
meaning to the shell for connecting commands or requesting
expansion.

Metacharacters include the pipe character (|), ampersand (&),
semicolon (;), right parenthesis ()), left parenthesis ((), less than sign
(<), and greater than sign (>). The next sections describe how to use
metacharacters on the command line to change how commands
behave.

Piping between commands
The pipe (|) metacharacter connects the output from one command to
the input of another command. This lets you have one command work
on some data and then have the next command deal with the results.
Here is an example of a command line that includes pipes:

$ cat /etc/passwd | sort | less

This command lists the contents of the /etc/passwd file and pipes the
output to the sort command. The sort command takes the usernames
that begin each line of the /etc/passwd file, sorts them alphabetically,
and pipes the output to the less command (to page through the
output).

Pipes are an excellent illustration of how UNIX, the predecessor of
Linux, was created as an operating system made up of building blocks.
A standard practice in UNIX was to connect utilities in different ways
to get different jobs done. For example, before the days of graphical
word processors, users created plain-text files that included macros to
indicate formatting. To see how the document really appeared, they
would use a command such as the following:

$ gunzip < /usr/share/man/man1/grep.1.gz | nroff -c -man |

less

In this example, the contents of the grep man page (grep.1.gz) are
directed to the gunzip command to be unzipped. The output from
gunzip is piped to the nroff command to format the man page using
the manual macro (-man). To display the output, it is piped to the less
command. Because the file being displayed is in plain text, you could
have substituted any number of options to work with the text before
displaying it. You could sort the contents, change or delete some of the
content, or bring in text from other documents. The key is that,
instead of all of those features being in one program, you get results
from piping and redirecting input and output between multiple
commands.

Sequential commands
Sometimes, you may want a sequence of commands to run, with one
command completing before the next command begins. You can do
this by typing several commands on the same command line and
separating them with semicolons (;):

$ date ; troff -me verylargedocument | lpr ; date

In this example, I was formatting a huge document and wanted to
know how long it would take. The first command (date) showed the
date and time before the formatting started. The troff command
formatted the document and then piped the output to the printer.
When the formatting was finished, the date and time were printed
again (so I knew how long the troff command took to complete).

Another useful command to add to the end of a long command line is
mail. You could add the following to the end of a command line:

; mail -s "Finished the long command" chris@example.com

Then, for example, a mail message is sent to the user you choose after
the command completes.

Background commands
Some commands can take a while to complete. Sometimes, you may

not want to tie up your shell waiting for a command to finish. In those
cases, you can have the commands run in the background by using the
ampersand (&).

Text formatting commands (such as nroff and troff, described
earlier) are examples of commands that can be run in the background
to format a large document. You also might want to create your own
shell scripts that run in the background to check continuously for
certain events to occur, such as the hard disk filling up or particular
users logging in.

The following is an example of a command being run in the
background:

$ troff -me verylargedocument | lpr &

Don't close the shell until the process is completed or that kills the
process. Other ways to manage background and foreground processes
are described in Chapter 6, “Managing Running Processes.”

Expanding commands
With command substitution, you can have the output of a command
interpreted by the shell instead of by the command itself. In this way,
you can have the standard output of a command become an argument
for another command. The two forms of command substitution are
$(command) and `command` (backticks, not single quotes).

The command in this case can include options, metacharacters, and
arguments. The following is an example of using command
substitution:

$ vi $(find /home | grep xyzzy)

In this example, the command substitution is done before the vi
command is run. First, the find command starts at the /home directory
and prints out all of the files and directories below that point in the
filesystem. The output is piped to the grep command, which filters out
all files except for those that include the string xyzzy in the filename.
Finally, the vi command opens all filenames for editing (one at a time)
that include xyzzy. (If you run this and are not familiar with vi, you

can type :q! to exit the file.)

This particular example is useful if you want to edit a file for which you
know the name but not the location. As long as the string is
uncommon, you can find and open every instance of a filename
existing beneath a point you choose in the filesystem. (In other words,
don't use grep from the root filesystem or you'll match and try to edit
several thousand files.)

Expanding arithmetic expressions
Sometimes, you want to pass arithmetic results to a command. There
are two forms that you can use to expand an arithmetic expression and
pass it to the shell: $[expression] or $(expression). The following is an
example:

$ echo "I am $[2020 - 1957] years old."

I am 63 years old.

The shell interprets the arithmetic expression first (2020 - 1957) and
then passes that information to the echo command. The echo
command displays the text with the results of the arithmetic (63)
inserted.

Here's an example of the other form:

$ echo "There are $(ls | wc -w) files in this directory."

There are 14 files in this directory.

This lists the contents of the current directory (ls) and runs the word
count command to count the number of files found (wc -w). The
resulting number (14, in this case) is echoed back with the rest of the
sentence shown.

Expanding variables
Variables that store information within the shell can be expanded
using the dollar sign ($) metacharacter. When you expand an
environment variable on a command line, the value of the variable is
printed instead of the variable name itself, as follows:

$ ls -l $BASH

-rwxr-xr-x. 1 root root 1219248 Oct 12 17:59 /usr/bin/bash

Using $BASH as an argument to ls -l causes a long listing of the bash
command to be printed.

Using Shell Variables
The shell itself stores information that may be useful to the user's shell
session in what are called variables. Examples of variables include
$SHELL (which identifies the shell you are using), $PS1 (which defines
your shell prompt), and $MAIL (which identifies the location of your
user's mailbox).

You can see all variables set for your current shell by typing the set
command. A subset of your local variables is referred to as
environment variables. Environment variables are variables that are
exported to any new shells opened from the current shell. Type env to
see environment variables.

You can type echo $VALUE, where VALUE is replaced by the name of a
particular environment variable you want to list. And because there
are always multiple ways to do anything in Linux, you can also type
declare to get a list of the current environment variables and their
values along with a list of shell functions.

Besides those that you set yourself, system files set variables that store
things such as locations of configuration files, mailboxes, and path
directories. They can also store values for your shell prompts, the size
of your history list, and type of operating system. You can refer to the
value of any of those variables by preceding it with a dollar sign ($)
and placing it anywhere on a command line. For example:

$ echo $USER

chris

This command prints the value of the USER variable, which holds your
username (chris). Substitute any other value for USER to print its value
instead.

When you start a shell (by logging in via a virtual console or opening a
Terminal window), many environment variables are already set. Table
3.5 shows some variables that are either set when you use a bash shell
or that can be set by you to use with different features.

Creating and using aliases
Using the alias command, you can effectively create a shortcut to any
command and options that you want to run later. You can add and list
aliases with the alias command. Consider the following examples of
using alias from a bash shell:

$ alias p='pwd ; ls –CF'

$ alias rm='rm -i'

In the first example, the letter p is assigned to run the command pwd
and then to run ls -CF to print the current working directory and list
its contents in column form. The second example runs the rm
command with the -i option each time you type rm. (This is an alias
that is often set automatically for the root user. Instead of just
removing files, you are prompted for each individual file removal. This
prevents you from automatically removing all of the files in a directory
by mistakenly typing something such as rm *.)

TABLE 3.5 Common Shell Environment Variables

Variable Description
BASH This contains the full pathname of the bash command. This is

usually /bin/bash.
BASH_VERSION This is a number representing the current version of the

command.
EUID This is the effective user ID number of the current user. It is

assigned when the shell starts, based on the user's entry in the
/etc/passwd file.

FCEDIT If set, this variable indicates the text editor used by the
to edit history commands. If this variable isn't set, the
is used.

HISTFILE This is the location of your history file. It is typically located at
$HOME/.bash_history.

HISTFILESIZE This is the number of history entries that can be stored. After this
number is reached, the oldest commands are discarded. The default
value is 1000.

HISTCMD This returns the number of the current command in the

HOME This is your home directory. It is your current working directory
each time you log in or type the cd command with any options.

HOSTTYPE This is a value that describes the computer architecture on which
the Linux system is running. For Intel-compatible PCs, the value is
i386, i486, i586, i686, or something like i386-linux. For AMD 64-
bit machines, the value is x86_64.

MAIL This is the location of your mailbox file. The file is typically your
username in the /var/spool/mail directory.

OLDPWD This is the directory that was the working directory before you
changed to the current working directory.

OSTYPE This name identifies the current operating system. For Fedora
Linux, the OSTYPE value is either linux or linux-gnu, depending on
the type of shell you are using. (Bash can run on other operating
systems as well.)

PATH This is the colon-separated list of directories used to find
commands that you type. The default value for regular users varies
for different distributions but typically includes the following:
/bin:/usr/bin:/usr/local/bin:/usr/bin/X11:/usr/X11R6/bin:~/bin

You need to type the full path or a relative path to a command that
you want to run which is not in your PATH. For the root user, the
value also includes /sbin, /usr/sbin, and /usr/local/sbin

PPID This is the process ID of the command that started the current shell
(for example, the Terminal window containing the shell).

PROMPT_COMMAND This can be set to a command name that is run each time before
your shell prompt is displayed. Setting PROMPT_COMMAND=date
current date/time before the prompt appears.

PS1 This sets the value of your shell prompt. There are many items that
you can read into your prompt (date, time, username, hostname,
and so on). Sometimes a command requires additional prompts,
which you can set with the variables PS2, PS3, and so on.

PWD This is the directory that is assigned as your current directory. This
value changes each time you change directories using the
command.

RANDOM Accessing this variable causes a random number to be generated.
The number is between 0 and 99999.

SECONDS This is the number of seconds since the time the shell was started.
SHLVL This is the number of shell levels associated with the current shell

session. When you log in to the shell, the SHLVL is 1. Each time you
start a new bash command (by, for example, using su to become a
new user, or by simply typing bash), this number is incremented.

TMOUT This can be set to a number representing the number of seconds the
shell can be idle without receiving input. After the number of
seconds is reached, the shell exits. This security feature makes it
less likely for unattended shells to be accessed by unauthorized
people. (This must be set in the login shell for it actually to cause
the shell to log out the user.)

While you are in the shell, you can check which aliases are set by
typing the alias command. If you want to remove an alias, use
unalias. (Remember that if the alias is set in a configuration file, it
will be set again when you open another shell.)

Exiting the shell
To exit the shell when you are finished, type exit or press Ctrl+D. If
you go to the shell from a Terminal window and you are using the
original shell from that window, exiting causes the Terminal window
to close. If you are at a virtual console, the shell exits and returns you
to a login prompt.

If you have multiple shells open from the same shell session, exiting a
shell simply returns you to the shell that launched the current shell.
For example, the su command opens a shell as a new user. Exiting
from that shell simply returns you to the original shell.

Creating Your Shell Environment
You can tune your shell to help you work more efficiently. You can set
aliases to create shortcuts to your favorite command lines and
environment variables to store bits of information. By adding those
settings to shell configuration files, you can have the settings available
every time you open a shell.

Configuring your shell
Several configuration files support how your shell behaves. Some of
the files are executed for every user and every shell, whereas others are
specific to the user who creates the configuration file. Table 3.6 shows
the files that are of interest to anyone using the bash shell in Linux.
(Notice the use of ~ in the filenames to indicate that the file is located
in each user's home directory.)

To change the /etc/profile or /etc/bashrc files, you must be the root
user. It is better to create an /etc/profile.d/custom.sh file to add
system-wide settings instead of editing those files directly, however.
Users can change the information in the $HOME/.bash_profile,
$HOME/.bashrc, and $HOME/.bash_logout files in their own home
directories.

TABLE 3.6 Bash Configuration Files

File Description
/etc/profile This sets up user environment information for every

user. It is executed when you first log in. This file
provides values for your path in addition to setting
environment variables for such things as the
location of your mailbox and the size of your history
files. Finally, /etc/profile gathers shell settings
from configuration files in the /etc/profile.d
directory.

/etc/bashrc This executes for every user who runs the bash shell
each time a bash shell is opened. It sets the default

prompt and may add one or more aliases. Values in
this file can be overridden by information in each
user's ~/.bashrc file.

~/.bash_profile This is used by each user to enter information that is
specific to his or her use of the shell. It is executed
only once—when the user logs in. By default, it sets a
few environment variables and executes the user's
.bashrc file. This is a good place to add environment
variables because, once set, they are inherited by
future shells.

~/.bashrc This contains the information that is specific to your
bash shells. It is read when you log in and also each
time you open a new bash shell. This is the best
location to add aliases so that your shell picks them
up.

~/.bash_logout This executes each time you log out (exit the last
bash shell).

Until you learn to use the vi editor, described in Chapter 5, “Working
with Text Files,” you can use a simple editor called nano to edit plain-
text files. For example, enter the following to edit and add stuff to your
$HOME/.bashrc file:

$ nano $HOME/.bashrc

With the file open in nano, move the cursor down to the bottom of the
file (using the down arrow key). Type the line you want (for example,
you could type alias d='date +%D'). To save the file, press Ctrl+O (the
letter O); to quit, press Ctrl+X. The next time you log in or open a new
shell, you can use the new alias (in this case, just type d). To have the
new information you just added to the file available from the current
shell, type the following:

$ source $HOME/.bashrc

$ d

06/29/19

The following sections provide ideas about items to add to your shell
configuration files. In most cases, you add these values to the .bashrc

file in your home directory. However, if you administer a system, you
may want to set some of these values as defaults for all your Linux
system's users.

Setting your prompt
Your prompt consists of a set of characters that appear each time the
shell is ready to accept a command. The PS1 environment variable sets
what the prompt contains and is what you will interact with most of
the time. If your shell requires additional input, it uses the values of
PS2, PS3, and PS4.

When your Linux system is installed, often a prompt is set to contain
more than just a dollar sign or pound sign. For example, in Fedora or
Red Hat Enterprise Linux, your prompt is set to include the following
information: your username, your hostname, and the base name of
your current working directory. That information is surrounded by
brackets and followed by a dollar sign (for regular users) or a pound
sign (for the root user). The following is an example of that prompt:

[chris@myhost bin]$

If you change directories, the bin name would change to the name of
the new directory. Likewise, if you were to log in as a different user or
to a different host, that information would change.

You can use several special characters (indicated by adding a
backslash to a variety of letters) to include different information in
your prompt. Special characters can be used to output your Terminal
number, the date, and the time as well as other pieces of information.
Table 3.7 provides some examples (you can find more on the bash man
page).

TABLE 3.7 Characters to Add Information to Bash Prompt

Special
Character

Description

\! This shows the current command history number. This
includes all previous commands stored for your
username.

\# This shows the command number of the current
command. This includes only the commands for the
active shell.

\$ This shows the user prompt ($) or root prompt (#),
depending on which type of user you are.

\W This shows only the current working directory base
name. For example, if the current working directory was
/var/spool/mail, this value simply appears as mail.

\[This precedes a sequence of nonprinting characters. This
can be used to add a Terminal control sequence into the
prompt for such things as changing colors, adding blink
effects, or making characters bold. (Your Terminal
determines the exact sequences available.)

\] This follows a sequence of nonprinting characters.
\\ This shows a backslash.
\d This displays the day name, month, and day number of

the current date, for example, Sat Jan 23.
\h This shows the hostname of the computer running the

shell.
\n This causes a newline to occur.
\nnn This shows the character that relates to the octal number

replacing nnn.
\s This displays the current shell name. For the bash shell,

the value would be bash.
\t This prints the current time in hours, minutes, and

seconds, for example, 10:14:39.
\u This prints your current username.
\w This displays the full path to the current working

directory.

TIP
If you are setting your prompt temporarily by typing at the shell,
you should put the value of PS1 in quotes. For example, you could
type export PS1="[\t \w]\$ " to see a prompt that looks like this:

 [20:26:32 /var/spool]$.

To make a change to your prompt permanent, add the value of PS1 to
your .bashrc file in your home directory (assuming that you are using
the bash shell). There may already be a PS1 value in that file, which you
can modify. Refer to the Bash Prompt HOWTO
(http://www.tldp.org/HOWTO/Bash-Prompt-HOWTO) for information on
changing colors, commands, and other features of your bash shell
prompt.

Adding environment variables
You might want to consider adding a few environment variables to
your .bashrc file. These can help make working with the shell more
efficient and effective:

TMOUT This sets how long the shell can be inactive before bash
automatically exits. The value is the number of seconds for which
the shell has not received input. This can be a nice security
feature, in case you leave your desk while you are still logged in to
Linux. To prevent being logged off while you are working, you
may want to set the value to something like TMOUT=1800 (to allow
30 minutes of idle time). You can use any Terminal session to
close the current shell after a set number of seconds, for example,
TMOUT=30.

PATH As described earlier, the PATH variable sets the directories
that are searched for the commands that you use. If you often use
directories of commands that are not in your path, you can
permanently add them. To do this, add a PATH variable to your
.bashrc file. For example, to add a directory called /getstuff/bin,

http://www.tldp.org/HOWTO/Bash-Prompt-HOWTO

add the following:

 PATH=$PATH:/getstuff/bin ; export PATH

This example first reads all of the current path directories into
the new PATH ($PATH), adds the /getstuff/bin directory, and
then exports the new PATH.

CAUTION
Some people add the current directory to their PATH by
adding a directory identified simply as a dot (.), as follows:

 PATH=.:$PATH ; export PATH

This enables you to run commands in your current directory
before evaluating any other command in the path (which
people may be used to if they have used DOS). However, the
security risk with this procedure is that you could be in a
directory that contains a command that you don't intend to
run from that directory. For example, a malicious person could
put an ls command in a directory that, instead of listing the
content of your directory, does something devious. Because of
this, the practice of adding the dot to your path is highly
discouraged.

WHATEVER You can create your own environment variables to
provide shortcuts in your work. Choose any name that is not being
used and assign a useful value to it. For example, if you do lots of
work with files in the /work/time/files/info/memos directory, you
could set the following variable:

 M=/work/time/files/info/memos ; export M

You could make that your current directory by typing cd $M. You
could run a program from that directory called hotdog by typing
$M/hotdog. You could edit a file from there called bun by typing vi
$M/bun.

Getting Information about Commands
When you first start using the shell, it can be intimidating. All that you
see is a prompt. How do you know which commands are available,
which options they use, or how to use advanced features? Fortunately,
lots of help is available. Here are some places that you can look to
supplement what you learn in this chapter:

Check the PATH. Type echo $PATH. You see a list of the
directories containing commands that are immediately accessible
to you. Listing the contents of those directories displays most
standard Linux commands. For example:

$ ls /bin

arch dd fusermount loadkeys mv

awk df gawk login nano

basename dmesg gettext ls netstat

bash dnsdomainname grep lsblk nice

cat domainname gtar lscgroup nisdomainname

chgrp echo gunzip lssubsys ping

chmod ed gzip mail ping6

chown egrep hostname mailx ps

cp env ipcalc mkdir pwd

cpio ex kbd_mode mknod readlink

csh false keyctl mktemp red

cut fgrep kill more redhat_lsb_init

dash find link mount rm

date findmnt ln mountpoint rmdir

Use the help command. Some commands are built into the
shell, so they do not appear in a directory. The help command lists
those commands and shows options available with each of them.
(Enter help | less to page through the list.) For help with a
particular built-in command, enter help command, replacing
command with the name that interests you. The help command
works with the bash shell only.

Use --help with the command. Many commands include a --
help option that you can use to get information about how the
command is used. For example, if you enter date --help | less,
the output shows not only options, but also time formats that you

can use with the date command. Other commands simply use a –h
option, like fdisk -h.

Use the info command. The info command is another tool for
displaying information about commands from the shell. The info
command can move among a hierarchy of nodes to find
information about commands and other items. Not all commands
have information available in the info database, but sometimes
more information can be found there than on a man page.

Use the man command. To learn more about a particular
command, enter man command. (Replace command with the command
name you want.) A description of the command and its options
appears on the screen.

Man pages are the most common means of getting information about
commands as well as other basic components of a Linux system. Each
man page falls into one of the categories listed in Table 3.8. As a
regular user, you will be most interested in man pages in section 1. As
a system administrator, you will also be interested in sections 5 and 8,
and occasionally section 4. Programmers will be interested in section 2
and 3 man pages.

TABLE 3.8 Manual Page Sections

Section
Number

Section
Name

Description

1 User
Commands

Commands that can be run from the shell
by a regular user (typically no
administrative privilege is needed)

2 System Calls Programming functions used within an
application to make calls to the kernel

3 C Library
Functions

Programming functions that provide
interfaces to specific programming
libraries (such as those for certain
graphical interfaces or other libraries that
operate in user space)

4 Devices and Filesystem nodes that represent hardware

Special Files devices (such as Terminals or CD drives)
or software devices (such as random
number generators)

5 File Formats
and
Conventions

Types of files (such as a graphics or word
processing file) or specific configuration
files (such as the passwd or group file)

6 Games Games available on the system
7 Miscellaneous Overviews of topics such as protocols,

filesystems, character set standards, and
so on

8 System
Administration
Tools and
Daemons

Commands that require root or other
administrative privileges to use

Options to the man command enable you to search the man page
database or display man pages on the screen. Here are some examples
of man commands and options:

$ man -k passwd

…

passwd (1) - update user's authentication

tokens

passwd (5) - password file

$ man passwd

$ man 5 passwd

Using the -k option, you can search the name and summary sections of
all man pages installed on the system. There are about a dozen man
pages that include “passwd” in the name or description of a command.

NOTE
If man -k displays no output, it may be that the man page database
has not been initialized. Type mandb as root to initialize the man
page database.

Let's say that the two man pages in which I am interested are the
passwd command (in section 1 of the man pages) and the passwd file (in
section 5) man pages. Because just typing man passwd displays the
section 1 page, I need to request explicitly the section 5 man page if I
want to see that instead (man 5 passwd).

While you are displaying a man page, you can view different parts of
the file using Page Down and Page Up keys (to move a page at a time).
Use the Enter key or up and down arrows to move a line at a time.
Press a forward slash (/) and type a term to search the document for
that term. Press n to repeat the search forward or N to repeat the
search backward. To quit the man page, type q.

Summary
To become an expert Linux user, you must be able to use the shell to
type commands. This chapter focuses on the bash shell, which is the
one that is most commonly used with Linux systems. You learned how
commands are structured and how many special features, such as
variables, command completion, and aliases, are used.

The next chapter describes how to move around the Linux filesystem
from the shell command line.

Exercises
Use these exercises to test your knowledge of using the shell. These
tasks assume that you are running a Fedora or Red Hat Enterprise
Linux system (although some tasks work on other Linux systems as
well). If you are stuck, solutions to the tasks are shown in Appendix B
(although in Linux, there are often multiple ways to complete a task).

1. From your desktop, switch to the third virtual console and log in
to your user account. Run a few commands. Then exit the shell
and return to the desktop.

2. Open a Terminal window and change the font color to red and the
background to yellow.

3. Find the location of the mount command and the tracepath man
page.

4. Type the following three commands, and then recall and change
those commands as described:

 $ cat /etc/passwd

 $ ls $HOME

 $ date

a. Use the command-line recall feature to recall the cat
command and change /etc/passwd to /etc/group.

b. Recall the ls command, determine how to list files by time
(using the man page), and add that option to the ls $HOME
command line.

c. Add format indicators to the date command to display the
date output as month/day/year.

5. Run the following command, typing as few characters as possible
(using tab completion):

 basename /usr/share/doc/

6. Use the cat command to list the contents of the /etc/services file
and pipe those contents to the less command so that you can

page through it (press q to quit when you are finished).

7. Run the date command in such a way that the output from that
command produces the current day, month, date, and year. Have
that read into another command line, resulting in text that
appears like the following (your date, of course, will be different):
Today is Thursday, December 19, 2019.

8. Using variables, find out what your hostname, username, shell,
and home directories are currently set to.

9. Create an alias called mypass that displays the contents of the
/etc/passwd file on your screen in such a way that it is available
every time you log in or open a new shell from your user account.

10. Display the man page for the mount system call.

CHAPTER 4
Moving Around the Filesystem

IN THIS CHAPTER
Learning about the Linux filesystem

Listing file and directory attributes

Making files and directories

Listing and changing permission and ownership

Making copies and moving files

The Linux filesystem is the structure in which all of the information on
your computer is stored. In fact, one of the defining properties of the
UNIX systems on which Linux is based is that nearly everything you
need to identify on your system (data, commands, symbolic links,
devices, and directories) is represented by items in the filesystems.
Knowing where things are and understanding how to get around the
filesystem from the shell are critical skills in Linux.

In Linux, files are organized within a hierarchy of directories. Each
directory can contain files as well as other directories. You can refer to
any file or directory using either a full path (for example,
/home/joe/myfile.txt) or a relative path (for example, if /home/joe
were your current directory, you could simply refer to the file as
myfile.txt).

If you were to map out the files and directories in Linux, it would look
like an upside-down tree. At the top is the root directory (not to be
confused with the root user), which is represented by a single slash (/).
Below that is a set of common directories in the Linux system, such as
bin, dev, home, lib, and tmp, to name a few. Each of those directories, as
well as directories added to the root directory, can contain
subdirectories.

Figure 4.1 illustrates how the Linux filesystem is organized as a
hierarchy. To demonstrate how directories are connected, the figure
shows a /home directory that contains a subdirectory for the user joe.
Within the joe directory are Desktop, Documents, and other
subdirectories. To refer to a file called memo1.doc in the memos directory,
you can type the full path of /home/joe/Documents/memos/memo1.doc. If
your current directory is /home/joe/, refer to the file as
Documents/memos/memo1.doc.

FIGURE 4.1 The Linux filesystem is organized as a hierarchy of
directories.

Some of these Linux directories may interest you:

/bin Contains common Linux user commands, such as ls, sort,
date, and chmod.

/boot Has the bootable Linux kernel, initial RAM disk, and boot
loader configuration files (GRUB).

/dev Contains files representing access points to devices on your
systems. These include terminal devices (tty*), hard disks
(hd* or sd*), RAM (ram*), and CD-ROM (cd*). Users can
access these devices directly through these device files;

however, applications often hide the actual device names to
end users.

/etc Contains administrative configuration files. Most of these files
are plain-text files that, given the user has proper permission,
can be edited with any text editor.

/home Contains directories assigned to each regular user with a login
account. (The root user is an exception, using /root as his or
her home directory.)

/media Provides a standard location for automounting devices
(removable media in particular). If the medium has a volume
name, that name is typically used as the mount point. For
example, a USB drive with a volume name of myusb would be
mounted on /media/myusb.

/lib Contains shared libraries needed by applications in /bin and
/sbin to boot the system.

/mnt A common mount point for many devices before it was
supplanted by the standard /media directory. Some bootable
Linux systems still use this directory to mount hard disk
partitions and remote filesystems. Many people still use this
directory to temporarily mount local or remote filesystems,
which are not mounted permanently.

/misc A directory sometimes used to automount filesystems upon
request.

/opt Directory structure available to store add-on application
software.

/proc Contains information about system resources.
/root Represents the root user's home directory. The home

directory for root does not reside beneath /home for security
reasons.

/sbin Contains administrative commands and daemon processes.
/sys Contains parameters for such things as tuning block

storage and managing cgroups.

/tmp Contains temporary files used by applications.

/usr Contains user documentation, games, graphical files (X11),
libraries (lib), and a variety of other commands and files that
are not needed during the boot process. The /usr directory is
meant for files that don't change after installation (in theory,
/usr could be mounted read-only).

/var Contains directories of data used by various applications. In
particular, this is where you would place files that you share as
an FTP server (/var/ftp) or a web server (/var/www). It also
contains all system log files (/var/log) and spool files in
/var/spool (such as mail, cups, and news). The /var directory
contains directories and files that are meant to change often.
On server computers, it is common to create the /var directory
as a separate filesystem, using a filesystem type that can be
easily expanded.

The filesystems in the DOS or Microsoft Windows operating systems
differ from Linux's file structure, as the sidebar “Linux Filesystems
versus Windows-Based Filesystems” explains.

Linux Filesystems versus Windows-Based
Filesystems
Although similar in many ways, the Linux filesystem has some
striking differences when compared to filesystems used in MS-DOS
and Windows operating systems. Here are a few of these
differences:

In MS-DOS and Windows filesystems, drive letters represent
different storage devices. In Linux, all storage devices are
connected to the filesystem hierarchy. So, the fact that all of
/usr may be on a separate hard disk or that /mnt/remote1 is a
filesystem from another computer is invisible to the user.

Slashes, rather than backslashes, are used to separate
directory names in Linux. So C:\home\joe in a Microsoft
system is /home/joe in a Linux system.

Filenames almost always have suffixes in DOS (such as .txt
for text files or .docx for word-processing files). Although at
times you can use that convention in Linux, three-character
suffixes have no required meaning in Linux. They can be
useful for identifying a file type. Many Linux applications and
desktop environments use file suffixes to determine the
contents of a file. In Linux, however, DOS command
extensions such as .com, .exe, and .bat don't necessarily
signify an executable. (Permission flags make Linux files
executable.)

Every file and directory in a Linux system has permissions and
ownership associated with it. Security varies among Microsoft
systems. Because DOS and Microsoft Windows began as
single-user systems, file ownership was not built into those
systems when they were designed. Later releases added
features such as file and folder attributes to address this
problem.

Using Basic Filesystem Commands
I want to introduce you to a few simple commands for getting around
the filesystem to start out. If you want to follow along, log in and open
a shell. When you log in to a Linux system and open a shell, you are
placed in your home directory. As a Linux user, most of the files you
save and work with will probably be in that directory or in
subdirectories that you create. Table 4.1 shows commands to create
and use files and directories.

TABLE 4.1 Commands to Create and Use Files

Command Result
cd Changes to another directory
pwd Prints the name of the current (or present) working

directory
mkdir Creates a directory
chmod Changes the permission on a file or directory
ls Lists the contents of a directory

One of the most basic commands that you use from the shell is cd. The
cd command can be used with no options (to take you to your home
directory) or with full or relative paths. Consider the following
commands:

$ cd /usr/share/

$ pwd

/usr/share

$ cd doc

$ pwd

/usr/share/doc

$ cd

$ pwd

/home/chris

The /usr/share option represents the absolute path to a directory on
the system. Because it begins with a slash (/), this path tells the shell
to start at the root of the filesystem and take you to the share directory

that exists in the usr directory. The doc option to the cd command
looks for a directory called doc that is relative to the current directory.
So that command made /usr/share/doc your current directory.

After that, by typing cd alone, you are returned to your home directory.
If you ever wonder where you are in the filesystem, the pwd command
can help you. Here are a few other interesting cd command options:

$ cd ~

$ pwd

/home/chris

$ cd ~/Music

$ pwd

/home/chris/Music

$ cd ../../../usr

$ pwd

/usr

The tilde (~) represents your home directory. So cd ~ takes you there.
You can use the tilde to refer to directories relative to your home
directory as well, such as /home/chris/Music with ~/Music. Typing a
name as an option takes you to a directory below the current directory,
but you can use two dots (..) to go to a directory above the current
directory. The example shown takes you up three directory levels (to
/), and then takes you into the /usr directory.

The following steps lead you through the process of creating
directories within your home directory and moving among your
directories, with a mention of setting appropriate file permissions:

1. Go to your home directory. To do this, simply type cd in a shell
and press Enter. (For other ways of referring to your home
directory, see the sidebar “Identifying Directories.”)

2. To make sure that you're in your home directory, type pwd. When I
do this, I get the following response (yours will reflect your home
directory):

$ pwd

/home/joe

3. Create a new directory called test in your home directory, as
follows:

$ mkdir test

4. Check the permissions of the directory:

$ ls -ld test

drwxr-xr-x 2 joe sales 1024 Jan 24 12:17 test

This listing shows that test is a directory (d). The d is followed by
the permissions (rwxr-xr-x), which are explained later in the
section “Understanding File Permissions and Ownership.” The
rest of the information indicates the owner (joe), the group
(sales), and the date that the files in the directory were most
recently modified (Jan 24 at 12:17 p.m.).

4. NOTE
When you add a new user in Fedora and Red Hat Enterprise
Linux, the user is assigned to a group of the same name by
default. For example, in the preceding text, the user joe would
be assigned to the group joe. This approach to assigning
groups is referred to as the user private group scheme.

For now, enter the following:

 $ chmod 700 test

This step changes the permissions of the directory to give you
complete access and everyone else no access at all. (The new
permissions should read rwx------.)

5. Make the test directory your current directory as follows:

$ cd test

$ pwd

/home/joe/test

If you followed along, at this point a subdirectory of your home
directory called test is your current working directory. You can create
files and directories in the test directory along with the descriptions in
the rest of this chapter.

Using Metacharacters and Operators
Whether you are listing, moving, copying, removing, or otherwise
acting on files in your Linux system, certain special characters,
referred to as metacharacters and operators, help you to work with
files more efficiently. Metacharacters can help you match one or more
files without completely typing each filename. Operators enable you to
direct information from one command or file to another command or
file.

Using file-matching metacharacters
To save you some keystrokes and enable you to refer easily to a group
of files, the bash shell lets you use metacharacters. Anytime you need
to refer to a file or directory, such as to list, open, or remove it, you can
use metacharacters to match the files you want. Here are some useful
metacharacters for matching filenames:

* Matches any number of characters.
? Matches any one character.
[…] Matches any one of the characters between the brackets, which

can include a hyphen-separated range of letters or numbers.

Try out some of these file-matching metacharacters by first going to an
empty directory (such as the test directory described in the previous
section) and creating some empty files:

$ touch apple banana grape grapefruit watermelon

The touch command creates empty files. The commands that follow
show you how to use shell metacharacters with the ls command to
match filenames. Try the following commands to see whether you get
the same responses:

$ ls a*

apple

$ ls g*

grape grapefruit

$ ls g*t

grapefruit

$ ls *e*

apple grape grapefruit watermelon

$ ls *n*

banana watermelon

The first example matches any file that begins with a (apple). The next
example matches any files that begin with g (grape, grapefruit). Next,
files beginning with g and ending in t are matched (grapefruit). Next,
any file that contains e in the name is matched (apple, grape,
grapefruit, watermelon). Finally, any file that contains n is matched
(banana, watermelon).

Here are a few examples of pattern matching with the question mark
(?):

$ ls ????e

apple grape

$ ls g???e*

grape grapefruit

The first example matches any five-character file that ends in e (apple,
grape). The second matches any file that begins with g and has e as its
fifth character (grape, grapefruit).

The following examples use braces to do pattern matching:

$ ls [abw]*

apple banana watermelon

$ ls [agw]*[ne]

apple grape watermelon

In the first example, any file beginning with a, b, or w is matched. In
the second, any file that begins with a, g, or w and also ends with either
n or e is matched. You can also include ranges within brackets. For
example:

$ ls [a-g]*

apple banana grape grapefruit

Here, any filenames beginning with a letter from a through g are
matched.

Using file-redirection metacharacters

Commands receive data from standard input and send it to standard
output. Using pipes (described earlier), you can direct standard output
from one command to the standard input of another. With files, you
can use less than (<) and greater than (>) signs to direct data to and
from files. Here are the file-redirection characters:

< Directs the contents of a file to the command. In most cases, this is
the default action expected by the command and the use of the
character is optional; using less bigfile is the same as less <
bigfile.

> Directs the standard output of a command to a file. If the file
exists, the content of that file is overwritten.

2> Directs standard error (error messages) to the file.
&> Directs both standard output and standard error to the file.
>> Directs the output of a command to a file, adding the output to the

end of the existing file.

The following are some examples of command lines where information
is directed to and from files:

$ mail root < ~/.bashrc

$ man chmod | col -b > /tmp/chmod

$ echo "I finished the project on $(date)" >> ~/projects

In the first example, the content of the .bashrc file in the home
directory is sent in a mail message to the computer's root user. The
second command line formats the chmod man page (using the man
command), removes extra back spaces (col -b), and sends the output
to the file /tmp/chmod (erasing the previous /tmp/chmod file, if it exists).
The final command results in the following text being added to the
user's project file:

I finished the project on Sat Jun 15 13:46:49 EDT 2019

Another type of redirection, referred to as here text (also called here
document), enables you to type text that can be used as standard input
for a command. Here documents involve entering two less-than
characters (<<) after a command, followed by a word. All typing
following that word is taken as user input until the word is repeated on

a line by itself. Here is an example:

$ mail root cnegus rjones bdecker << thetext

> I want to tell everyone that there will be a 10 a.m.

> meeting in conference room B. Everyone should attend.

>

> -- James

> thetext

$

This example sends a mail message to root, cnegus, rjones, and
bdecker usernames. The text entered between <<thetext and thetext
becomes the content of the message. A common use of here text is to
use it with a text editor to create or add to a file from within a script:

/bin/ed /etc/resolv.conf <<resendit

a

nameserver 100.100.100.100

.

w

q

resendit

With these lines added to a script run by the root user, the ed text
editor adds the IP address of a DNS server to the /etc/resolv.conf
file.

Using brace expansion characters
By using curly braces ({}), you can expand out a set of characters
across filenames, directory names, or other arguments to which you
give commands. For example, if you want to create a set of files such as
memo1 through memo5, you can do that as follows:

$ touch memo{1,2,3,4,5}

$ ls

memo1 memo2 memo3 memo4 memo5

The items that are expanded don't have to be numbers or even single
digits. For example, you could use ranges of numbers or digits. You
could also use any string of characters, as long as you separate them
with commas. Here are some examples:

$ touch {John,Bill,Sally}-{Breakfast,Lunch,Dinner}

$ ls

Bill-Breakfast Bill-Lunch John-Dinner Sally-Breakfast Sally-

Lunch

Bill-Dinner John-Breakfast John-Lunch Sally-Dinner

$ rm -f {John,Bill,Sally}-{Breakfast,Lunch,Dinner}

$ touch {a..f}{1..5}

$ ls

a1 a3 a5 b2 b4 c1 c3 c5 d2 d4 e1 e3 e5 f2 f4

a2 a4 b1 b3 b5 c2 c4 d1 d3 d5 e2 e4 f1 f3 f5

In the first example, the use of two sets of braces means John, Bill, and
Sally each have filenames associated with Breakfast, Lunch, and
Dinner. If I had made a mistake, I could easily recall the command and
change touch to rm -f to delete all of the files. In the next example, the
use of two dots between letters a and f and numbers 1 and 5 specifies
the ranges to be used. Note the files that were created from those few
characters.

Listing Files and Directories
The ls command is the most common command used to list
information about files and directories. Many options available with
the ls command allow you to gather different sets of files and
directories as well as to view different kinds of information about
them.

By default, when you type the ls command, the output shows you all
non-hidden files and directories contained in the current directory.
When you type ls, however, many Linux systems (including Fedora
and RHEL) assign an alias ls to add options. To see if ls is aliased,
enter the following:

$ alias ls

alias ls='ls --color=auto'

The --color=auto option causes different types of files and directories
to be displayed in different colors. So, return to the $HOME/test
directory created earlier in the chapter, add a couple of different types
of files, and then see what they look like with the ls command.

$ cd $HOME/test

$ touch scriptx.sh apple

$ chmod 755 scriptx.sh

$ mkdir Stuff

$ ln -s apple pointer_to_apple

$ ls

apple pointer_to_apple scriptx.sh Stuff

Although you can't see it in the preceding code example, the directory
Stuff shows up in blue, pointer_to_apple (a symbolic link) appears as
aqua, and scriptx.sh (which is an executable file) appears in green. All
other regular files show up in black. Typing ls -l to see a long listing
of those files can make these different types of files clearer still:

$ ls -l

total 4

-rw-rw-r--. 1 joe joe 0 Dec 18 13:38 apple

lrwxrwxrwx. 1 joe joe 5 Dec 18 13:46 pointer_to_apple ->

apple

-rwxr-xr-x. 1 joe joe 0 Dec 18 13:37 scriptx.sh

drwxrwxr-x. 2 joe joe 4096 Dec 18 13:38 Stuff

As you look at the long listing, notice that the first character of each
line shows the type of file. A hyphen (-) indicates a regular file, d
indicates a directory, and l (lowercase L) indicates a symbolic link. An
executable file (a script or binary file that runs as a command) has
execute bits turned on (x). See more on execute bits in the upcoming
section “Understanding File Permissions and Ownership.”

You should become familiar with the contents of your home directory
next. Use the -l and -a options to ls.

$ ls -la /home/joe

total 158

drwxrwxrwx 2 joe sales 4096 May 12 13:55 .

drwxr-xr-x 3 root root 4096 May 10 01:49 ..

-rw------- 1 joe sales 2204 May 18 21:30

.bash_history

-rw-r--r-- 1 joe sales 24 May 10 01:50

.bash_logout

-rw-r--r-- 1 joe sales 230 May 10 01:50

.bash_profile

-rw-r--r-- 1 joe sales 124 May 10 01:50 .bashrc

drw-r--r-- 1 joe sales 4096 May 10 01:50 .kde

-rw-rw-r-- 1 joe sales 149872 May 11 22:49 letter

^ ^ ^ ^ ^ ^ ^

col 1 col 2 col 3 col 4 col 5 col 6 col 7

Displaying a long list (-l option) of the contents of your home
directory shows you more about file sizes and directories. The total
line shows the total amount of disk space used by the files in the list
(158 kilobytes in this example). Adding the all files option (-a) displays
files that begin with a dot (.). Directories such as the current directory
(.) and the parent directory (..)—the directory above the current
directory—are noted as directories by the letter d at the beginning of
each entry. Each directory begins with a d and each file begins with a
dash (-).

The file and directory names are shown in column 7. In this example, a
dot (.) represents /home/joe and two dots (..) represent /home—the
parent directory of /joe. Most of the files in this example are dot (.)

files that are used to store GUI properties (.kde directory) or shell
properties (.bash files). The only non-dot file in this list is the one
named letter. Column 3 shows the directory or file owner. The /home
directory is owned by root, and everything else is owned by the user
joe, who belongs to the sales group (groups are listed in column 4).

In addition to the d or -, column 1 on each line contains the
permissions set for that file or directory. Other information in the
listing includes the number of hard links to the item (column 2), the
size of each file in bytes (column 5), and the date and time each file
was most recently modified (column 6).

Here are a few other facts about file and directory listings:

The number of characters shown for a directory (4096 bytes in
these examples) reflects the size of the file containing information
about the directory. Although this number can grow above 4096
bytes for a directory that contains lots of files, this number doesn't
reflect the size of files contained in that directory.

The format of the time and date column can vary. Instead of
displaying “May 12,” the date might be displayed as “2019-05-12,”
depending upon the distribution and the language setting (LANG
variable).

On occasion, instead of seeing the execute bit (x) set on an
executable file, you may see an s in that spot instead. With an s
appearing within either the owner (-rwsr-xr-x) or group (-rwxr-
sr-x) permissions, or both (-rwsr-sr-x), the application can be
run by any user, but ownership of the running process is assigned
to the application's user/group instead of that of the user
launching the command. This is referred to as a set UID or set
GID program, respectively. For example, the mount command has
permissions set as -rwsr-xr-x. This allows any user to run mount to
list mounted filesystems (although you still have to be root to use
mount to actually mount filesystems from the command line, in
most cases).

If a t appears at the end of a directory, it indicates that the sticky
bit is set for that directory (for example, drwxrwxr-t). By setting

the sticky bit on a directory, the directory's owner can allow other
users and groups to add files to the directory but prevent users
from deleting each other's files in that directory. With a set GID
assigned to a directory, any files created in that directory are
assigned the same group as the directory's group. (If you see a
capital S or T instead of the execute bits on a directory, it means
that the set GID or sticky bit permission, respectively, was set, but
for some reason the execute bit was not also turned on.)

If you see a plus sign at the end of the permission bits (for
example, -rw-rw-r--+), it means that extended attributes (+), such
as Access Control Lists (ACLs), are set on the file. A dot at the end
(.) indicates that SELinux is set on the file.

Identifying Directories
When you need to identify your home directory on a shell
command line, you can use the following:

$HOME This environment variable stores your home directory
name.

~ The tilde (~) represents your home directory on the
command line.

You can also use the tilde to identify someone else's home
directory. For example, ~joe would be expanded to the joe home
directory (probably /home/joe). So, if I wanted to go to the
directory /home/joe/test, I could enter cd ~joe/test to get there.

Other special ways of identifying directories in the shell include the
following:

. A single dot (.) refers to the current directory.

.. Two dots (..) refer to a directory directly above the
current directory.

$PWD This environment variable refers to the current working
directory.

$OLDPWD This environment variable refers to the previous working
directory before you changed to the current one.
(Entering cd – returns you to the directory represented by
$OLDPWD.)

As I mentioned earlier, there are many useful options for the ls
command. Return to the $HOME/test directory in which you've been
working. Here are some examples of ls options. Don't worry if the
output doesn't exactly match what is in your directory at this point.

Any file or directory beginning with a dot (.) is considered hidden and
is not displayed by default with ls. These dot files are typically

configuration files or directories that need to be in your home
directory but don't need to be seen in your daily work. The -a lets you
see those files.

The -t option displays files in the order in which they were most
recently modified. With the -F option, a backslash (/) appears at the
end of directory names, an asterisk (*) is added to executable files, and
an at sign (@) is shown next to symbolic links.

To show hidden and non-hidden files:

$ ls -a

. apple docs grapefruit pointer_to_apple .stuff watermelon

.. banana grape .hiddendir script.sh .tmpfile

To list all files by time most recently modified:

$ ls -at

.tmpfile .hiddendir .. docs watermelon banana script.sh

. .stuff pointer_to_apple grapefruit apple grape

To list files and append file-type indicators:

$ ls -F

apple banana docs/ grape grapefruit pointer_to_apple@

script.sh* watermelon

To avoid displaying certain files or directories when you use ls, use the
--hide= option. In the next set of examples, any file beginning with g
does not appear in the output. Using a -d option on a directory shows
information about that directory instead of showing the files and
directories the directory contains. The -R option lists all files in the
current directory as well as any files or directories that are associated
with the original directory. The -S option lists files by size.

To exclude any files beginning with the letter g in the list:

$ ls --hide=g*

apple banana docs pointer_to_apple script.sh watermelon

To list info about a directory instead of the files it contains:

$ ls -ld $HOME/test/

drwxrwxr-x. 4 joe joe 4096 Dec 18 22:00 /home/joe/test/

To create multiple directory layers (-p is needed):

$ mkdir -p $HOME/test/documents/memos/

To list all files and directories recursively from current directory down:

$ ls -R

...

To list files by size:

$ ls -S

...

Understanding File Permissions and
Ownership
After you've worked with Linux for a while, you are almost sure to get
a Permission denied message. Permissions associated with files and
directories in Linux were designed to keep users from accessing other
users' private files and to protect important system files.

The nine bits assigned to each file for permissions define the access
that you and others have to your file. Permission bits for a regular file
appear as -rwxrwxrwx. Those bits are used to define who can read,
write, or execute the file.

NOTE
For a regular file, a dash appears in front of the nine-bit
permissions indicator. Instead of a dash, you might see a d (for a
directory), l (for a symbolic link), b (for a block device), c (for a
character device), s (for a socket), or p (for a named pipe).

Of the nine-bit permissions, the first three bits apply to the owner's
permission, the next three apply to the group assigned to the file, and
the last three apply to all others. The r stands for read, the w stands for
write, and the x stands for execute permissions. If a dash appears
instead of the letter, it means that permission is turned off for that
associated read, write, or execute bit.

Because files and directories are different types of elements, read,
write, and execute permissions on files and directories mean different
things. Table 4.2 explains what you can do with each of them.

TABLE 4.2 Setting Read, Write, and Execute Permissions

Permission File Directory
Read View

what's in
the file.

See what files and subdirectories it contains.

Write Change
the file's
content,
rename it,
or delete
it.

Add files or subdirectories to the directory.
Remove files or directories from the
directory.

Execute Run the
file as a
program.

Change to the directory as the current
directory, search through the directory, or
execute a program from the directory.
Access file metadata (file size, time stamps,
and so on) of files in that directory.

As noted earlier, you can see the permission for any file or directory by
typing the ls -ld command. The named file or directory appears as
those shown in this example:

$ ls -ld ch3 test

-rw-rw-r-- 1 joe sales 4983 Jan 18 22:13 ch3

drwxr-xr-x 2 joe sales 1024 Jan 24 13:47 test

The first line shows that the ch3 file has read and write permission for
the owner and the group. All other users have read permission, which
means that they can view the file but cannot change its contents or
remove it. The second line shows the test directory (indicated by the
letter d before the permission bits). The owner has read, write, and
execute permissions while the group and other users have only read
and execute permissions. As a result, the owner can add, change, or
delete files in that directory, and everyone else can only read the
contents, change to that directory, and list the contents of the
directory. (If you had not used the -d options to ls, you would have
listed files in the test directory instead of permissions of that
directory.)

Changing permissions with chmod (numbers)
If you own a file, you can use the chmod command to change the
permission on it as you please. In one method of doing this, each
permission (read, write, and execute) is assigned a number—r=4, w=2,
and x=1—and you use each set's total number to establish the
permission. For example, to make permissions wide open for yourself
as owner, you would set the first number to 7 (4+2+1), and then you
would give the group and others read-only permission by setting both
the second and third numbers to 4 (4+0+0), so that the final number
is 744. Any combination of permissions can result from 0 (no
permission) through 7 (full permission).

Here are some examples of how to change permission on a file (named
file) and what the resulting permission would be:

The following chmod command results in this permission: rwxrwxrwx

chmod 777 file

The following chmod command results in this permission: rwxr-xr-x

chmod 755 file

The following chmod command results in this permission: rw-r--r--

chmod 644 file

The following chmod command results in this permission: ---------

chmod 000 file

The chmod command also can be used recursively. For example,
suppose that you wanted to give an entire directory structure 755
permission (rwxr-xr-x), starting at the $HOME/myapps directory. To do
that, you could use the -R option, as follows:

$ chmod -R 755 $HOME/myapps

All files and directories below, and including, the myapps directory in
your home directory will have 755 permissions set. Because the
numbers approach to setting permission changes all permission bits at
once, it's more common to use letters to change permission bits
recursively over a large set of files.

Changing permissions with chmod (letters)
You can also turn file permissions on and off using plus (+) and minus
(–) signs, respectively, along with letters to indicate what changes and
for whom. Using letters, for each file you can change permission for
the user (u), group (g), other (o), and all users (a). What you would
change includes the read (r), write (w), and execute (x) bits. For
example, start with a file that has all permissions open (rwxrwxrwx).
Run the following chmod commands using minus sign options. The
resulting permissions are shown to the right of each command.

The following chmod command results in this permission: r-xr-xr-x

$ chmod a-w file

The following chmod command results in this permission: rwxrwxrw-

$ chmod o-x file

The following chmod command results in this permission: rwx------

$ chmod go-rwx file

Likewise, the following examples start with all permissions closed (---
------). The plus sign is used with chmod to turn permissions on.

The following chmod command results in this permission: rw-------

$ chmod u+rw files

The following chmod command results in this permission: --x--x--x

$ chmod a+x files

The following chmod command results in this permission: r-xr-x---

$ chmod ug+rx files

Using letters to change permission recursively with chmod generally
works better than using numbers because you can change bits
selectively instead of changing all permission bits at once. For
example, suppose that you want to remove write permission for
“other” without changing any other permission bits on a set of files
and directories. You could do the following:

$ chmod -R o-w $HOME/myapps

This example recursively removes write permissions for “other” on any
files and directories below the myapps directory. If you had used
numbers such as 644, execute permission would be turned off for
directories; using 755, execute permission would be turned on for
regular files. Using o-w, only one bit is turned off and all other bits are
left alone.

Setting default file permission with umask
When you create a file as a regular user, it's given permission rw-rw-r-
- by default. A directory is given the permission rwxrwxr-x. For the
root user, file and directory permission are rw-r--r-- and rwxr-xr-x,
respectively. These default values are determined by the value of
umask. Enter umask to see what your umask value is. For example:

$ umask

0002

If you ignore the leading zero for the moment, the umask value masks
what is considered to be fully opened permissions for a file 666 or a
directory 777. The umask value of 002 results in permission for a
directory of 775 (rwxrwxr-x). That same umask results in a file
permission of 644 (rw-rw-r--). (Execute permissions are off by default
for regular files.)

To change your umask value temporarily, run the umask command.
Then try creating some files and directories to see how the umask value
affects how permissions are set. For example:

$ umask 777 ; touch file01 ; mkdir dir01 ; ls -ld file01

dir01

d---------. 2 joe joe 6 Dec 19 11:03 dir01

----------. 1 joe joe 0 Dec 19 11:02 file01

$ umask 000 ; touch file02 ; mkdir dir02 ; ls -ld file02

dir02

drwxrwxrwx. 2 joe joe 6 Dec 19 11:00 dir02/

-rw-rw-rw-. 1 joe joe 0 Dec 19 10:59 file02

$ umask 022 ; touch file03 ; mkdir dir03 ; ls -ld file03

dir03

drwxr-xr-x. 2 joe joe 6 Dec 19 11:07 dir03

-rw-r--r--. 1 joe joe 0 Dec 19 11:07 file03

If you want to change your umask value permanently, add a umask
command to the .bashrc file in your home directory (near the end of
that file). The next time you open a shell, your umask is set to whatever
value you chose.

Changing file ownership
As a regular user, you cannot change ownership of files or directories
to have them belong to another user. You can change ownership as the
root user. For example, suppose that you created a file called memo.txt
in the user joe's home directory while you were root user. Here's how
you could change it to be owned by joe:

chown joe /home/joe/memo.txt

ls -l /home/joe/memo.txt

-rw-r--r--. 1 joe root 0 Dec 19 11:23 /home/joe/memo.txt

Notice that the chown command changed the user to joe but left the
group as root. To change both user and group to joe, you could enter
the following instead:

chown joe:joe /home/joe/memo.txt

ls -l /home/joe/memo.txt

-rw-r--r--. 1 joe joe 0 Dec 19 11:23 /home/joe/memo.txt

The chown command can be use recursively as well. Using the recursive
option (-R) is helpful if you need to change a whole directory structure
to ownership by a particular user. For example, if you inserted a USB
drive, which is mounted on the /media/myusb directory, and you
wanted to give full ownership of the contents of that drive to the user
joe, you could enter the following:

chown -R joe:joe /media/myusb

Moving, Copying, and Removing Files
Commands for moving, copying, and deleting files are fairly
straightforward. To change the location of a file, use the mv command.
To copy a file from one location to another, use the cp command. To
remove a file, use the rm command. These commands can be used to
act on individual files and directories or recursively to act on many
files and directories at once. Here are some examples:

$ mv abc def

$ mv abc ~

$ mv /home/joe/mymemos/ /home/joe/Documents/

The first mv command moves the file abc to the file def in the same
directory (essentially renaming it), whereas the second mv command
moves the file abc to your home directory (~). The next mv command
moves the mymemos directory (and all its contents) to the
/home/joe/Documents directory.

By default, the mv command overwrites any existing files if the file to
which you are moving exists. However, many Linux systems alias the
mv command so that it uses the -i option (which causes mv to prompt
you before overwriting existing files). Here's how to check if that is
true on your system:

$ alias mv

alias mv='mv -i'

Here are some examples of using the cp command to copy files from
one location to another:

$ cp abc def

$ cp abc ~

$ cp -r /usr/share/doc/bash-completion* /tmp/a/

$ cp -ra /usr/share/doc/bash-completion* /tmp/b/

The first copy command (cp) copies abc to the new name def in the
same directory, whereas the second copies abc to your home directory
(~), keeping the name abc. The two recursive (-r) copies copy the bash-
completion directory and all of the files it contains, first to new /tmp/a/

and /tmp/b/ directories. If you run ls -l on those two directories, you
see that for the cp command run with the archive (-a) option, the
date/time stamps and permissions are maintained by the copy.
Without the -a, current date/time stamps are used, and permissions
are determined by your umask.

The cp command typically also is aliased with the -i option in order to
prevent you from inadvertently overwriting files.

As with the cp and mv commands, rm is also usually aliased to include
the -i option. This can prevent the damage that can come from an
inadvertent recursive remove (-r) option. Here are some examples of
the rm command:

$ rm abc

$ rm *

The first remove command deletes the abc file; the second removes all
of the files in the current directory (except that it doesn't remove
directories and/or any files that start with a dot). If you want to
remove a directory, you need to use the recursive (-r) option to rm or,
for an empty directory, you can use the rmdir command. Consider the
following examples:

$ rmdir /home/joe/nothing/

$ rm -r /home/joe/bigdir/

$ rm -rf /home/joe/hugedir/

The rmdir command in the preceding code only removes the directory
(nothing) if it is empty. The rm -r example removes the directory
bigdir and all of its contents (files and multiple levels of
subdirectories), but it prompts you before each is removed. When you
add the force option (-f), the hugedir directory and all of its contents
are immediately removed, without prompting.

CAUTION
When you override the -i option on the mv, cp, and rm commands,
you risk removing some (or lots) of files by mistake. Using
wildcards (such as *) and no -i makes mistakes even more likely.
That said, sometimes you don't want to be bothered to step
through each file you delete. You have other options as follows:

As noted with the -f option, you can force rm to delete without
prompting. An alternative is to run rm, cp, or mv with a
backslash in front of it (\rm bigdir). The backslash causes any
command to run unaliased.

Another alternative with mv is to use the -b option. With -b, if a
file of the same name exists at the destination, a backup copy
of the old file is made before the new file is moved there.

Summary
Commands for moving around the filesystem, copying files, moving
files, and removing files are among the most basic commands that you
need to work from the shell. This chapter covers lots of commands for
moving around and manipulating files as well as commands for
changing ownership and permission.

The next chapter describes commands for editing and searching for
files. These commands include the vim/vi text editors, the find
command, and the grep command.

Exercises
Use these exercises to test your knowledge of efficient ways to get
around the Linux filesystem and work with files and directories. When
possible, try to use shortcuts to type as little as possible to get the
desired results. These tasks assume that you are running a Fedora or
Red Hat Enterprise Linux system (although some tasks work on other
Linux systems as well). If you are stuck, solutions to the tasks are
shown in Appendix B (although in Linux, there are often multiple
ways to complete a task).

1. Create a directory in your home directory called projects. In the
projects directory, create nine empty files that are named house1,
house2, house3, and so on up to house9. Assuming that there are
lots of other files in that directory, come up with a single
argument to ls that would list just those nine files.

2. Make the $HOME/projects/houses/doors/ directory path. Create
the following empty files within this directory path (try using
absolute and relative paths from your home directory):

 $HOME/projects/houses/bungalow.txt

 $HOME/projects/houses/doors/bifold.txt

 $HOME/projects/outdoors/vegetation/landscape.txt

3. Copy the files house1 and house5 to the $HOME/projects/houses/
directory.

4. Recursively copy the /usr/share/doc/initscripts* directory to
the $HOME/projects/ directory. Maintain the current date/time
stamps and permissions.

5. Recursively list the contents of the $HOME/projects/ directory.
Pipe the output to the less command so that you can page
through the output.

6. Remove the files house6, house7, and house8 without being
prompted.

7. Move house3 and house4 to the $HOME/projects/houses/doors

directory.

8. Remove the $HOME/projects/houses/doors directory and its
contents.

9. Change the permissions on the $HOME/projects/house2 file so that
it can be read by and written to by the user who owns the file, only
read by the group, and have no permission for others.

10. Recursively change permissions of the $HOME/projects/ directory
so that nobody has write permission to any files or directory
beneath that point in the filesystem.

CHAPTER 5
Working with Text Files

IN THIS CHAPTER
Using vim and vi to edit text files

Searching for files

Searching in files

When the UNIX system, on which Linux was based, was created, most
information was managed on the system in plain-text files. Thus, it
was critical for users to know how to use tools for searching for and
within plain-text files and to be able to change and configure those
files.

Today, configuration of Linux systems can still be done by editing
plain-text files. Whether you are modifying files in the /etc directory
to configure a local service or editing Ansible inventory files to
configure sets of host computers, plain-text files are still in common
use for those tasks.

Before you can become a full-fledged system administrator, you need
to be able to use a plain-text editor. The fact that most professional
Linux servers don't even have a graphical interface available makes the
need for editing of plain-text configuration files with a non-graphical
text editor necessary.

After you know how to edit text files, you still might find it tough to
figure out where the files are located that you need to edit. With
commands such as find, you can search for files based on various
attributes (filename, size, modification date, and ownership to name a
few). With the grep command, you can search inside of text files to
find specific search terms.

Editing Files with vim and vi
It's almost impossible to use Linux for any period of time and not need
a text editor because, as noted earlier, most Linux configuration files
are plain-text files that you will almost certainly need to change
manually at some point.

If you are using a GNOME desktop, you can run gedit (type gedit into
the Search box and press Enter, or select Applications ➪ Accessories
➪ gedit), which is fairly intuitive for editing text. You can also run a
simple text editor called nano from the shell. However, most Linux
shell users use either the vi or emacs command to edit text files.

The advantage of vi or emacs over a graphical editor is that you can use
the command from any shell, character terminal, or character-based
connection over a network (using telnet or ssh, for example)—no
graphical interface is required. They each also contain tons of features,
so you can continue to grow with them.

The following sections provide a brief tutorial on the vi text editor,
which you can use to manually edit a text file from any shell. It also
describes the improved versions of vi called vim. (If vi doesn't suit
you, see the sidebar “Exploring Other Text Editors” for further
options.)

The vi editor is difficult to learn at first, but after you know it, you
never have to use a mouse or a function key—you can edit and move
around quickly and efficiently within files just by using the keyboard.

Exploring Other Text Editors
Dozens of text editors are available for use with Linux. Some
alternatives might be in your Linux distribution. You can try them
out if you find vi to be too taxing. Here are some of the options:

nano: This popular, streamlined text editor is used with many
bootable Linux systems and other limited-space Linux
environments. For example, nano is available to edit text files
during a Gentoo Linux install process.

gedit: The GNOME text editor runs on the desktop.

jed: This screen-oriented editor was made for programmers.
Using colors, jed can highlight code that you create so that you
can easily read the code and spot syntax errors. Use the Alt key
to select menus to manipulate your text.

joe: The joe editor is similar to many PC text editors. Use
control and arrow keys to move around. Press Ctrl+C to exit
with no save or Ctrl+X to save and exit.

kate: This nice-looking editor comes in the kdebase package. It
has lots of bells and whistles, such as highlighting for different
types of programming languages and controls for managing
word wrap.

kedit: This GUI-based text editor comes with the KDE
desktop.

mcedit: In this editor, function keys help you get around, save,
copy, move, and delete text. Like jed and joe, mcedit is screen
oriented. It comes in the mc package in RHEL and Fedora.

nedit : This is an excellent programmer's editor. You need to
install the optional nedit package to get this editor.

If you use ssh to log in to other Linux computers on your network,
you can use any available text editor to edit files. If you use ssh -X

to connect to the remote system, a GUI-based editor pops up on
your local screen. When no GUI is available, you need a text editor
that runs in the shell, such as vi, jed, or joe.

Starting with vi
Most often, you start vi to open a particular file. For example, to open
a file called /tmp/test, enter the following command:

$ vi /tmp/test

If this is a new file, you should see something similar to the following:

□

~

~

~

~

~

"/tmp/test" [New File]

A blinking box at the top represents where your cursor is located. The
bottom line keeps you informed about what is going on with your
editing (here, you just opened a new file). In between, there are tildes
(~) as filler because there is no text in the file yet. Now here's the
intimidating part: There are no hints, menus, or icons to tell you what
to do. To make it worse, you can't just start typing. If you do, the
computer is likely to beep at you. (And some people complain that
Linux isn't friendly.)

First, you need to know the two main operating modes: command and
input. The vi editor always starts in command mode. Before you can
add or change text in the file, you have to type a command (one or two
letters, sometimes preceded by an optional number) to tell vi what you
want to do. Case is important, so use uppercase and lowercase exactly
as shown in the examples!

NOTE
On Red Hat Enterprise Linux, Fedora, and other Linux
distributions, for regular users the vi command is aliased to run
vim. If you type alias vi, you should see alias vi='vim'. The first
obvious difference between vi and vim is that any known text file
type, such as HTML, C code, or a common configuration file,
appears in color. The colors indicate the structure of the file. Other
features of vim that are not in vi include features such as visual
highlighting and split-screen mode. By default, the root user
doesn't have vi aliased to vim. If vim is not on your system, try
installing the vim-enhanced package.

Adding text
To get into input mode, type an input command letter. To begin, type
any of the following letters. When you are finished inputting text,
press the Esc key (sometimes twice) to return to command mode.
Remember the Esc key!

a: The add command. With this command, you can input text that
starts to the right of the cursor.

A: The add at end command. With this command, you can input
text starting at the end of the current line.

i: The insert command. With this command, you can input text
that starts to the left of the cursor.

I: The insert at beginning command. With this command, you
can input text that starts at the beginning of the current line.

o: The open below command. This command opens a line below
the current line and puts you in insert mode.

O: The open above command. This command opens a line above
the current line and puts you in insert mode.

TIP
When you are in insert mode, -- INSERT -- appears at the bottom
of the screen.

Type a few words, and press Enter. Repeat that a few times until you
have a few lines of text. When you're finished typing, press Esc to
return to command mode. Now that you have a file with some text in
it, try moving around in your text with the keys or letters described in
the next section.

TIP
Remember the Esc key! It always places you back into command
mode. Remember that sometimes you must press Esc twice. For
example, if you type a colon (:) to go into ex mode, you must press
Esc twice to return to command mode.

Moving around in the text
To move around in the text, you can use the up, down, right, and left
arrows. However, many of the keys for moving around are right under
your fingertips when they are in typing position:

Arrow keys: Move the cursor up, down, left, or right in the file
one character at a time. To move left and right, you can also use
Backspace and the spacebar, respectively. If you prefer to keep
your fingers on the keyboard, move the cursor with h (left), l
(right), j (down), or k (up).

w: Moves the cursor to the beginning of the next word (delimited
by spaces, tabs, or punctuation).

W: Moves the cursor to the beginning of the next word (delimited
by spaces or tabs).

b: Moves the cursor to the beginning of the previous word
(delimited by spaces, tabs, or punctuation).

B: Moves the cursor to the beginning of the previous word
(delimited by spaces or tabs).

0 (zero): Moves the cursor to the beginning of the current line.

$: Moves the cursor to the end of the current line.

H: Moves the cursor to the upper-left corner of the screen (first
line on the screen).

M: Moves the cursor to the first character of the middle line on
the screen.

L: Moves the cursor to the lower-left corner of the screen (last line
on the screen).

Deleting, copying, and changing text
The only other editing that you need to know is how to delete, copy, or
change text. The x, d, y, and c commands can be used to delete and
change text. These can be used along with movement keys (arrows,
PgUp, PgDn, letters, and special keys) and numbers to indicate exactly
what you are deleting, copying, or changing. Consider the following
examples:

x: Deletes the character under the cursor.

X: Deletes the character directly before the cursor.

d<?>: Deletes some text.

c<?>: Changes some text.

y<?>: Yanks (copies) some text.

The <?> after each letter in the preceding list identifies the place where
you can use a movement command to choose what you are deleting,
changing, or yanking. For example:

dw: Deletes (d) a word (w) after the current cursor position.

db: Deletes (d) a word (b) before the current cursor position.

dd: Deletes (d) the entire current line (d).

c$: Changes (c) the characters (actually erases them) from the
current character to the end of the current line ($) and goes into
input mode.

c0: Changes (c) (again, erases) characters from the previous
character to the beginning of the current line (0) and goes into
input mode.

cl: Erases (c) the current letter (l) and goes into input mode.

cc: Erases (c) the line (c) and goes into input mode.

yy: Copies (y) the current line (y) into the buffer.

y): Copies (y) the current sentence ()), to the right of the cursor,
into the buffer.

y}: Copies (y) the current paragraph (}), to the right of the
cursor, into the buffer.

Any of the commands just shown can be further modified using
numbers, as you can see in the following examples:

3dd: Deletes (d) three (3) lines (d), beginning at the current line.

3dw: Deletes (d) the next three (3) words (w).

5cl: Changes (c) the next five (5) letters (l) (that is, removes the
letters and enters input mode).

12j: Moves down (j) 12 lines (12).

5cw: Erases (c) the next five (5) words (w) and goes into input
mode.

4y): Copies (y) the next four (4) sentences ()).

Pasting (putting) text
After text has been copied to the buffer (by deleting, changing, or
yanking it), you can place that text back in your file using the letter p
or P. With both commands, the text most recently stored in the buffer
is put into the file in different ways.

P: Puts the copied text to the left of the cursor if the text consists
of letters or words; puts the copied text above the current line if
the copied text contains lines of text.

p: Puts the buffered text to the right of the cursor if the text
consists of letters or words; puts the buffered text below the
current line if the buffered text contains lines of text.

Repeating commands
After you delete, change, or paste text, you can repeat that action by
typing a period (.). For example, with the cursor on the beginning of
the name Joe, you type cw and then type Jim to change Joe to Jim. You
search for the next occurrence of Joe in the file, position the cursor at

the beginning of that name, and press a period. The word changes to
Jim, and you can search for the next occurrence. You can go through a
file this way, pressing n to go to the next occurrence and period (.) to
change the word.

Exiting vi
To wrap things up, use the following commands to save or quit the file:

ZZ: Saves the current changes to the file and exits from vi.

:w: Saves the current file, but you can continue editing.

:wq: Works the same as ZZ.

:q: Quits the current file. This works only if you don't have any
unsaved changes.

:q!: Quits the current file and doesn't save the changes you just
made to the file.

TIP
If you've really trashed the file by mistake, the :q! command is
the best way to exit and abandon your changes. The file reverts
to the most recently changed version. So, if you just saved with
:w, you are stuck with the changes up to that point. However,
despite having saved the file, you can type u to back out of
changes (all the way back to the beginning of the editing
session if you like) and then save again.

You have learned a few vi editing commands. I describe more
commands in the following sections. First, however, consider the
following tips to smooth out your first trials with vi:

Esc: Remember that Esc gets you back to command mode. (I've
watched people press every key on the keyboard trying to get out
of a file.) Esc followed by ZZ gets you out of command mode, saves
the file, and exits.

u: Press u to undo the previous change you made. Continue to
press u to undo the change before that and the one before that.

Ctrl+R: If you decide that you didn't want to undo the previous
undo command, use Ctrl+R for Redo. Essentially, this command
undoes your undo.

Caps Lock: Beware of hitting Caps Lock by mistake. Everything
that you type in vi has a different meaning when the letters are
capitalized. You don't get a warning that you are typing capitals;
things just start acting weird.

:!command: You can run a shell command while you are in vi using
:! followed by a shell command name. For example, type :!date
to see the current date and time, type :!pwd to see what your
current directory is, or type :!jobs to see whether you have any
jobs running in the background. When the command completes,
press Enter and you are back to editing the file. You could even
use this technique to launch a shell (:!bash) from vi, run a few

commands from that shell, and then type exit to return to vi. (I
recommend doing a save before escaping to the shell, just in case
you forget to go back to vi.)

Ctrl+g: If you forget what you are editing, pressing these keys
displays the name of the file that you are editing and the current
line that you are on at the bottom of the screen. It also displays
the total number of lines in the file, the percentage of how far you
are through the file, and the column number the cursor is on. This
just helps you get your bearings after you've stopped for a cup of
coffee at 3 a.m.

Skipping around in the file
Besides the few movement commands described earlier, there are
other ways of moving around a vi file. To try these out, open a large
file that you can't damage too much. (Try copying /var/log/messages
to /tmp and opening it in vi.) Here are some movement commands
that you can use:

Ctrl+f: Pages ahead one page at a time.

Ctrl+b: Pages back one page at a time.

Ctrl+d: Pages ahead one-half page at a time.

Ctrl+u: Pages back one-half page at a time.

G: Goes to the last line of the file.

1G: Goes to the first line of the file.

35G: Goes to any line number (35, in this case).

Searching for text
To search for the next or previous occurrence of text in the file, use
either the slash (/) or the question mark (?) character. Follow the slash
or question mark with a pattern (string of text) to search forward or
backward, respectively, for that pattern. Within the search, you can
also use metacharacters. Here are some examples:

/hello: Searches forward for the word hello.

?goodbye: Searches backward for the word goodbye.

/The.*foot: Searches forward for a line that has the word The in it
and also, after that at some point, the word foot.

?[pP]rint: Searches backward for either print or Print.
Remember that case matters in Linux, so make use of brackets to
search for words that could have different capitalization.

After you have entered a search term, simply type n or N to search
again in the same direction (n) or the opposite direction (N) for the
term.

Using ex mode
The vi editor was originally based on the ex editor, which didn't let
you work in full-screen mode. However, it did enable you to run
commands that let you find and change text on one or more lines at a
time. When you type a colon and the cursor goes to the bottom of the
screen, you are essentially in ex mode. The following are examples of
some of those ex commands for searching for and changing text. (I
chose the words Local and Remote to search for, but you can use any
appropriate words.)

:g/Local: Searches for the word Local and prints every occurrence
of that line from the file. (If there is more than a screenful, the
output is piped to the more command.)

:s/Local/Remote: Substitutes Remote for the first occurrence of the
word Local on the current line.

:g/Local/s//Remote: Substitutes the first occurrence of the word
Local on every line of the file with the word Remote.

:g/Local/s//Remote/g: Substitutes every occurrence of the word
Local with the word Remote in the entire file.

:g/Local/s//Remote/gp: Substitutes every occurrence of the word
Local with the word Remote in the entire file and then prints each
line so that you can see the changes (piping it through less if
output fills more than one page).

Learning more about vi and vim
To learn more about the vi editor, try typing vimtutor. The vimtutor
command opens a tutorial in the vim editor that steps you through
common commands and features you can use in vim. To use vimtutor,
install the vim-enhanced package.

Finding Files
Even a basic Linux installation can have thousands of files installed on
it. To help you find files on your system, you can use commands such
as locate (to find commands by name), find (to find files based on lots
of different attributes), and grep (to search within text files to find
lines in files that contain search text).

Using locate to find files by name
On most Linux systems (Fedora and RHEL included), the updatedb
command runs once per day to gather the names of files throughout
your Linux system into a database. By running the locate command,
you can search that database to find the location of files stored in it.

Here are a few things that you should know about searching for files
using the locate command:

There are advantages and disadvantages to using locate to find
filenames instead of the find command. A locate command finds
files faster because it searches a database instead of having to
search the whole filesystem live. A disadvantage is that the locate
command cannot find any files added to the system since the
previous time the database was updated.

Not every file in your filesystem is stored in the database. The
contents of the /etc/updatedb.conf file limit which filenames are
collected by pruning out select mount types, filesystem types, file
types, and mount points. For example, filenames are not gathered
from remotely mounted filesystems (cifs, nfs, and so on) or
locally mounted CDs or DVDs (iso9660). Paths containing
temporary files (/tmp) and spool files (/var/spool/cups) are also
pruned. You can add items to prune (or remove some items that
you don't want pruned) the locate database to your needs. In
RHEL 8, the updatedb.conf file contains the following:

PRUNE_BIND_MOUNTS = "yes"

PRUNEFS = "9p afs anon_inodefs auto autofs bdev binfmt_misc

cgroup cifs coda configfs cpuset debugfs devpts ecryptfs

exofs fuse fuse.sshfs fusectl gfs gfs2 gpfs hugetlbfs

inotifyfs iso9660 jffs2 lustre mqueue ncpfs nfs nfs4 nfsd

pipefs proc ramfs rootfs rpc_pipefs securityfs selinuxfs sfs

sockfs sysfs tmpfs ubifs udf usbfs ceph fuse.ceph"

PRUNENAMES = ".git .hg .svn .bzr .arch-ids {arch} CVS"

PRUNEPATHS = "/afs /media /mnt /net /sfs /tmp /udev

/var/cache/ccache /var/lib/yum/yumdb /var/lib/dnf/yumdb

/var/spool/cups /var/spool/squid /var/tmp /var/lib/ceph"

As a regular user, you can't see any files from the locate database
that you can't see in the filesystem normally. For example, if you
can't type ls to view files in the /root directory, you can't locate
files stored in that directory.

When you search for a string, the string can appear anywhere in a
file's path. For example, if you search for passwd, you could turn
up /etc/passwd, /usr/bin/passwd,
/home/chris/passwd/pwdfiles.txt, and many other files with
passwd in the path.

If you add files to your system after updatedb runs, you can't locate
those files until updatedb runs again (probably that night). To get
the database to contain all files up to the current moment, you can
simply run updatedb from the shell as root.

Here are some examples of using the locate command to search for
files:

$ locate .bashrc

/etc/skel/.bashrc

/home/cnegus/.bashrc

locate .bashrc

/etc/skel/.bashrc

/home/bill/.bashrc

/home/joe/.bashrc

/root/.bashrc

When run as a regular user, locate only finds .bashrc in /etc/skel and
the user's own home directory. Run as root, the same command
locates .bashrc files in everyone's home directory.

$ locate dir_color

/usr/share/man/man5/dir_colors.5.gz

…

$ locate -i dir_color

/etc/DIR_COLORS

/etc/DIR_COLORS.256color

/etc/DIR_COLORS.lightbgcolor

/usr/share/man/man5/dir_colors.5.gz

Using locate -i, filenames are found regardless of case. So in the
previous example, DIR_COLORS was found with -i whereas it wasn't
found without the -i option.

$ locate services

/etc/services

/usr/share/services/bmp.kmgio

/usr/share/services/data.kmgio

Unlike the find command, which uses the -name option to find
filenames, the locate command locates the string you enter if it exists
in any part of the file's path. In this example, searching for services
using the locate command finds files and directories containing the
services text string.

Searching for files with find
The find command is the best one for searching your filesystem for
files based on a variety of attributes. After files are found, you can act
on those files as well (using the -exec or -okay option) by running any
commands you want on them.

When you run find, it searches your filesystem live, which causes it to
run slower than locate, but it gives you an up-to-the-moment view of
the files on your Linux system. However, you can also tell find to start
at a particular point in the filesystem so that the search can go faster
by limiting the area of the filesystem being searched.

Nearly any file attribute that you can think of can be used as a search
option. You can search for filenames, ownership, permission, size,
modification times, and other attributes. You can even use
combinations of attributes. Here are some basic examples of using the
find command:

$ find

$ find /etc

find /etc

$ find $HOME -ls

Run on a line by itself, the find command finds all files and directories
below the current directory. If you want to search from a particular
point in the directory tree, just add the name of the directory you want
to search (such as /etc). As a regular user, find does not give you
special permission to find files that have permissions that make them
readable only by the root user. So, find produces a bunch of error
messages. Run as the root user, find /etc finds all files under /etc.

A special option to the find command is -ls. A long listing (ownership,
permission, size, and so on) is printed with each file when you add -ls
to the find command (similar to output of the ls -l command). This
option helps you in later examples when you want to verify that you
have found files that contain the ownership, size, modification times,
or other attributes that you are trying to find.

NOTE
If, as a regular user, you are searching an area of the filesystem
where you don't have full permission to access all of the files it
contains (such as the /etc directory), you might receive lots of
error messages when you search with find. To get rid of those
messages, direct standard errors to /dev/null. To do that, add the
following to the end of the command line: 2> /dev/null. The 2>
redirects standard error to the next option (in this case /dev/null,
where the output is discarded).

Finding files by name
To find files by name, you can use the -name and -iname options. The
search is done by base name of the file; the directory names are not
searched by default. To make the search more flexible, you can use
file-matching characters, such as asterisks (*) and question marks (?),
as in the following examples:

find /etc -name passwd

/etc/pam.d/passwd

/etc/passwd

find /etc -iname '*passwd*'

/etc/pam.d/passwd

/etc/passwd-

/etc/passwd.OLD

/etc/passwd

/etc/MYPASSWD

/etc/security/opasswd

Using the -name option and no asterisks, the first example above lists
any files in the /etc directory that are named passwd exactly. By using -
iname instead, you can match any combination of upper- and
lowercase. Using asterisks, you can match any filename that includes
the word passwd.

Finding files by size
If your disk is filling up and you want to find out where your biggest

files are located, you can search your system by file size. The -size
option enables you to search for files that are exactly, smaller than, or
larger than a selected size, as you can see in the following examples:

$ find /usr/share/ -size +10M

$ find /mostlybig -size -1M

$ find /bigdata -size +500M -size -5G -exec du -sh {} \;

4.1G /bigdata/images/rhel6.img

606M /bigdata/Fedora-16-i686-Live-Desktop.iso

560M /bigdata/dance2.avi

The first example in the preceding code finds files larger than 10MB.
The second finds files less than 1MB. In the third example, I'm
searching for files that are between 500MB and 5GB. This includes an
example of the -exec option (which I describe later) to run the du
command on each file to see its size.

Finding files by user
You can search for a particular owner (-user) or group (-group) when
you try to find files. By using -not and -or, you can refine your search
for files associated with specific users and groups, as you can see in the
following examples:

$ find /home -user chris -ls

131077 4 -rw-r--r-- 1 chris chris 379 Jun 29 2014

./.bashrc

find /home \(-user chris -or -user joe \) -ls

131077 4 -rw-r--r-- 1 chris chris 379 Jun 29 2014

./.bashrc

181022 4 -rw-r--r-- 1 joe joe 379 Jun 15 2014

./.bashrc

find /etc -group ntp -ls

131438 4 drwxrwsr-x 3 root ntp 4096 Mar 9 22:16 /etc/ntp

find /var/spool -not -user root -ls

262100 0 -rw-rw---- 1 rpc mail 0 Jan 27 2014

/var/spool/mail/rpc

278504 0 -rw-rw---- 1 joe mail 0 Apr 3 2014

/var/spool/mail/joe

261230 0 -rw-rw---- 1 bill mail 0 Dec 18 14:17

/var/spool/mail/bill

277373 2848 -rw-rw---- 1 chris mail 8284 Mar 15 2014

/var/spool/mail/chris

The first example outputs a long listing of all of the files under the
/home directory that are owned by the user chris. The next lists files
owned by chris or joe. The find command of /etc turns up all files
that have ntp as their primary group assignment. The last example
shows all files under /var/spool that are not owned by root. You can
see files owned by other users in the sample output.

Finding files by permission
Searching for files by permission is an excellent way to turn up
security issues on your system or uncover access issues. Just as you
changed permissions on files using numbers or letters (with the chmod
command), you can likewise find files based on number or letter
permissions along with the -perm options. (Refer to Chapter 4,
“Moving Around the Filesystem,” to see how to use numbers and
letters with chmod to reflect file permissions.)

If you use numbers for permission, as I do below, remember that the
three numbers represent permissions for the user, group, and other.
Each of those three numbers varies from no permission (0) to full
read/write/execute permission (7) by adding read (4), write (2), and
execute (1) bits together. With a hyphen (-) in front of the number, all
three of the bits indicated must match; with a forward slash (/) in
front of it, any of the numbers can match for the search to find a file.
The full, exact numbers must match if neither a hyphen nor a forward
slash is used.

Consider the following examples:

$ find /usr/bin -perm 755 -ls

788884 28 -rwxr-xr-x 1 root root 28176 Mar 10

2014 /bin/echo

$ find /home/chris/ -perm -222 -type d -ls

144503 4 drwxrwxrwx 8 chris chris 4096 Jun 23 2014

/home/chris/OPENDIR

By searching for -perm 755, any files or directories with exactly rwxr-
xr-x permission are matched. By using -perm -222, only files that have
write permission for user, group, and other are matched. Notice that,
in this case, the -type d is added to match only directories.

$ find /myreadonly -perm /222 -type f

685035 0 -rw-rw-r-- 1 chris chris 0 Dec 30 16:34

/myreadonly/abc

$ find . -perm -002 -type f -ls

266230 0 -rw-rw-rw- 1 chris chris 0 Dec 30 16:28

./LINUX_BIBLE/abc

Using -perm /222, you can find any file (-type f) that has write
permission turned on for the user, group, or other. You might do that
to make sure that all files are read-only in a particular part of the
filesystem (in this case, beneath the /myreadonly directory). The last
example, -perm /002, is very useful for finding files that have open
write permission for “other,” regardless of how the other permission
bits are set.

Finding files by date and time
Date and time stamps are stored for each file when it is created, when
it is accessed, when its content is modified, or when its metadata is
changed. Metadata includes owner, group, time stamp, file size,
permissions, and other information stored in the file's inode. You
might want to search for file data or metadata changes for any of the
following reasons:

You just changed the contents of a configuration file, and you
can't remember which one. So, you search /etc to see what has
changed in the past 10 minutes:

 $ find /etc/ -mmin -10

You suspect that someone hacked your system three days ago. So,
you search the system to see if any commands have had their
ownership or permissions changed in the past three days:

 $ find /bin /usr/bin /sbin /usr/sbin -ctime -3

You want to find files in your FTP server (/var/ftp) and web
server (/var/www) that have not been accessed in more than 300
days so that you can see if any need to be deleted:

 $ find /var/ftp /var/www -atime +300

As you can glean from the examples, you can search for content or
metadata changes over a certain number of days or minutes. The time
options (-atime, -ctime, and -mtime) enable you to search based on the
number of days since each file was accessed, changed, or had its
metadata changed. The min options (-amin, -cmin, and -mmin) do the
same in minutes.

Numbers that you give as arguments to the min and time options are
preceded by a hyphen (to indicate a time from the current time to that
number of minutes or days ago) or a plus (to indicate time from the
number of minutes or days ago and older). With no hyphen or plus,
the exact number is matched.

Using ‘not' and ‘or' when finding files
With the -not and -or options, you can further refine your searches.
There may be times when you want to find files owned by a particular
user but not assigned to a particular group. You may want files larger
than a certain size but smaller than another size. Or you might want to
find files owned by any of several users. The -not and -or options can
help you do that. Consider the following examples:

There is a shared directory called /var/allusers. This command
line enables you to find files that are owned by either joe or chris.

 $ find /var/allusers \(-user joe -o -user chris \) -ls

 679967 0 -rw-r--r-- 1 chris chris 0 Dec 31 12:57

 /var/allusers/myjoe

 679977 1812 -rw-r--r-- 1 joe joe 4379 Dec 31 13:09

 /var/allusers/dict.dat

 679972 0 -rw-r--r-- 1 joe sales 0 Dec 31 13:02

 /var/allusers/one

This command line searches for files owned by the user joe, but
only those that are not assigned to the group joe:

 $ find /var/allusers/ -user joe -not -group joe -ls

 679972 0 -rw-r--r-- 1 joe sales 0 Dec 31 13:02

/var/allusers/one

You can also add multiple requirements on your searches. Here, a
file must be owned by the user joe and must also be more than

1MB in size:

 $ find /var/allusers/ -user joe -and -size +1M -ls

 679977 1812 -rw-r--r-- 1 joe root 1854379 Dec 31 13:09

 /var/allusers/dict.dat

Finding files and executing commands
One of the most powerful features of the find command is the
capability to execute commands on any files that you find. With the -
exec option, the command you use is executed on every file found,
without stopping to ask if that's okay. The -ok option stops at each
matched file and asks whether you want to run the command on it.

The advantage of using -ok is that, if you are doing something
destructive, you can make sure that you okay each file individually
before the command is run on it. The syntax for using -exec and -ok is
the same:

$ find [options] -exec command {} \;

$ find [options] -ok command {} \;

With -exec or -ok, you run find with any options you like in order to
find the files you are seeking. Then you enter the -exec or -ok option
followed by the command you want to run on each file. The set of curly
braces indicates where on the command line to read in each file that is
found. Each file can be included in the command line multiple times if
you like. To end the line, you need to add a backslash and semicolon
(\;). Here are some examples:

This command finds any file named passwd under the /etc
directory and includes that name in the output of an echo
command:

 $ find /etc -iname passwd -exec echo "I found {}" \;

 I found /etc/pam.d/passwd

 I found /etc/passwd

The following command finds every file under the /usr/share
directory that is more than 5MB in size. Then it lists the size of
each file with the du command. The output of find is then sorted
by size, from largest to smallest. With -exec entered, all entries

found are processed, without prompting:

 $ find /usr/share -size +5M -exec du {} \; | sort -nr

 116932 /usr/share/icons/HighContrast/icon-theme.cache

 69048 /usr/share/icons/gnome/icon-theme.cache

 20564 /usr/share/fonts/cjkuni-uming/uming.ttc

The -ok option enables you to choose, one at a time, whether each
file found is acted upon by the command you enter. For example,
you want to find all files that belong to joe in the /var/allusers
directory (and its subdirectories) and move them to the /tmp/joe
directory:

 # find /var/allusers/ -user joe -ok mv {} /tmp/joe/ \;

 < mv … /var/allusers/dict.dat> ? y

 < mv … /var/allusers/five> ? y

Notice in the preceding code that you are prompted for each file that is
found before it is moved to the /tmp/joe directory. You would simply
type y and press Enter at each line to move the file, or just press Enter
to skip it.

For more information on the find command, enter man find.

Searching in files with grep
If you want to search for files that contain a certain search term, you
can use the grep command. With grep, you can search a single file or
search a whole directory structure of files recursively.

When you search, you can have every line containing the term printed
on your screen (standard output) or just list the names of the files that
contain the search term. By default, grep searches text in a case-
sensitive way, although you can do case-insensitive searches as well.

Instead of just searching files, you can also use grep to search standard
output. So, if a command turns out lots of text and you want to find
only lines that contain certain text, you can use grep to filter just want
you want.

Here are some examples of grep command lines used to find text
strings in one or more files:

$ grep desktop /etc/services

desktop-dna 2763/tcp # Desktop DNA

desktop-dna 2763/udp # Desktop DNA

$ grep -i desktop /etc/services

sco-dtmgr 617/tcp # SCO Desktop

Administration Server

sco-dtmgr 617/udp # SCO Desktop

Administration Server

airsync 2175/tcp # Microsoft Desktop

AirSync Protocol

…

In the first example, a grep for the word desktop in the /etc/services
file turned up two lines. Searching again, using the -i to be case-
insensitive (as in the second example), there were 29 lines of text
produced.

To search for lines that don't contain a selected text string, use the -v
option. In the following example, all lines from the /etc/services file
are displayed except those containing the text tcp (case-insensitive):

$ grep -vi tcp /etc/services

To do recursive searches, use the -r option and a directory as an
argument. The following example includes the -l option, which just
lists files that include the search text, without showing the actual lines
of text. That search turns up files that contain the text peerdns (case-
insensitive).

$ grep -rli peerdns /usr/share/doc/

/usr/share/doc/dnsmasq-2.66/setup.html

/usr/share/doc/initscripts-9.49.17/sysconfig.txt

…

The next example recursively searches the /etc/sysconfig directory
for the term root. It lists every line in every file beneath the directory
that contains that text. To make it easier to have the term root stand
out on each line, the --color option is added. By default, the matched
term appears in red.

$ grep -ri --color root /etc/sysconfig/

To search the output of a command for a term, you can pipe the output

to the grep command. In this example, I know that IP addresses are
listed on output lines from the ip command that include the string
inet, so I use grep to display just those lines:

$ ip addr show | grep inet

inet 127.0.0.1/8 scope host lo

inet 192.168.1.231/24 brd 192.168.1.255 scope global wlan0

Summary
Being able to work with plain-text files is a critical skill for using
Linux. Because so many configuration files and document files are in
plain-text format, you need to become proficient with a text editor to
use Linux effectively. Finding filenames and content in files are also
critical skills. In this chapter, you learned to use the locate and find
commands for finding files and grep for searching files.

The next chapter covers a variety of ways to work with processes.
There, you learn how to see what processes are running, run processes
in the foreground and background, and change processes (send
signals).

Exercises
Use these exercises to test your knowledge of using the vi (or vim) text
editor, commands for finding files (locate and find), and commands
for searching files (grep). These tasks assume that you are running a
Fedora or Red Hat Enterprise Linux system (although some tasks
work on other Linux systems as well). If you are stuck, solutions to the
tasks are shown in Appendix B (although in Linux, there are often
multiple ways to complete a task).

1. Copy the /etc/services file to the /tmp directory. Open the
/tmp/services file in vim, and search for the term WorldWideWeb.
Change that to read World Wide Web.

2. Find the following paragraph in your /tmp/services file (if it is not
there, choose a different paragraph) and move it to the end of that
file.

Note that it is presently the policy of IANA to assign a

single well-known

port number for both TCP and UDP; hence, most entries here

have two entries

even if the protocol doesn't support UDP operations.

Updated from RFC 1700, "Assigned Numbers" (October 1994).

Not all ports

are included, only the more common ones.

3. Using ex mode, search for every occurrence of the term tcp (case-
sensitive) in your /tmp/services file and change it to WHATEVER.

4. As a regular user, search the /etc directory for every file named
passwd. Redirect error messages from your search to /dev/null.

5. Create a directory in your home directory called TEST. Create files
in that directory named one, two, and three that have full
read/write/execute permissions on for everyone (user, group, and
other). Construct a find command to find those files and any
other files that have write permission open to ″others″ from your
home directory and below.

6. Find files under the /usr/share/doc directory that have not been

modified in more than 300 days.

7. Create a /tmp/FILES directory. Find all files under the /usr/share
directory that are more than 5MB and less than 10MB and copy
them to the /tmp/FILES directory.

8. Find every file in the /tmp/FILES directory, and make a backup
copy of each file in the same directory. Use each file's existing
name, and just append .mybackup to create each backup file.

9. Install the kernel-doc package in Fedora or Red Hat Enterprise
Linux. Using grep, search inside the files contained in the
/usr/share/doc/kernel-doc* directory for the term e1000 (case-
insensitive) and list the names of the files that contain that term.

10. Search for the e1000 term again in the same location, but this time
list every line that contains the term and highlight the term in
color.

CHAPTER 6
Managing Running Processes

IN THIS CHAPTER
Displaying processes

Running processes in the foreground and background

Killing and renicing processes

In addition to being a multiuser operating system, Linux is a
multitasking system. Multitasking means that many programs can be
running at the same time. An instance of a running program is
referred to as a process. Linux provides tools for listing running
processes, monitoring system usage, and stopping (or killing)
processes when necessary.

From a shell, you can launch processes and then pause, stop, or kill
them. You can also put them in the background and bring them to the
foreground. This chapter describes tools such as ps, top, kill, jobs,
and other commands for listing and managing processes.

Understanding Processes
A process is a running instance of a command. For example, there may
be one vi command on the system. But if vi is currently being run by
15 different users, that command is represented by 15 different
running processes.

A process is identified on the system by what is referred to as a process
ID (PID). That PID is unique for the current system. In other words,
no other process can use that number as its process ID while that first
process is still running. However, after a process has ended, another
process can reuse that number.

Along with a process ID number, other attributes are associated with a
process. Each process, when it is run, is associated with a particular
user account and group account. That account information helps
determine what system resources the process can access. For example,
a process run as the root user has much more access to system files
and resources than a process running as a regular user.

The ability to manage processes on your system is critical for a Linux
system administrator. Sometimes, runaway processes may be killing
your system's performance. Finding and dealing with processes, based
on attributes such as memory and CPU usage, are covered in this
chapter.

NOTE
Commands that display information about running processes get
most of that information from raw data stored in the /proc file
system. Each process stores its information in a subdirectory of
/proc, named after the process ID of that process. You can view
some of that raw data by displaying the contents of files in one of
those directories (using cat or less commands).

Listing Processes
From the command line, the ps command is the oldest and most
common command for listing processes currently running on your
system. The Linux version of ps contains a variety of options from old
UNIX and BSD systems, some of which are conflicting and
implemented in nonstandard ways. See the ps man page for
descriptions of those different options.

The top command provides a more screen-oriented approach to listing
processes, and it can also be used to change the status of processes. If
you are using the GNOME desktop, you can use the System Monitor
tool (gnome-system-monitor) to provide a graphical means of working
with processes. These commands are described in the following
sections.

Listing processes with ps
The most common utility for checking running processes is the ps
command. Use it to see which programs are running, the resources
they are using, and who is running them. The following is an example
of the ps command:

$ ps u

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME

COMMAND

jake 2147 0.0 0.7 1836 1020 tty1 S+ 14:50 0:00 -

bash

jake 2310 0.0 0.7 2592 912 tty1 R+ 18:22 0:00 ps

u

In this example, the u option (equivalent to -u) asks that usernames be
shown, as well as other information such as the time the process
started and memory and CPU usage for processes associated with the
current user. The processes shown are associated with the current
terminal (tty1). The concept of a terminal comes from the old days
when people worked exclusively from character terminals, so a
terminal typically represented a single person at a single screen.
Nowadays, you can have many “terminals” on one screen by opening

multiple virtual terminals or Terminal windows on the desktop.

In this shell session, not much is happening. The first process shows
that the user named jake opened a bash shell after logging in. The next
process shows that jake has run the ps u command. The terminal
device tty1 is being used for the login session. The STAT column
represents the state of the process, with R indicating a currently
running process and S representing a sleeping process.

NOTE
Several other values can appear under the STAT column. For
example, a plus sign (+) indicates that the process is associated
with the foreground operations.

The USER column shows the name of the user who started the process.
Each process is represented by a unique ID number referred to as a
process ID, or PID. You can use the PID if you ever need to kill a
runaway process or send another kind of signal to a process. The %CPU
and %MEM columns show the percentages of the processor and random
access memory, respectively, that the process is consuming.

VSZ (virtual set size) shows the size of the image process (in
kilobytes), and RSS (resident set size) shows the size of the program in
memory. The VSZ and RSS sizes may be different because VSZ is the
amount of memory allocated for the process, whereas RSS is the
amount that is actually being used. RSS memory represents physical
memory that cannot be swapped.

START shows the time the process began running, and TIME shows the
cumulative system time used. (Many commands consume very little
CPU time, as reflected by 0:00 for processes that haven't even used a
whole second of CPU time.)

Many processes running on a computer are not associated with a
terminal. A normal Linux system has many processes running in the
background. Background system processes perform such tasks as
logging system activity or listening for data coming in from the
network. They are often started when Linux boots up and run
continuously until the system shuts down. Likewise, logging into a
Linux desktop causes many background processes to kick off, such as
processes for managing audio, desktop panels, authentication, and
other desktop features.

To page through all of the processes running on your Linux system for
the current user, add the pipe (|) and the less command to ps ux:

$ ps ux | less

To page through all processes running for all users on your system, use
the ps aux command as follows:

$ ps aux | less

A pipe (located above the backslash character on the keyboard)
enables you to direct the output of one command to be the input of the
next command. In this example, the output of the ps command (a list
of processes) is directed to the less command, which enables you to
page through that information. Use the spacebar to page through and
type q to end the list. You can also use the arrow keys to move one line
at a time through the output.

The ps command can be customized to display selected columns of
information and to sort information by one of those columns. Using
the -o option, you can use keywords to indicate the columns you want
to list with ps. For example, the next example lists every running
process (-e) and then follows the -o option with every column of
information I want to display, including

the process ID (pid), username (user), user ID (uid), group name
(group), group ID (gid), virtual memory allocated (vsz), resident
memory used (rss), and the full command line that was run (comm). By
default, output is sorted by process ID number.

$ ps -eo pid,user,uid,group,gid,vsz,rss,comm | less

 PID USER UID GROUP GID VSZ RSS COMMAND

 1 root 0 root 0 187660 13296 systemd

 2 root 0 root 0 0 0 kthreadd

If you want to sort by a specific column, you can use the sort= option.
For example, to see which processes are using the most memory, I sort
by the vsz field. That sorts from lowest memory use to highest.
Because I want to see the highest ones first, I put a hyphen in front of
that option to sort (sort=-vsz).

$ ps -eo pid,user,group,gid,vsz,rss,comm --sort=-vsz | head

 PID USER GROUP GID VSZ RSS COMMAND

 2366 chris chris 1000 3720060 317060 gnome-shell

 1580 gdm gdm 42 3524304 205796 gnome-shell

 3030 chris chris 1000 2456968 248340 firefox

 3233 chris chris 1000 2314388 316252 Web Content

Refer to the ps man page for information on other columns of
information by which you can display and sort.

Listing and changing processes with top
The top command provides a screen-oriented means of displaying
processes running on your system. With top, the default is to display
processes based on how much CPU time they are currently consuming.
However, you can sort by other columns as well. After you identify a
misbehaving process, you can also use top to kill (completely end) or
renice (reprioritize) that process.

If you want to be able to kill or renice any processes, you need to run
top as the root user. If you just want to display processes and possibly
kill or change your own processes, you can do that as a regular user.
Figure 6.1 shows an example of the top window.

General information about your system appears at the top of the top
output, followed by information about each running process (or at
least as many as will fit on your screen). At the top, you can see how
long the system has been up, how many users are currently logged in
to the system, and how much demand there has been on the system for
the past 1, 5, and 10 minutes.

Other general information includes how many processes (tasks) are
currently running, how much CPU is being used, and how much RAM
and swap are available and being used. Following the general
information are listings of each process, sorted by what percent of the
CPU is being used by each process. All of this information is
redisplayed every 5 seconds, by default.

FIGURE 6.1 Displaying running processes with top

The following list includes actions that you can do with top to display
information in different ways and modify running processes:

Press h to see help options, and then press any key to return to
the top display.

Press M to sort by memory usage instead of CPU, and then press
P to return to sorting by CPU.

Press the number 1 to toggle showing CPU usage of all your CPUs
if you have more than one CPU on your system.

Press R to reverse sort your output.

Press u and enter a username to display processes only for a
particular user.

A common practice is to use top to find processes that are consuming
too much memory or processing power and then act on those
processes in some way. A process consuming too much CPU can be
reniced to give it less priority to the processors. A process consuming
too much memory can be killed. With top running, here's how to
renice or kill a process:

Renicing a process Note the process ID of the process you want
to renice and press r. When the PID to renice message appears,
type the process ID of the process you want to renice. When
prompted to Renice PID to value, type in a number from –20 to

19. (See “Setting processor priority with nice and renice” later in
this chapter for information on the meanings of different renice
values.)

Killing a process Note the process ID of the process you want to
kill and press k. Type 15 to terminate cleanly or 9 to just kill the
process outright. (See “Killing processes with kill and killall” later
in this chapter for more information on using different signals you
can send to processes.)

Listing processes with System Monitor
If you have GNOME desktop available on your Linux system, System
Monitor (gnome-system-monitor) is available to provide a more
graphical way of displaying processes on your system. You sort
processes by clicking columns. You can right-click processes to stop,
kill, or renice them.

To start System Monitor from the GNOME desktop, press the
Windows key and then type System Monitor and press Enter. Then
select the Processes tab. Figure 6.2 shows an example of the System
Monitor window, displaying processes for the current user in order by
memory use.

FIGURE 6.2 Use the System Monitor window to view and change
running processes.

By default, only running processes associated with your user account

are displayed. Those processes are listed alphabetically at first. You
can resort the processes by clicking any of the field headings (forward
and reverse). For example, click the %CPU heading to see which
processes are consuming the most processing power. Click the
Memory heading to see which processes consume the most memory.

You can change your processes in various ways by right-clicking a
process name and selecting from the menu that appears (see Figure
6.3 for an example).

Here are some of the things you can do to a process from the menu
you clicked:

Stop: Pauses the process so that no processing occurs until you
select Continue Process. (This is the same as pressing Ctrl+Z on a
process from the shell.)

Continue: Continues running a paused process.

End: Sends a Terminate signal (15) to a process. In most cases,
this terminates the process cleanly.

Kill: Sends a Kill signal (9) to a process. This should kill a process
immediately, regardless of whether it can be done cleanly.

FIGURE 6.3 Renice, kill, or pause a process from the System
Monitor window.

Change Priority: Presents a list of priorities from Very Low to
Very High. Select Custom to see a slider bar from which you can
renice a process. Normal priority is 0. To get better processor

priority, use a negative number from –1 to –20. To have a lower
processor priority, use a positive number (0 to 19). Only the root
user can assign negative priorities, so when prompted you need to
provide the root password to set a negative nice value.

Memory Maps: Lets you view the system memory map to see
which libraries and other components are being held in memory
for the process.

Open Files: Lets you view which files are currently being held
open by the process.

Properties: Lets you see other settings associated with the process
(such as security context, memory usage, and CPU use
percentages).

You can display running processes associated with users other than
yourself. To do that, highlight any process in the display (just click it).
Then, from the menu button (the button with three bars on it), select
All Processes. You can modify processes you don't own only if you are
the root user or if you can provide the root password when prompted
after you try to change a process. Sometimes, you won't have the
luxury of working with a graphical interface. To change processes
without a graphical interface, you can use a set of commands and
keystrokes to change, pause, or kill running processes. Some of those
are described next.

Managing Background and Foreground
Processes
If you are using Linux over a network or from a dumb terminal (a
monitor that allows only text input with no GUI support), your shell
may be all that you have. You may be used to a graphical environment
in which you have lots of programs active at the same time so that you
can switch among them as needed. This shell thing can seem pretty
limited.

Although the bash shell doesn't include a GUI for running many
programs at once, it does let you move active programs between the
background and foreground. In this way, you can have lots of stuff
running and selectively choose the one you want to deal with at the
moment.

You can place an active program in the background in several ways.
One is to add an ampersand (&) to the end of a command line when
you first run the command. You can also use the at command to run
commands in such a way that they are not connected to the shell.

To stop a running command and put it in the background, press
Ctrl+Z. After the command is stopped, you can either bring it back
into the foreground to run (the fg command) or start it running in the
background (the bg command). Keep in mind that any command
running in the background might spew output during commands that
you run subsequently from that shell. For example, if output appears
from a command running in the background during a vi session,
simply press Ctrl+L to redraw the screen to get rid of the output.

TIP
To avoid having the output appear, you should have any process
running in the background send its output to a file or to null (add
2> /dev/null to the end of the command line).

Starting background processes
If you have programs that you want to run while you continue to work
in the shell, you can place the programs in the background. To place a
program in the background at the time you run the program, type an
ampersand (&) at the end of the command line, like this:

$ find /usr> /tmp/allusrfiles &

[3] 15971

This example command finds all files on your Linux system (starting
from /usr), prints those filenames, and puts those names in the file
/tmp/allusrfiles. The ampersand (&) runs that command line in the
background. Notice that the job number, [3], and process ID number,
15971, are displayed when the command is launched. To check which
commands you have running in the background, use the jobs
command, as follows:

$ jobs

[1] Stopped (tty output) vi /tmp/myfile

[2] Running find /usr -print > /tmp/allusrfiles &

[3] Running nroff -man /usr/man2/* >/tmp/man2 &

[4]- Running nroff -man /usr/man3/* >/tmp/man3 &

[5]+ Stopped nroff -man /usr/man4/* >/tmp/man4

The first job shows a text-editing command (vi) that I placed in the
background and stopped by pressing Ctrl+Z while I was editing. Job 2
shows the find command I just ran. Jobs 3 and 4 show nroff
commands currently running in the background. Job 5 had been
running in the shell (foreground) until I decided too many processes
were running and pressed Ctrl+Z to stop job 5 until a few processes
had completed.

The plus sign (+) next to number 5 shows that it was most recently
placed in the background. The minus sign (-) next to number 4 shows
that it was placed in the background just before the most recent
background job. Because job 1 requires terminal input, it cannot run in
the background. As a result, it is Stopped until it is brought to the
foreground again.

TIP
To see the process ID for the background job, add a -l (the
lowercase letter L) option to the jobs command. If you type ps, you
can use the process ID to figure out which command is for a
particular background job.

Using foreground and background commands
Continuing with the example, you can bring any of the commands on
the jobs list to the foreground. For example, to edit myfile again, enter
the following:

$ fg %1

As a result, the vi command opens again. All text is as it was when you
stopped the vi job.

CAUTION
Before you put a text processor, word processor, or similar
program in the background, make sure that you save your file. It's
easy to forget that you have a program in the background, and you
will lose your data if you log out or the computer reboots.

To refer to a background job (to cancel or bring it to the foreground),
use a percent sign (%) followed by the job number. You can also use the
following to refer to a background job:
% Refers to the most recent command put into the

background (indicated by the plus sign when you type the

jobs command). This action brings the command to the

foreground.

%string Refers to a job where the command begins with a particular
string of characters. The string must be unambiguous. (In
other words, typing %vi when there are two vi commands in
the background results in an error message.)

%?

string

Refers to a job where the command line contains a string at
any point. The string must be unambiguous or the match
fails.

%-- Refers to the job stopped before the one most recently
stopped.

If a command is stopped, you can start it running again in the
background using the bg command. For example, refer back to job 5
from the jobs list in a previous example:

[5]+ Stopped nroff -man /usr/man4/*>/tmp/man4

Enter the following:

$ bg %5

After that, the job runs in the background. Its jobs entry appears as
follows:

[5] Running nroff -man /usr/man4/*>/tmp/man4 &

Killing and Renicing Processes
Just as you can change the behavior of a process using graphical tools
such as System Monitor (described earlier in this chapter), you can
also use command-line tools to kill a process or change its CPU
priority. The kill command can send a kill signal to any process to
end it, assuming you have permission to do so. It can also send
different signals to a process to otherwise change its behavior. The
nice and renice commands can be used to set or change the processor
priority of a process.

Killing processes with kill and killall
Although usually used for ending a running process, the kill and
killall commands can actually be used to send any valid signal to a
running process. Besides telling a process to end, a signal might tell a
process to reread configuration files, pause (stop), or continue after
being paused, just to name a few possibilities.

Signals are represented by both numbers and names. Signals that you
might send most commonly from a command include SIGKILL (9),
SIGTERM (15), and SIGHUP (1). The default signal is SIGTERM, which tries
to terminate a process cleanly. To kill a process immediately, you can
use SIGKILL. The SIGHUP signal can, depending on the program, tell a
process to reread its configuration files. SIGSTOP pauses a process,
while SIGCONT continues a stopped process.

Different processes respond to different signals. Processes cannot
block SIGKILL and SIGSTOP signals, however. Table 6.1 shows examples
of some signals (enter man 7 signal to read about other available
signals).

Notice that there are multiple possible signal numbers for SIGCONT and
SIGSTOP because different numbers are used in different computer
architectures. For most x86 and Power architectures, use the middle
value. The first value usually works for Alpha and SPARC, while the
last one is for MIPS architecture.

Using kill to signal processes by PID
Using commands such as ps and top, you can find processes to which
you want to send a signal. Then you can use the process ID of that
process as an option to the kill command, along with the signal you
want to send.

TABLE 6.1 Signals Available in Linux
Signal Number Description

SIGHUP 1 Hang-up detected on controlling terminal or death
of controlling process.

SIGINT 2 Interrupt from keyboard.
SIGQUIT 3 Quit from keyboard.
SIGABRT 6 Abort signal from abort(3).
SIGKILL 9 Kill signal.
SIGTERM 15 Termination signal.
SIGCONT 19,18,25 Continue if stopped.
SIGSTOP 17,19,23 Stop process.

For example, you run the top command and see that the bigcommand
process is consuming most of your processing power:

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+

COMMAND

10432 chris 20 0 471m 121m 18m S 99.9 3.2 77:01.76

bigcommand

Here, the bigcommand process is consuming 99.9 percent of the CPU.
You decide that you want to kill it so that other processes have a shot
at the CPU. If you use the process ID of the running bigcommand
process, here are some examples of the kill command that you can
use to kill that process:

$ kill 10432

$ kill -15 10432

$ kill -SIGKILL 10432

The default signal sent by kill is 15 (SIGTERM), so the first two examples

have exactly the same results. On occasion, a SIGTERM doesn't kill a
process, so you may need a SIGKILL to kill it. Instead of SIGKILL, you
can use –9 to get the same result.

Another useful signal is SIGHUP. If, for example, something on your
GNOME desktop were corrupted, you could send the gnome-shell a
SIGHUP signal to reread its configuration files and restart the desktop.
If the process ID for gnome-shell were 1833, here are two ways you
could send it a SIGHUP signal:

kill -1 1833

killall -HUP gnome-shell

Using killall to signal processes by name
With the killall command, you can signal processes by name instead
of by process ID. The advantage is that you don't have to look up the
process ID of the process that you want to kill. The potential downside
is that you can kill more processes than you mean to if you are not
careful. (For example, typing killall bash may kill a bunch of shells
that you don't mean to kill.)

Like the kill command, killall uses SIGTERM (signal 15) if you don't
explicitly enter a signal number. Also as with kill, you can send any
signal you like to the process you name with killall. For example, if
you see a process called testme running on your system and you want
to kill it, you can simply enter the following:

$ killall -9 testme

The killall command can be particularly useful if you want to kill a
bunch of commands of the same name.

Setting processor priority with nice and renice
When the Linux kernel tries to decide which running processes get
access to the CPUs on your system, one of the things it takes into
account is the nice value set on the process. Every process running on
your system has a nice value between –20 and 19. By default, the nice
value is set to 0. Here are a few facts about nice values:

The lower the nice value, the more access to the CPUs the process

has. In other words, the nicer a process is, the less CPU attention
it gets. So, a –20 nice value gets more attention than a process
with a 19 nice value.

A regular user can set nice values only from 0 to 19. No negative
values are allowed. So a regular user can't ask for a value that
gives a process more attention than most processes get by default.

A regular user can set the nice value higher, not lower. So, for
example, if a user sets the nice value on a process to 10 and then
later wants to set it back to 5, that action will fail. Likewise, any
attempt to set a negative value will fail.

A regular user can set the nice value only on the user's own
processes.

The root user can set the nice value on any process to any valid
value, up or down.

You can use the nice command to run a command with a particular
nice value. When a process is running, you can change the nice value
using the renice command, along with the process ID of the process,
as in the example that follows:

nice -n +5 updatedb &

The updatedb command is used to generate the locate database
manually by gathering names of files throughout the filesystem. In this
case, I just wanted updatedb to run in the background (&) and not
interrupt work being done by other processes on the system. I ran the
top command to make sure that the nice value was set properly:

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

20284 root 25 5 98.7m 932 644 D 2.7 0.0 0:00.96 updatedb

Notice that under the NI column, the nice value is set to 5. Because the
command was run as the root user, the root user can lower the nice
value later by using the renice command. (Remember that a regular
user can't reduce the nice value or ever set it to a negative number.)
Here's how you would change the nice value for the updatedb
command just run to –5:

renice -n -5 20284

If you ran the top command again, you might notice that the updatedb
command is now at or near the top of the list of processes consuming
CPU time because you gave it priority to get more CPU attention.

Limiting Processes with cgroups
You can use a feature like “nice” to give a single process more or less
access to CPU time. Setting the nice value for one process, however,
doesn't apply to child processes that a process might start up or any
other related processes that are part of a larger service. In other words,
“nice” doesn't limit the total amount of resources a particular user or
application can consume from a Linux system.

As cloud computing takes hold, many Linux systems will be used more
as hypervisors than as general-purpose computers. Their memory,
processing power, and access to storage will become commodities to
be shared by many users. In that model, more needs to be done to
control the amount of system resources to which a particular user,
application, container, or virtual machine running on a Linux system
has access.

That's where cgroups come in.

Cgroups can be used to identify a process as a task, belonging to a
particular control group. Tasks can be set up in a hierarchy where, for
example, there may be a task called daemons that sets default
limitations for all daemon server processes, then subtasks that may set
specific limits on a web server daemon (httpd) for FTP service daemon
(vsftpd).

As a task launches a process, other processes that the initial process
launches (called child processes) inherit the limitations set for the
parent process. Those limitations might say that all the processes in a
control group only have access to particular processors and certain
sets of RAM. Or they may only allow access to up to 30 percent of the
total processing power of a machine.

The types of resources that can be limited by cgroups include the
following:

Storage (blkio): Limits total input and output access to storage
devices (such as hard disks, USB drives, and so on).

Processor scheduling (cpu): Assigns the amount of access a

cgroup has to be scheduled for processing power.

Process accounting (cpuacct): Reports on CPU usage. This
information can be leveraged to charge clients for the amount of
processing power they use.

CPU assignment (cpuset): On systems with multiple CPU
cores, assigns a task to a particular set of processors and
associated memory.

Device access (devices): Allows tasks in a cgroup to open or
create (mknod) selected device types.

Suspend/resume (freezer): Suspends and resumes cgroup
tasks.

Memory usage (memory): Limits memory usage by task. It also
creates reports on memory resources used.

Network bandwidth (net_cls): Limits network access to
selected cgroup tasks. This is done by tagging network packets to
identify the cgroup task that originated the packet and having the
Linux traffic controller monitor and restrict packets coming from
each cgroup.

Network traffic (net_prio): Sets priorities of network traffic
coming from selected cgroups and lets administrators change
these priorities on the fly.

Name spaces (ns): Separates cgroups into namespaces, so
processes in one cgroup can only see the namespaces associated
with the cgroup. Namespaces can include separate process tables,
mount tables, and network interfaces.

At its most basic level, creating and managing cgroups is generally not
a job for new Linux system administrators. It can involve editing
configuration files to create your own cgroups (/etc/cgconfig.conf) or
set up limits for particular users or groups (/etc/cgrules.conf). Or
you can use the cgcreate command to create cgroups, which results in
those groups being added to the /sys/fs/cgroup hierarchy. Setting up
cgroups can be tricky and, if done improperly, can make your system
unbootable.

The reason I bring up the concept of cgroups here is to help you
understand some of the underlying features in Linux that can be used
to limit and monitor resource usage. In the future, you will probably
run into these features from controllers that manage your cloud
infrastructure. You will be able to set rules like “Allow the Marketing
department's virtual machines to consume up to 40 percent of the
available memory” or “Pin the database application to a particular
CPU and memory set.”

Knowing how Linux can limit and contain the resource usage by the
set of processes assigned to a task will ultimately help you manage
your computing resources better. If you are interested in learning
more about cgroups, you can refer to the following:

Red Hat Enterprise Linux Resource Management and
Linux Containers Guide:
https://access.redhat.com/documentation/en-

us/red_hat_enterprise_linux/7/html-

single/resource:management_guide/index

Kernel documentation on cgroups: Refer to files in the
/usr/share/doc/kernel-doc-*/Documentation/cgroups directory
after installing the kernel-doc package.

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html-single/resource:management_guide/index

Summary
Even on a Linux system where there isn't much activity, typically
dozens or even hundreds of processes are running in the background.
Using the tools described in this chapter, you can view and manage the
processes running on your system.

Managing processes includes viewing processes in different ways,
running them in the foreground or background, and killing or renicing
them. More advanced features for limiting resource usage by selected
processes are available using the cgroups feature.

In the next chapter, you learn how to combine commands and
programming functions into files that can be run as shell scripts.

Exercises
Use these exercises to test your knowledge of viewing running
processes and then changing them later by killing them or changing
processor priority (nice value). These tasks assume that you are
running a Fedora or Red Hat Enterprise Linux system (although some
tasks work on other Linux systems as well). If you are stuck, solutions
to the tasks are shown in Appendix B (although in Linux, you can often
use multiple ways to complete a task).

1. List all processes running on your system, showing a full set of
columns. Pipe that output to the less command so that you can
page through the list of processes.

2. List all processes running on the system and sort those processes
by the name of the user running each process.

3. List all processes running on the system, and display the following
columns of information: process ID, username, group name,
virtual memory size, resident memory size, and the command.

4. Run the top command to view processes running on your system.
Go back and forth between sorting by CPU usage and memory
consumption.

5. Start the gedit process from your desktop. Make sure that you run
it as the user you are logged in as. Use the System Monitor
window to kill that process.

6. Run the gedit process again. This time, using the kill command,
send a signal to the gedit process that causes it to pause (stop).
Try typing some text into the gedit window and make sure that no
text appears yet.

7. Use the killall command to tell the gedit command that you
paused in the previous exercise to continue working. Make sure
that the text you type in after gedit was paused now appears on
the window.

8. Install the xeyes command (in Fedora, it is in the xorg-x11-apps

package). Run the xeyes command about 20 times in the
background so that 20 xeyes windows appear on the screen. Move
the mouse around and watch the eyes watch your mouse pointer.
When you have had enough fun, kill all xeyes processes in one
command using killall.

9. As a regular user, run the gedit command so that it starts with a
nice value of 5.

10. Using the renice command, change the nice value of the gedit
command you just started to 7. Use any command you like to
verify that the current nice value for the gedit command is now
set to 7.

CHAPTER 7
Writing Simple Shell Scripts

IN THIS CHAPTER
Working with shell scripts

Doing arithmetic in shell scripts

Running loops and cases in shell scripts

Creating simple shell scripts

You'd never get any work done if you typed every command that needs
to be run on your Linux system when it starts. Likewise, you could
work more efficiently if you grouped together sets of commands that
you run all the time. Shell scripts can handle these tasks.

A shell script is a group of commands, functions, variables, or just
about anything else you can use from a shell. These items are typed
into a plain-text file. That file can then be run as a command. Linux
systems have traditionally used system initialization shell scripts
during system startup to run commands needed to get services going.
You can create your own shell scripts to automate the tasks that you
need to do regularly.

For decades, building shell scripts was the primary skill needed to join
together sets of tasks in UNIX and Linux systems. As demands for
configuring Linux systems grew beyond single-system setups to
complex, automated cluster configurations, more structured methods
have arisen. These methods include Ansible playbooks and Kubernetes
YAML files, described later in cloud-related chapters. That said,
writing shell scripts is still the best next step from running individual
commands to building repeatable tasks in Linux systems.

This chapter provides a rudimentary overview of the inner workings of
shell scripts and how they can be used. You learn how simple scripts

can be harnessed to a scheduling facility (such as cron or at) to
simplify administrative tasks or just run on demand as they are
needed.

Understanding Shell Scripts
Have you ever had a task that you needed to do over and over that took
lots of typing on the command line? Do you ever think to yourself,
“Wow, I wish I could just type one command to do all this”? Maybe a
shell script is what you're after.

Shell scripts are the equivalent of batch files in Windows and can
contain long lists of commands, complex flow control, arithmetic
evaluations, user-defined variables, user-defined functions, and
sophisticated condition testing. Shell scripts are capable of handling
everything from simple one-line commands to something as complex
as starting up a Linux system. Although dozens of different shells are
available in Linux, the default shell for most Linux systems is called
bash, the Bourne Again SHell.

Executing and debugging shell scripts
One of the primary advantages of shell scripts is that they can be
opened in any text editor to see what they do. A big disadvantage is
that large or complex shell scripts often execute more slowly than
compiled programs. You can execute a shell script in two basic ways:

The filename is used as an argument to the shell (as in bash
myscript). In this method, the file does not need to be executable;
it just contains a list of shell commands. The shell specified on the
command line is used to interpret the commands in the script file.
This is most common for quick, simple tasks.

The shell script may also have the name of the interpreter placed
in the first line of the script preceded by #! (as in #!/bin/bash)
and have the execute bit of the file containing the script set (using
chmod +x filename). You can then run your script just as you
would any other program in your path simply by typing the name
of the script on the command line.

When scripts are executed in either manner, options for the program
may be specified on the command line. Anything following the name
of the script is referred to as a command-line argument.

As with writing any software, there is no substitute for clear and
thoughtful design and lots of comments. The pound sign (#) prefaces
comments and can take up an entire line or exist on the same line after
script code. It is best to implement more complex shell scripts in
stages, making sure that the logic is sound at each step before
continuing. Here are a few good, concise tips to make sure that things
are working as expected during testing:

In some cases, you can place an echo statement at the beginning of
lines within the body of a loop and surround the command with
quotes. That way, rather than executing the code, you can see
what will be executed without making any permanent changes.

To achieve the same goal, you can place dummy echo statements
throughout the code. If these lines get printed, you know the
correct logic branch is being taken.

You can use set -x near the beginning of the script to display each
command that is executed or launch your scripts using

 $ bash -x myscript

Because useful scripts have a tendency to grow over time, keeping
your code readable as you go along is extremely important. Do
what you can to keep the logic of your code clean and easy to
follow.

Understanding shell variables
Often within a shell script, you want to reuse certain items of
information. During the course of processing the shell script, the name
or number representing this information may change. To store
information used by a shell script in such a way that it can be easily
reused, you can set variables. Variable names within shell scripts are
case sensitive and can be defined in the following manner:

NAME=value

The first part of a variable is the variable name, and the second part is
the value set for that name. Be sure that the NAME and value touch the
equal sign, without any spaces. Variables can be assigned from

constants, such as text, numbers, and underscores. This is useful for
initializing values or saving lots of typing for long constants. The
following examples show variables set to a string of characters (CITY)
and a numeric value (PI):

CITY="Springfield"

PI=3.14159265

Variables can contain the output of a command or command
sequence. You can accomplish this by preceding the command with a
dollar sign and open parenthesis, following it with a closing
parenthesis. For example, MYDATE=$(date)assigns the output from the
date command to the MYDATE variable. Enclosing the command in
back-ticks (`) can have the same effect. In this case, the date
command is run when the variable is set and not each time the
variable is read.

Escaping Special Shell Characters
Keep in mind that characters such as the dollar sign ($), back-tick
(`), asterisk (*), exclamation point (!), and others have special
meaning to the shell, which you will see as you proceed through
this chapter. On some occasions, you want the shell to use these
characters’ special meaning and other times you don't. For
example, if you typed echo $HOME, the shell would think that you
meant to display the name of your home directory (stored in the
$HOME variable) to the screen (such as /home/chris) because a $
indicates a variable name follows that character.

If you wanted literally to show $HOME, you would need to escape the
$. Typing echo '$HOME' or echo \$HOME would literally show $HOME
on the screen. So, if you want to have the shell interpret a single
character literally, precede it with a backslash (\). To have a whole
set of characters interpreted literally, surround those characters
with single quotes (').

Using double quotes is a bit trickier. Surround a set of text with
double quotes if you want all but a few characters used literally.
For example, with text surrounded with double quotes, dollar signs
($), back-ticks (`), and exclamation points (!) are interpreted
specially, but other characters (such as an asterisk) are not. Type
these three lines to see the different output (shown on the right):

 echo '$HOME * `date`' $HOME * `date`

 echo ″$HOME * `date`″ /home/chris * Tue Jan 21 16:56:52

EDT 2020

 echo $HOME * `date` /home/chris file1 file2 Tue Jan 21

16:56:52 EDT 2020

Using variables is a great way to get information that can change from
computer to computer or from day to day. The following example sets
the output of the uname -n command to the MACHINE variable. Then I
use parentheses to set NUM_FILES to the number of files in the current

directory by piping (|) the output of the ls command to the word
count command (wc -l):

MACHINE=`uname -n`

NUM_FILES=$(/bin/ls | wc -l)

Variables can also contain the value of other variables. This is useful
when you have to preserve a value that will change so that you can use
it later in the script. Here, BALANCE is set to the value of the CurBalance
variable:

BALANCE="$CurBalance"

NOTE
When assigning variables, use only the variable name (for example,
BALANCE). When you reference a variable, meaning that you want
the value of the variable, precede it with a dollar sign (as in
$CurBalance). The result of the latter is that you get the value of the
variable, not the variable name itself.

Special shell positional parameters
There are special variables that the shell assigns for you. One set of
commonly used variables is called positional parameters or
command-line arguments, and it is referenced as $0, $1, $2, $3…$n.
$0 is special, and it is assigned the name used to invoke your script;
the others are assigned the values of the parameters passed on the
command line in the order they appeared. For instance, let's say that
you had a shell script named myscript which contained the following:

#!/bin/bash

Script to echo out command-line arguments

echo "The first argument is $1, the second is $2."

echo "The command itself is called $0."

echo "There are $# parameters on your command line"

echo "Here are all the arguments: $@"

Assuming that the script is executable and located in a directory in
your $PATH, the following shows what would happen if you ran that
command with foo and bar as arguments:

$ chmod 755 /home/chris/bin/myscript

$ myscript foo bar

The first argument is foo, the second is bar.

The command itself is called /home/chris/bin/myscript.

There are 2 parameters on your command line

Here are all the arguments: foo bar

As you can see, the positional parameter $0 is the full path or relative
path to myscript, $1 is foo, and $2 is bar.

Another variable, $#, tells you how many parameters your script was

given. In the example, $# would be 2. The $@ variable holds all of the
arguments entered at the command line. Another particularly useful
special shell variable is $?, which receives the exit status of the last
command executed. Typically, a value of zero means that the
command exited successfully, and anything other than zero indicates
an error of some kind. For a complete list of special shell variables,
refer to the bash man page.

Reading in parameters
Using the read command, you can prompt the user for information
and store that information to use later in your script. Here's an
example of a script that uses the read command:

#!/bin/bash

read -p "Type in an adjective, noun and verb (past tense): "

adj1 noun1 verb1

echo "He sighed and $verb1 to the elixir. Then he ate the

$adj1 $noun1."

In this script, after the script prompts for an adjective, noun, and verb,
the user is expected to enter words that are then assigned to the adj1,
noun1, and verb1 variables. Those three variables are then included in a
silly sentence, which is displayed on the screen. If the script were
called sillyscript, here's an example of how it might run:

$ chmod 755 /home/chris/bin/sillyscript

$ sillyscript

Type in an adjective, noun and verb (past tense): hairy

football danced

He sighed and danced to the elixir. Then he ate the hairy

football.

Parameter expansion in bash
As mentioned earlier, if you want the value of a variable, you precede it
with a $ (for example, $CITY). This is really just shorthand for the
notation ${CITY}; curly braces are used when the value of the
parameter needs to be placed next to other text without a space. Bash
has special rules that allow you to expand the value of a variable in
different ways. Going into all of the rules is probably overkill for a
quick introduction to shell scripts, but the following list presents some

common constructs you're likely to see in bash scripts that you find on
your Linux system.

${var:-value}: If variable is unset or empty, expand this to value.

${var#pattern}: Chop the shortest match for pattern from the
front of var's value.

${var##pattern}: Chop the longest match for pattern from the
front of var's value.

${var%pattern}: Chop the shortest match for pattern from the end
of var's value.

${var%%pattern}: Chop the longest match for pattern from the
end of var's value.

Try typing the following commands from a shell to test how parameter
expansion works:

$ THIS="Example"

$ THIS=${THIS:-"Not Set"}

$ THAT=${THAT:-"Not Set"}

$ echo $THIS

Example

$ echo $THAT

Not Set

In the examples here, the THIS variable is initially set to the word
Example. In the next two lines, the THIS and THAT variables are set to
their current values or to Not Set, if they are not currently set. Notice
that because I just set THIS to the string Example, when I echo the value
of THIS it appears as Example. However, because THAT was not set, it
appears as Not Set.

NOTE
For the rest of this section, I show how variables and commands
may appear in a shell script. To try out any of those examples,
however, you can simply type them into a shell, as shown in the
previous example.

In the following example, MYFILENAME is set to /home/digby/myfile.txt.
Next, the FILE variable is set to myfile.txt and DIR is set to
/home/digby. In the NAME variable, the filename is cut down simply to
myfile; then, in the EXTENSION variable, the file extension is set to txt.
(To try these out, you can type them at a shell prompt as in the
previous example and echo the value of each variable to see how it is
set.) Type the code on the left. The material on the right side describes
the action.

MYFILENAME=/home/digby/myfile.txt: Sets the value of MYFILENAME

FILE=${MYFILENAME##*/}: FILE becomes myfile.txt

DIR=${MYFILENAME%/*}: DIR becomes /home/digby

NAME=${FILE%.*}: NAME becomes myfile

EXTENSION=${FILE##*.}: EXTENSION becomes txt

Performing arithmetic in shell scripts
Bash uses untyped variables, meaning it normally treats variables as
strings of text, but you can change them on the fly if you want it to.

Bash uses untyped variables, meaning that you are not required to
specify whether a variable is text or numbers. It normally treats
variables as strings of text, so unless you tell it otherwise with declare,
your variables are just a bunch of letters to bash. However, when you
start trying to do arithmetic with them, bash converts them to integers
if it can. This makes it possible to do some fairly complex arithmetic in
bash.

Integer arithmetic can be performed using the built-in let command

or through the external expr or bc commands. After setting the
variable BIGNUM value to 1024, the three commands that follow would
all store the value 64 in the RESULT variable. The bc command is a
calculator application that is available in most Linux distributions. The
last command gets a random number between 0 and 10 and echoes the
results back to you.

BIGNUM=1024

let RESULT=$BIGNUM/16

RESULT=`expr $BIGNUM / 16`

RESULT=`echo "$BIGNUM / 16" | bc`

let foo=$RANDOM; echo $foo

Another way to grow a variable incrementally is to use $(()) notation
with ++I added to increment the value of I. Try typing the following:

$ I=0

$ echo "The value of I after increment is $((++I))"

The value of I after increment is 1

$ echo "The value of I before and after increment is

$((I++)) and $I"

The value of I before and after increment is 1 and 2

Repeat either of those commands to continue to increment the value
of $I.

NOTE
Although most elements of shell scripts are relatively freeform
(where white space, such as spaces or tabs, is insignificant), both
let and expr are particular about spacing. The let command
insists on no spaces between each operand and the mathematical
operator, whereas the syntax of the expr command requires white
space between each operand and its operator. In contrast to those,
bc isn't picky about spaces, but it can be trickier to use because it
does floating-point arithmetic.

To see a complete list of the kinds of arithmetic that you can perform
using the let command, type help let at the bash prompt.

Using programming constructs in shell scripts
One of the features that makes shell scripts so powerful is that their
implementation of looping and conditional execution constructs is
similar to those found in more complex scripting and programming
languages. You can use several different types of loops, depending on
your needs.

The ″if…then″ statements
The most commonly used programming construct is conditional
execution, or the if statement. It is used to perform actions only under
certain conditions. There are several variations of if statements for
testing various types of conditions.

The first if…then example tests if VARIABLE is set to the number 1. If it
is, then the echo command is used to say that it is set to 1. The fi
statement then indicates that the if statement is complete, and
processing can continue.

VARIABLE=1

if [$VARIABLE -eq 1] ; then

echo "The variable is 1"

fi

Instead of using -eq, you can use the equal sign (=), as shown in the
following example. The = works best for comparing string values, while
-eq is often better for comparing numbers. Using the else statement,
different words can be echoed if the criterion of the if statement isn't
met ($STRING = ″Friday″). Keep in mind that it's good practice to put
strings in double quotes.

STRING="Friday"

if [$STRING = "Friday"] ; then

echo "WhooHoo. Friday."

else

echo "Will Friday ever get here?"

fi

You can also reverse tests with an exclamation mark (!). In the
following example, if STRING is not Monday, then ″At least it's not
Monday″ is echoed.

STRING="FRIDAY"

if ["$STRING" != "Monday"] ; then

 echo "At least it's not Monday"

fi

In the following example, elif (which stands for “else if”) is used to
test for an additional condition (for example, whether filename is a file
or a directory).

filename="$HOME"

if [-f "$filename"] ; then

 echo "$filename is a regular file"

elif [-d "$filename"] ; then

 echo "$filename is a directory"

else

 echo "I have no idea what $filename is"

fi

As you can see from the preceding examples, the condition you are
testing is placed between square brackets []. When a test expression
is evaluated, it returns either a value of 0, meaning that it is true, or a
1, meaning that it is false. Notice that the echo lines are indented. The
indentation is optional and done only to make the script more
readable.

Table 7.1 lists the conditions that are testable and is quite a handy
reference. (If you're in a hurry, you can type help test on the
command line to get the same information.)

TABLE 7.1 Operators for Test Expressions

Operator What Is Being Tested?
-a file Does the file exist? (same as -e)
-b file Is the file a block special device?
-c file Is the file character special (for example, a character

device)? Used to identify serial lines and terminal devices.
-d file Is the file a directory?
-e file Does the file exist? (same as -a)
-f file Does the file exist, and is it a regular file (for example, not

a directory, socket, pipe, link, or device file)?
-g file Does the file have the set group id (SGID) bit set?
-h file Is the file a symbolic link? (same as -L)
-k file Does the file have the sticky bit set?
-L file Is the file a symbolic link?
-n string Is the length of the string greater than 0 bytes?
-O file Do you own the file?
-p file Is the file a named pipe?
-r file Is the file readable by you?
-s file Does the file exist, and is it larger than 0 bytes?
-S file Does the file exist, and is it a socket?
-t fd Is the file descriptor connected to a terminal?
-u file Does the file have the set user id (SUID) bit set?
-w file Is the file writable by you?
-x file Is the file executable by you?
-z string Is the length of the string 0 (zero) bytes?
expr1 -a Are both the first expression and the second expression

expr2 true?
expr1 -o
expr2

Is either of the two expressions true?

file1 -nt
file2

Is the first file newer than the second file (using the
modification time stamp)?

file1 -ot
file2

Is the first file older than the second file (using the
modification time stamp)?

file1 -ef
file2

Are the two files associated by a link (a hard link or a
symbolic link)?

var1 =
var2

Is the first variable equal to the second variable?

var1 -eq
var2

Is the first variable equal to the second variable?

var1 -ge
var2

Is the first variable greater than or equal to the second
variable?

var1 -gt
var2

Is the first variable greater than the second variable?

var1 -le
var2

Is the first variable less than or equal to the second
variable?

var1 -lt
var2

Is the first variable less than the second variable?

var1 !=
var2

Is the first variable not equal to the second variable?

var1 -ne
var2

Is the first variable not equal to the second variable?

There is also a special shorthand method of performing tests that can
be useful for simple one-command actions. In the following example,
the two pipes (||) indicate that if the directory being tested for doesn't
exist (-d dirname), then make the directory (mkdir $dirname):

[test] || action

Perform simple single command if test is false

dirname="/tmp/testdir"

[-d "$dirname"] || mkdir "$dirname"

Instead of pipes, you can use two ampersands to test if something is

true. In the following example, a command is being tested to see if it
includes at least three command-line arguments:

[test] && {action}

Perform simple single action if test is true

[$# -ge 3] && echo "There are at least 3 command line

arguments."

You can combine the && and || operators to make a quick, one-line if…
then…else. The following example tests that the directory represented
by $dirname already exists. If it does, a message says the directory
already exists. If it doesn't, the statement creates the directory:

dirname=mydirectory

[-e $dirname] && echo $dirname already exists || mkdir

$dirname

The case command
Another frequently used construct is the case command. Similar to a
switch statement in programming languages, this can take the place of
several nested if statements. The following is the general form of the
case statement:

case "VAR" in

 Result1)

 { body };;

 Result2)

 { body };;

 *)

 { body } ;;

esac

Among other things, you can use the case command to help with your
backups. The following case statement tests for the first three letters of
the current day (case 'date +%a' in). Then, depending on the day, a
particular backup directory (BACKUP) and tape drive (TAPE) are set.

Our VAR doesn't have to be a variable,

it can be the output of a command as well

Perform action based on day of week

case `date +%a` in

 "Mon")

 BACKUP=/home/myproject/data0

 TAPE=/dev/rft0

Note the use of the double semi-colon to end each option

 ;;

Note the use of the "|" to mean "or"

 "Tue" | "Thu")

 BACKUP=/home/myproject/data1

 TAPE=/dev/rft1

 ;;

 "Wed" | "Fri")

 BACKUP=/home/myproject/data2

 TAPE=/dev/rft2

 ;;

Don't do backups on the weekend.

 *)

BACKUP="none"

 TAPE=/dev/null

 ;;

esac

The asterisk (*) is used as a catchall, similar to the default keyword in
the C programming language. In this example, if none of the other
entries are matched on the way down the loop, the asterisk is matched
and the value of BACKUP becomes none. Note the use of esac, or case
spelled backwards, to end the case statement.

The ″for…do″ loop
Loops are used to perform actions over and over again until a
condition is met or until all data has been processed. One of the most
commonly used loops is the for…do loop. It iterates through a list of
values, executing the body of the loop for each element in the list. The
syntax and a few examples are presented here:

for VAR in LIST

do

 { body }

done

The for loop assigns the values in LIST to VAR one at a time. Then, for
each value, the body in braces between do and done is executed. VAR can
be any variable name, and LIST can be composed of pretty much any
list of values or anything that generates a list.

for NUMBER in 0 1 2 3 4 5 6 7 8 9

do

 echo The number is $NUMBER

done

for FILE in `/bin/ls`

do

 echo $FILE

done

You can also write it this way, which is somewhat cleaner:

for NAME in John Paul Ringo George ; do

 echo $NAME is my favorite Beatle

done

Each element in the LIST is separated from the next by white space.
This can cause trouble if you're not careful because some commands,
such as ls -l, output multiple fields per line, each separated by white
space. The string done ends the for statement.

If you're a die-hard C programmer, bash allows you to use C syntax to
control your loops:

LIMIT=10

Double parentheses, and no $ on LIMIT even though it's a

variable!

for ((a=1; a <= LIMIT ; a++)) ; do

 echo "$a"

done

The ″while…do″ and ″until…do″ loops
Two other possible looping constructs are the while…do loop and the
until…do loop. The structure of each is presented here:

while condition until condition

do do

 { body } { body }

done done

The while statement executes while the condition is true. The until
statement executes until the condition is true—in other words, while
the condition is false.

Here is an example of a while loop that outputs the number

0123456789:

N=0

while [$N -lt 10] ; do

 echo -n $N

 let N=$N+1

done

Another way to output the number 0123456789 is to use an until loop
as follows:

N=0

until [$N -eq 10] ; do

 echo -n $N

 let N=$N+1

done

Trying some useful text manipulation programs
Bash is great and has lots of built-in commands, but it usually needs
some help to do anything really useful. Some of the most common
useful programs you'll see used are grep, cut, tr, awk, and sed. As with
all of the best UNIX tools, most of these programs are designed to
work with standard input and standard output, so you can easily use
them with pipes and shell scripts.

The general regular expression parser
The name general regular expression print (grep) sounds
intimidating, but grep is just a way to find patterns in files or text.
Think of it as a useful search tool. Gaining expertise with regular
expressions is quite a challenge, but after you master it, you can
accomplish many useful things with just the simplest forms.

For example, you can display a list of all regular user accounts by using
grep to search for all lines that contain the text /home in the
/etc/passwd file as follows:

$ grep /home /etc/passwd

Or you could find all environment variables that begin with HO using
the following command:

$ env | grep ^HO

NOTE
The ^ in the preceding code is the actual caret character, ^, not
what you'll commonly see for a backspace, ^H. Type ^, H, and O (the
uppercase letter) to see what items start with the uppercase
characters HO.

To find a list of options to use with the grep command, type man grep.

Remove sections of lines of text (cut)
The cut command can extract fields from a line of text or from files. It
is very useful for parsing system configuration files into easy-to-digest
chunks. You can specify the field separator you want to use and the
fields you want, or you can break up a line based on bytes.

The following example lists all home directories of users on your
system. This grep command line pipes a list of regular users from the
/etc/passwd file and displays the sixth field (-f6) as delimited by a
colon (-d':'). The hyphen at the end tells cut to read from standard
input (from the pipe).

$ grep /home /etc/passwd | cut -d':' -f6 -

/home/chris

/home/joe

Translate or delete characters (tr)
The tr command is a character-based translator that can be used to
replace one character or set of characters with another or to remove a
character from a line of text.

The following example translates all uppercase letters to lowercase
letters and displays the words mixed upper and lower case as a result:

$ FOO="Mixed UPpEr aNd LoWeR cAsE"

$ echo $FOO | tr [A-Z] [a-z]

mixed upper and lower case

In the next example, the tr command is used on a list of filenames to

rename any files in that list so that any tabs or spaces (as indicated by
the [:blank:] option) contained in a filename are translated into
underscores. Try running the following code in a test directory:

for file in * ; do

 f=`echo $file | tr [:blank:] [_]`

 ["$file" = "$f"] || mv -i -- "$file" "$f"

done

The stream editor (sed)
The sed command is a simple scriptable editor, so it can perform only
simple edits, such as removing lines that have text matching a certain
pattern, replacing one pattern of characters with another, and so on.
To get a better idea of how sed scripts work, there's no substitute for
the online documentation, but here are some examples of common
uses.

You can use the sed command essentially to do what I did earlier with
the grep example: search the /etc/passwd file for the word home. Here
the sed command searches the entire /etc/passwd file, searches for the
word home, and prints any line containing the word home:

$ sed -n '/home/p' /etc/passwd

chris:x:1000:1000:Chris Negus:/home/chris:/bin/bash

joe:x:1001:1001:Joe Smith:/home/joe:/bin/bash

In this next example, sed searches the file somefile.txt and replaces
every instance of the string Mac with Linux. Notice that the letter g is
needed at the end of the substitution command to cause every
occurrence of Mac on each line to be changed to Linux. (Otherwise, only
the first instance of Mac on each line is changed.) The output is then
sent to the fixed_file.txt file. The output from sed goes to stdout, so
this command redirects the output to a file for safekeeping.

$ sed 's/Mac/Linux/g' somefile.txt > fixed_file.txt

You can get the same result using a pipe:

$ cat somefile.txt | sed 's/Mac/Linux/g' > fixed_file.txt

By searching for a pattern and replacing it with a null pattern, you

delete the original pattern. This example searches the contents of the
somefile.txt file and replaces extra blank spaces at the end of each
line (s/ *$) with nothing (//). Results go to the fixed_file.txt file.

$ cat somefile.txt | sed 's/ *$//' > fixed_file.txt

Using simple shell scripts
Sometimes, the simplest of scripts can be the most useful. If you type
the same sequence of commands repetitively, it makes sense to store
those commands (once!) in a file. The following sections offer a couple
of simple, but useful, shell scripts.

Telephone list
This idea has been handed down from generation to generation of old
UNIX hacks. It's really quite simple, but it employs several of the
concepts just introduced.

#!/bin/bash

(@)/ph

A very simple telephone list

Type "ph new name number" to add to the list, or

just type "ph name" to get a phone number

PHONELIST=~/.phonelist.txt

If no command line parameters ($#), there

is a problem, so ask what they're talking about.

if [$# -lt 1] ; then

 echo "Whose phone number did you want? "

 exit 1

fi

Did you want to add a new phone number?

if [$1 = "new"] ; then

 shift

 echo $*>> $PHONELIST

 echo $* added to database

 exit 0

fi

Nope. But does the file have anything in it yet?

This might be our first time using it, after all.

if [! -s $PHONELIST] ; then

 echo "No names in the phone list yet! "

 exit 1

else

 grep -i -q "$*" $PHONELIST # Quietly search the file

 if [$? -ne 0] ; then # Did we find anything?

 echo "Sorry, that name was not found in the phone list"

 exit 1

 else

 grep -i "$*" $PHONELIST

 fi

 fi

 exit 0

So, if you created the telephone list file as ph in your current directory,
you could type the following from the shell to try out your ph script:

$ chmod 755 ph

$./ph new "Mary Jones" 608-555-1212

Mary Jones 608-555-1212 added to database

$./ph Mary

Mary Jones 608-555-1212

The chmod command makes the ph script executable. The ./ph
command runs the ph command from the current directory with the
new option. This adds Mary Jones as the name and 608-555-1212 as
the phone number to the database ($HOME/.phonelist.txt). The next
ph command searches the database for the name Mary and displays
the phone entry for Mary. If the script works, add it to a directory in
your path (such as $HOME/bin).

Backup script
Because nothing works forever and mistakes happen, backups are just
a fact of life when dealing with computer data. This simple script backs
up all of the data in the home directories of all of the users on your
Fedora or RHEL system.

#!/bin/bash

(@)/my_backup

A very simple backup script

#

Change the TAPE device to match your system.

Check /var/log/messages to determine your tape device.

TAPE=/dev/rft0

Rewind the tape device $TAPE

mt $TAPE rew

Get a list of home directories

HOMES=`grep /home /etc/passwd | cut -f6 -d':'`

Back up the data in those directories

tar cvf $TAPE $HOMES

Rewind and eject the tape.

mt $TAPE rewoffl

Summary
Writing shell scripts gives you the opportunity to automate many of
your most common system administration tasks. This chapter covered
common commands and functions that you can use in scripting with
the bash shell. It also provided some concrete examples of scripts for
doing backups and other procedures.

In the next chapter, you transition from learning about user features
into examining system administration topics. Chapter 8, “Learning
System Administration,” covers how to become the root user, as well
as how to use administrative commands, monitor log files, and work
with configuration files.

Exercises
Use these exercises to test your knowledge of writing simple shell
scripts. These tasks assume you are running a Fedora or Red Hat
Enterprise Linux system (although some tasks work on other Linux
systems as well). If you are stuck, solutions to the tasks are shown in
Appendix B (although in Linux, there are often multiple ways to
complete a task).

1. Create a script in your $HOME/bin directory called myownscript.
When the script runs, it should output information that appears
as follows:

 Today is Sat Jan 4 15:45:04 EST 2020.

 You are in /home/joe and your host is abc.example.com.

Of course, you need to read in your current date/time, current
working directory, and hostname. Also, include comments about
what the script does and indicate that the script should run with
the /bin/bash shell.

2. Create a script that reads in three positional parameters from the
command line, assigns those parameters to variables named ONE,
TWO, and THREE, respectively, and outputs that information in the
following format:

 There are X parameters that include Y.

 The first is A, the second is B, the third is C.

Replace X with the number of parameters and Y with all
parameters entered. Then replace A with the contents of variable
ONE, B with variable TWO, and C with variable THREE.

3. Create a script that prompts users for the name of the street and
town where they grew up. Assign town and street to variables
called mytown and mystreet, and output them with a sentence that
reads as shown below (of course, $mystreet and $mytown will
appear with the actual town and street the user enters):

 The street I grew up on was $mystreet and the town was

$mytown

4. Create a script called myos that asks the user, “What is your
favorite operating system?” Output an insulting sentence if the
user types “Windows” or “Mac.” Respond “Great choice!” if the
user types “Linux.” For anything else, say “Is <what is typed in>
an operating system?”

5. Create a script that runs through the words moose, cow, goose,
and sow through a for loop. Have each of those words appended
to the end of the line “I have a… .”

Part III
Becoming a Linux System
Administrator

IN THIS PART
Chapter 8 Learning System Administration

Chapter 9 Installing Linux

Chapter 10 Getting and Managing Software

Chapter 11 Managing User Accounts

Chapter 12 Managing Disks and Filesystems

CHAPTER 8
Learning System Administration

IN THIS CHAPTER
Doing graphical administration

Using the root login

Understanding administrative commands, config files,
and log files

Working with devices and filesystems

Linux, like other UNIX-based systems, was intended for use by more
than one person at a time. Multiuser features enable many people to
have accounts on a single Linux system with their data kept secure
from others. Multitasking enables many people to run many programs
on the computer at the same time, with each person able to run more
than one program. Sophisticated networking protocols and
applications make it possible for a Linux system to extend its
capabilities to network users and computers around the world. The
person assigned to manage all of a Linux system's resources is called
the system administrator.

Even if you are the only person using a Linux system, system
administration is still set up to be separate from other computer use.
To do most administrative tasks, you need to be logged in as the root
user (also called the superuser) or to get root permission temporarily
(usually using the sudo command). Regular users who don't have root
permission cannot change, or in some cases cannot even see, some of
the configuration information for a Linux system. In particular,
security features such as stored passwords are protected from general
view.

Because Linux system administration is such a huge topic, this chapter

focuses on the general principles of Linux system administration. In
particular, it examines some of the basic tools that you need to
administer a Linux system for a personal desktop or on a small server.
Beyond the basics, this chapter also teaches you how to work with
filesystems and monitor the setup and performance of your Linux
system.

Understanding System Administration
Separating the role of system administrator from that of other users
has several effects. For a system that has many people using it,
limiting who can manage it enables you to keep it more secure. A
separate administrative role also prevents others from casually
harming your system when they are just using it to write a document
or browse the Internet.

If you are the system administrator of a Linux system, you generally
log in as a regular user account and then ask for administrative
privileges when you need them. This is often done with one of the
following:

su command: Often, su is used to open a shell as root user. After
the shell is open, the administrator can run multiple commands
and then exit to return to a shell as a regular user.

sudo command: With sudo, a regular user is given root
privileges, but only when that user runs the sudo command to run
another command. After running that one command with sudo,
the user is immediately returned to a shell and acts as the regular
user again. Ubuntu and Fedora by default assign sudo privilege to
the first user account when those systems are installed. This is not
done by default in RHEL, although during RHEL installation, you
can choose for your first user to have sudo privilege if you'd like.

Cockpit browser-based administration: RHEL, Fedora, and
other Linux distributions have committed to Cockpit as their
primary browser-based system administration facility. With
Cockpit enabled, you can monitor and change your system's
general activities, storage, networking, accounts, services, and
other features.

Graphical windows: Before Cockpit was widely available,
RHEL, Fedora, and other Linux distributions offered individual
graphical administration tools that were launched by commands
beginning with system-config-*. Although most of these
administration tools are not being offered in the latest release of

RHEL and Fedora, they are noted here because they are still
available in older Linux releases.

Tasks that can be done only by the root user tend to be those that
affect the system as a whole or impact the security or health of the
system. Following is a list of common features that a system
administrator is expected to manage:

Filesystems: When you first install Linux, the directory
structure is set up to make the system usable. However, if users
later want to add extra storage or change the filesystem layout
outside of their home directory, they need administrative
privileges to do that. Also, the root user has permission to access
files owned by any user. As a result, the root user can copy, move,
or change any other user's files—a privilege needed to make
backup copies of the filesystem for safekeeping.

Software installation: Because malicious software can harm
your system or make it insecure, you need root privilege to install
software so that it is available to all users on your system. Regular
users can still install some software in their own directories and
can list information about installed system software.

User accounts: Only the root user can add and remove user
accounts and group accounts.

Network interfaces: In the past, the root user had to configure
network interfaces and start and stop those interfaces. Now, many
Linux desktops allow regular users to start and stop network
interfaces from their desktop using Network Manager. This is
particularly true for wireless network interfaces, which can come
and go by location as you move your Linux laptop or handheld
device around.

Servers: Configuring web servers, file servers, domain name
servers, mail servers, and dozens of other servers requires root
privilege, as does starting and stopping those services. Content,
such as web pages, can be added to servers by non-root users if
you configure your system to allow that. Services are often run as
special administrative user accounts, such as apache (for the httpd

service) and rpc (for the rpcbind service). So, if someone cracks a
service, they can't get root privilege to other services or system
resources.

Security features: Setting up security features, such as firewalls
and user access lists, is usually done with root privilege. It's also
up to the root user to monitor how the services are being used and
to make sure that server resources are not exhausted or abused.

The easiest way to begin system administration is to use some
graphical administration tools.

Using Graphical Administration Tools
Most system administration for the first Linux systems was done from
the command line. As Linux became more popular, however, both
graphical and command-line interfaces began to be offered for most
common Linux administrative tasks.

The following sections describe some of the point-and-click types of
interfaces that are available for doing system administration in Linux.

Using Cockpit browser-based administration
Cockpit is the best browser-based Linux system administration tool
that I have ever seen. It brings together a range of Linux
administrative activities into one interface and taps into a diverse set
of Linux APIs using cockpit-bridge. As someone doing Linux
administration, however, you just need to know that you will get a
consistent and stable way of administering your systems with Cockpit.

Getting started with Cockpit is as simple as enabling the cockpit socket
and pointing a web browser at the Cockpit service. Because of
Cockpit's plug-in design, there are new tools being created all the time
that you can add to your system's Cockpit interface.

If you are starting with the latest RHEL or Fedora systems, performing
the following procedure lets you enable and start using Cockpit on
your system.

NOTE
No configuration is required to start this procedure. However, you
can configure Cockpit to use your own OpenSSL certificate instead
of the self-signed one used by default. This lets you avoid having to
accept the unverified self-signed certificate when you open the
Cockpit interface from your browser.

1. If Cockpit is not already installed, do the following:

 # dnf install cockpit

2. Log in as root user, and enable the Cockpit socket:

 # systemctl enable --now cockpit.socket

 Created symlink

/etc/systemd/system/sockets.target.wants/cockpit.socket

 → /usr/lib/systemd/system/cockpit.socket.

3. Open your web browser to port 9090 on the system where you
just enabled Cockpit. You can use the hostname or IP address.
Port 9090 is configured for https by default, although you can
reconfigure that if you like to use http. Here are examples of
addresses to type into your browser's address bar:

 https://host1.example.com:9090/

 https://192.168.122.114:9090/

4. Assuming you didn't replace the self-signed certificate for Cockpit,
you are warned that the connection is not safe. To accept it
anyway, and depending on your browser, you must select
Advanced and agree to an exception to allow the browser to use
the Cockpit service.

5. Enter your username and password. Use the root user or a user
with sudo privileges if you want to change your system
configuration. A regular user can see but not change most
settings. Figure 8.1 shows an example of this window.

6. Begin using Cockpit. The Cockpit dashboard contains a good set

of features by default (you can add more later) on RHEL and
Fedora systems. Figure 8.2 shows an example of the System area
of the Cockpit dashboard:

Immediately after logging in to Cockpit, you begin seeing system
activity related to CPU usage, memory and swap, disk input/output,
and network traffic. Selections in the left navigation pane let you begin
working with logs, storage, networking, user and group accounts,
services, and many other features on your system.

As you proceed through the rest of this book, you will see descriptions
of how to use the different features of Cockpit in the appropriate
section. To dive deeper into any of the topics that you encounter with
Cockpit, I recommend checking out the Cockpit project website:
https://cockpit-project.org.

FIGURE 8.1 Logging in to Cockpit

https://cockpit-project.org

FIGURE 8.2 View system activity and other topics from the Cockpit
dashboard.

Using system-config-* tools
On Fedora and RHEL systems prior to the release of Cockpit, a set of
graphical tools was available from the Administration submenu of the
System menu (GNOME 2), from the Activities screen (GNOME 3), or
from the command line. On these older Fedora and RHEL systems,
you could operate these tools from the command line by running a set
of commands that began with the system-config* string (such as
system-config-network).

These system-config* tools require root permission. If you are logged
in as a regular user, you must enter the root password before the
graphical user interface (GUI) application's window opens or, in some
cases, when you request to do some special activity.

The following list describes many of the graphical tools available in
earlier Fedora or RHEL systems. (Some were only in Fedora and many
are not installed by default.) The command that you would launch to
get the feature is shown in parentheses (often, it is the same as the
package name). The following graphical tools were available in Fedora:

Domain Name System (system-config-bind): Create and
configure zones if your computer is acting as a DNS server.

HTTP (system-config-httpd): Configure your computer as an

Apache web server.

NFS (system-config-nfs): Set up directories from your system to
be shared with other computers on your network using the NFS
service.

Root Password (system-config-rootpassword): Change the root
password.

Samba NFS (system-config-samba): Configure Windows (SMB)
file sharing. (To configure other Samba features, you can use the
SWAT window.)

The following graphical tools were available in both Fedora and RHEL
systems prior to RHEL 8:

Services (system-config-services): Display and change which
services are running on your Fedora system at different runlevels
from the Service Configuration window.

Authentication (system-config-authentication): Change how
users are authenticated on your system. Typically, shadow
passwords and MD5 passwords are selected. However, if your
network supports LDAP, Kerberos, SMB, NIS, or Hesiod
authentication, you can select to use any of those authentication
types.

Date & Time (system-config-date): Set the date and time or
choose to have an NTP server keep system time in sync.

Firewall (system-config-firewall): Configure your firewall to
allow or deny services to computers from the network.

Language (system-config-language): Select the default language
used for the system.

Printing (system-config-printer): Configure local and network
printers.

SELinux Management (system-config-selinux): Set SELinux
enforcing modes and default policy.

Users & Groups (system-config-users): Add, display, and
change user and group accounts for your Fedora system.

Other administrative utilities were available from the Applications
menu on the top panel. Select the System Tools submenu (in GNOME
2) or go to the Activities screen (in GNOME 3) to choose some of the
following tools (if installed):

Configuration Editor (gconf-editor): Directly edit the
GNOME configuration database.

Disk Usage Analyzer (gnome-utils): Display detailed
information about your hard disks and removable storage devices.

Disk Utility (gnome-disks): Manage disk partitions and add
filesystems (gnome-disk-utility package).

Kickstart (system-config-kickstart): Create a kickstart
configuration file that can be used to install multiple Linux
systems without user interaction.

Descriptions from previous editions of this book of most of these tools
have been replaced by procedures using Cockpit instead.

Using other browser-based admin tools
To simplify the management of many enterprise-quality open source
projects, those projects have begun offering browser-based graphical
management tools. In most cases, command-line tools are offered for
managing these projects as well.

For example, if you are using Red Hat Enterprise Linux, there are
browser-based interfaces for managing the following projects:

Red Hat OpenShift: OpenShift, based on the Kubernetes
project, offers a browser-based interface for deploying and
managing a cluster of control plane and worker nodes as well as
features for deploying and managing containers in what are
referred to as pods. See the Red Hat OpenShift site at
www.openshift.com or the upstream OKD site at www.okd.io for
details.

Red Hat Enterprise Linux OpenStack Platform
(RHELOSP): The OpenStack platform-as-a-service project lets
you manage your own private, hybrid cloud through your

http://www.openshift.com
http://www.okd.io

browser. This includes the OpenStack dashboard from the
OpenStack Horizon project
(http://horizondocs.openstack.org/horizon/latest). That
interface lets you launch and manage virtual machines and all of
the resources around them: storage, networking, authentication,
processing allocations, and so on. Refer to Chapter 27, “Using
Linux for Cloud Computing,” for a description of how to use the
OpenStack Dashboard.

Red Hat Virtualization (RHV): With RHEV, the RHV
manager provides the browser-based interface for managing
virtual machines, including allocating storage and user access to
resources. Many other examples of browser-based graphical
administration tools are available with open source projects. If
you are new to Linux, it can be easier to get started with these
interfaces. However, keep in mind that often you need to use
command-line tools if you need to troubleshoot problems because
graphical tools are often limited in that area.

http://horizondocs.openstack.org/horizon/latest

Using the root User Account
Every Linux system starts out with at least one administrative user
account (the root user) and possibly one or more regular user accounts
(given a name that you choose, or a name assigned by your Linux
distribution). In most cases, you log in as a regular user and become
the root user to do an administrative task.

The root user has complete control of the operation of your Linux
system. That user can open any file or run any program. The root user
also installs software packages and adds accounts for other people who
use the system.

TIP
Think of the root user in Linux as similar to the Administrator user
in Windows.

When you first install most Linux systems (although not all systems),
you add a password for the root user. You must remember and protect
this password; you need it to log in as root or to obtain root
permission while you are logged in as some other user.

To become familiar with the root user account, you can simply log in
as the root user. I recommend trying this from a virtual console. To do
so, press Ctrl+Alt+F3. When you see the login prompt, type root
(press Enter) and enter the password. A login session for root opens.
When you are finished, type exit, and then press Ctrl+Alt+F1 to return
to the regular desktop login.

After you have logged in as root, the home directory for the root user is
typically /root. The home directory and other information associated
with the root user account are located in the /etc/passwd file. Here's
what the root entry looks like in the /etc/passwd file:

root:x:0:0:root:/root:/bin/bash

This shows that for the user named root, the user ID is set to 0 (root
user), the group ID is set to 0 (root group), the home directory is /root,
and the shell for that user is /bin/bash. (Linux uses the /etc/shadow
file to store encrypted password data, so the password field here
contains an x.) You can change the home directory or the shell used by
editing the values in this file. A better way to change these values,
however, is to use the usermod command (see the section “Modifying
Users with usermod” in Chapter 11 for further information).

At this point, any command that you run from your shell is run with
root privilege. So be careful. You have much more power to change
(and damage) the system than you did as a regular user. Again, type
exit when you are finished. If you are on a virtual console and have a
desktop interface running on another console, press Ctrl+Alt+F1 to

return to the graphical login screen if you are using a Linux desktop
system.

NOTE
By default, the root account has no password set in Ubuntu. This
means that even though the account exists, you cannot log in using
it or use su to become the root user. This adds an additional level of
security to Ubuntu and requires you to use sudo before each
command that you want to execute as the root user.

Becoming root from the shell (su command)
Although you can become the superuser by logging in as root,
sometimes that is not convenient.

For example, you may be logged in to a regular user account and just
want to make a quick administrative change to your system without
having to log out and log back in. You may need to log in over the
network to make a change to a Linux system but find that the system
doesn't allow root users in from over the network (a common practice
for secure Linux systems). One solution is to use the su command.
From any Terminal window or shell, you can simply type the
following:

$ su

Password: ******

#

When you are prompted, type the root user's password. The prompt
for the regular user ($) changes to the superuser prompt (#). At this
point, you have full permission to run any command and use any file
on the system. However, one thing that the su command doesn't do
when used this way is read in the root user's environment. As a result,
you may type a command that you know is available and get the
message Command Not Found. To fix this problem, use the su command
with the dash (-) option instead like this:

$ su -

Password: ******

#

You still need to type the password, but after that everything that
normally happens at login for the root user happens after the su
command is completed. Your current directory will be root's home
directory (probably /root), and things such as the root user's PATH
variable are used. If you become the root user by just typing su, rather
than su -, you don't change directories or the environment of the
current login session.

You can also use the su command to become a user other than root.
This is useful for troubleshooting a problem that is being experienced
by a particular user but not by others on the computer (such as an
inability to print or send email). For example, to have the permissions
of a user named jsmith, you'd type the following:

$ su - jsmith

Even if you were root user before you typed this command, afterward
you would have only the permissions to open files and run programs
that are available to jsmith. As root user, however, after you type the
su command to become another user, you don't need a password to
continue. If you type that command as a regular user, you must type
the new user's password.

When you are finished using superuser permissions, return to the
previous shell by exiting the current shell. Do this by pressing Ctrl+D
or by typing exit. If you are the administrator for a computer that is
accessible to multiple users, don't leave a root shell open on someone
else's screen unless you want to give that person freedom to do
anything he or she wants to the computer!

Allowing administrative access via the GUI
As mentioned earlier, when you run GUI tools as a regular user (from
Fedora, Red Hat Enterprise Linux, or some other Linux systems), you
are prompted for the root password before you are able to access the
tool. By entering the root password, you are given root privilege for
that task.

For Linux systems using the GNOME 2 desktop, after you enter the
password, a yellow badge icon appears in the top panel, indicating that

root authorization is still available for other GUI tools to run from that
desktop session. For GNOME 3 desktops, you must enter the root
password each time you start any of the system-config tools.

Gaining administrative access with sudo
Particular users can also be given administrative permissions for
particular tasks or any task by typing sudo followed by the command
they want to run, without being given the root password. The sudoers
facility is the most common way to provide such privilege. Using
sudoers for any users or groups on the system, you can do the
following:

Assign root privilege for any command they run with sudo.

Assign root privilege for a select set of commands.

Give users root privilege without telling them the root password
because they only have to provide their own user password to gain
root privilege.

Allow users, if you choose, to run sudo without entering a
password at all.

Track which users have run administrative commands on your
system. (Using su, all you know is that someone with the root
password logged in, whereas the sudo command logs which user
runs an administrative command.)

With the sudoers facility, giving full or limited root privileges to any
user simply entails adding the user to /etc/sudoers and defining what
privilege you want that user to have. Then the user can run any
command they are privileged to use by preceding that command with
the sudo command.

Here's an example of how to use the sudo facility to cause the user
named joe to have full root privilege.

TIP
If you look at the sudoers file in Ubuntu, you see that the initial
user on the system already has privilege, by default, for the sudo
group members. To give any other user the same privilege, you
could simply add the additional user to the admin group when you
run visudo.

1. As the root user, edit the /etc/sudoers file by running the visudo
command:

 # /usr/sbin/visudo

By default, the file opens in vi, unless your EDITOR variable
happens to be set to some other editor acceptable to visudo (for
example, export EDITOR=gedit). The reason for using visudo is
that the command locks the /etc/sudoers file and does some
basic sanity checking of the file to ensure that it has been edited
correctly.

1. NOTE
If you are stuck here, try running the vimtutor command for a
quick tutorial on using vi and vim.

2. Add the following line to allow joe to have full root privileges on
the computer:

 joe ALL=(ALL) ALL

This line causes joe to provide a password (his own password,
not the root password) in order to use administrative commands.
To allow joe to have that privilege without using a password, type
the following line instead:

 joe ALL=(ALL) NOPASSWD: ALL

3. Save the changes to the /etc/sudoers file (in vi, type Esc and then
:wq). The following is an example of a session by the user joe after
he has been assigned sudo privileges:

 [joe]$ sudo touch /mnt/testfile.txt

 We trust you have received the usual lecture

 from the local System Administrator. It usually

 boils down to these two things:

 #1) Respect the privacy of others.

 #2) Think before you type.

 Password: *********

 [joe]$ ls -l /mnt/testfile.txt

 -rw-r--r--. 1 root root 0 Jan 7 08:42 /mnt/testfile.txt

 [joe]$ rm /mnt/testfile.txt

 rm: cannot remove ‘/mnt/testfile.txt': Permission

denied

 [joe]$ sudo rm /mnt/textfile.txt

 [joe]$

In this session, the user joe runs the sudo command to create a file
(/mnt/textfile.txt) in a directory for which he doesn't have write
permission. He is given a warning and asked to provide his password
(this is joe's password, not the root password).

Even after joe has entered the password, he must still use the sudo
command to run subsequent administrative commands as root (the rm
fails, but the sudo rm succeeds). Notice that he is not prompted for a
password for the second sudo. That's because after entering his
password successfully, he can enter as many sudo commands as he
wants for the next five minutes, on RHEL and Fedora systems, without
having to enter it again. For Ubuntu, this is set to zero, for no time-
out. (You can change the time-out value from five minutes to any
length of time you want by setting the passwd_timeout value in the
/etc/sudoers file.)

The preceding example grants a simple all-or-nothing administrative
privilege to joe. However, the /etc/sudoers file gives you an incredible
amount of flexibility in permitting individual users and groups to use
individual applications or groups of applications. Refer to the sudoers
and sudo man pages for information about how to tune your sudo
facility.

Exploring Administrative Commands,
Configuration Files, and Log Files
You can expect to find many commands, configuration files, and log
files in the same places in the filesystem, regardless of which Linux
distribution you are using. The following sections give you some
pointers on where to look for these important elements.

NOTE
If GUI administrative tools for Linux have become so good, why do
you need to know about administrative files? For one thing, while
GUI tools differ among Linux versions, many underlying
configuration files are the same. So if you learn to work with them,
you can work with almost any Linux system. Also, if a feature is
broken, or if you need to do something that's not supported by the
GUI, when you ask for help, Linux experts almost always tell you
how to run commands or change the configuration file directly.

Administrative commands
Only the root user is intended to use many administrative commands.
When you log in as root (or use su - from the shell to become root),
your $PATH variable is set to include some directories that contain
commands for the root user. In the past, these have included the
following:

/sbin: Originally contained commands needed to boot your
system, including commands for checking filesystems (fsck) and
turning on swap devices (swapon).

/usr/sbin: Originally contained commands for such things as
managing user accounts (such as useradd) and checking processes
that are holding files open (such as lsof). Commands that run as
daemon processes are also contained in this directory. Daemon
processes are processes that run in the background, waiting for
service requests such as those to access a printer or a web page.
(Look for commands that end in d, such as sshd, pppd, and cupsd.)

For the latest Ubuntu, RHEL and Fedora releases, all administrative
commands from the two directories are stored in the /usr/sbin
directory (which is symbolically linked from /sbin). Also, only
/usr/sbin is added to the PATH of the root user, as well as the PATH
of all regular users.

Some administrative commands are contained in regular user
directories (such as /bin and /usr/bin). This is especially true of
commands that have some options available to everyone. An example
is the /bin/mount command, which anyone can use to list mounted
filesystems but only root can use to mount filesystems. (Some
desktops, however, are configured to let regular users use mount to
mount CDs, DVDs, or other removable media.)

NOTE
See the section ″Mounting Filesystems″ in Chapter 12 for
instructions on how to mount a filesystem.

To find commands intended primarily for the system administrator,
check out the section 8 manual pages (usually in
/usr/share/man/man8). They contain descriptions and options for most
Linux administrative commands. If you want to add commands to
your system, consider adding them to directories such as
/usr/local/bin or /usr/local/sbin. Some Linux distributions
automatically add those directories to your PATH, usually before your
standard bin and sbin directories. In that way, commands installed to
those directories are not only accessible, but can also override
commands of the same name in other directories. Some third-party
applications that are not included with Linux distributions are
sometimes placed in the /usr/local/bin, /opt/bin, or /usr/local/sbin
directory.

Administrative configuration files
Configuration files are another mainstay of Linux administration.
Almost everything that you set up for your particular computer—user
accounts, network addresses, or GUI preferences—results in settings
being stored in plain-text files. This has some advantages and some
disadvantages.

The advantage of plain-text files is that it's easy to read and change
them. Any text editor will do. The downside, however, is that as you
edit configuration files, traditionally no error checking is done. You
sometimes have to run the program that reads these files (such as a
network daemon or the X desktop) to find out whether you set up the
files correctly.

While some configuration files use standard structures, such as XML
for storing information, many do not. So, you need to learn the specific
structure rules for each configuration file. A comma or a quote in the

wrong place can sometimes cause an entire interface to fail. You can
check in many ways that the structure of many configuration files is
correct.

Some software packages offer a command to test the sanity of the
configuration file tied to a package before you start a service. For
example, the testparm command is used with Samba to check the
sanity of your smb.conf file. Other times, the daemon process
providing a service offers an option for checking your config file. For
example, run httpd -t to check your Apache web server configuration
before starting your web server.

NOTE
Some text editors, such as the vim command (not vi), understand
the structure of some types of configuration files. If you open such
a configuration file in vim, notice that different elements of the file
are shown in different colors. In particular, you can see comment
lines in a different color than data.

Throughout this book, you'll find descriptions of the configuration files
that you need to set up the different features that make up Linux
systems. The two major locations of configuration files are your home
directory (where your personal configuration files are kept) and the
/etc directory (which holds system-wide configuration files).

Following are descriptions of directories (and subdirectories) that
contain useful configuration files. The descriptions are followed by
some individual configuration files in /etc that are of particular
interest. Viewing the contents of Linux configuration files can teach
you a lot about administering Linux systems.

$HOME: All users store in their home directories information that
directs how their login accounts behave. Many configuration files
are stored directly in each user's home directory (such as
/home/joe) and begin with a dot (.), so they don't appear in a
user's directory when you use a standard ls command (you need
to type ls -a to see them). Likewise, dot files and directories
won't show up in most file manager windows by default. There are
dot files that define the behavior of each user's shell, the desktop
look-and-feel, and options used with your text editor. There are
even files such as those in each user's $HOME/.ssh directory that
configure permissions for logging into remote systems. (To see
the name of your home directory, type echo $HOME from a shell.)

/etc: This directory contains most of the basic Linux system
configuration files.

/etc/cron*: Directories in this set contain files that define how the

crond utility runs applications on a daily (cron.daily), hourly
(cron.hourly), monthly (cron.monthly), or weekly (cron.weekly)
schedule.

/etc/cups: Contains files used to configure the CUPS printing
service.

/etc/default: Contains files that set default values for various
utilities. For example, the file for the useradd command defines
the default group number, home directory, password expiration
date, shell, and skeleton directory (/etc/skel) used when creating
a new user account.

/etc/httpd: Contains a variety of files used to configure the
behavior of your Apache web server (specifically, the httpd
daemon process). (On Ubuntu and other Linux systems,
/etc/apache or /etc/apache2 is used instead.)

/etc/mail: Contains files used to configure your sendmail mail
transport agent.

/etc/postfix: Contains configuration files for the postfix mail
transport agent.

/etc/ppp: Contains several configuration files used to set up
Point-to-Point Protocol (PPP) so that you can have your computer
dial out to the Internet. (PPP was more commonly used when
dial-up modems were popular.)

/etc/rc?.d: There is a separate rc?.d directory for each valid
system state: rc0.d (shutdown state), rc1.d (single-user state),
rc2.d (multiuser state), rc3.d (multiuser plus networking state),
rc4.d (user-defined state), rc5.d (multiuser, networking, plus GUI
login state), and rc6.d (reboot state). These directories are
maintained for compatibility with old UNIX SystemV init
services.

/etc/security: Contains files that set a variety of default security
conditions for your computer, basically defining how
authentication is done. These files are part of the pam (pluggable
authentication modules) package.

/etc/skel: Any files contained in this directory are automatically
copied to a user's home directory when that user is added to the
system. By default, most of these files are dot (.) files, such as
.kde (a directory for setting KDE desktop defaults) and .bashrc
(for setting default values used with the bash shell).

/etc/sysconfig: Contains important system configuration files
that are created and maintained by various services (including
firewalld, samba, and most networking services). These files are
critical for Linux distributions, such as Fedora and RHEL, that
use GUI administration tools but are not used on other Linux
systems at all.

/etc/systemd: Contains files associated with the systemd facility,
for managing the boot process and system services. In particular,
when you run systemctl commands to enable and disable
services, files that make that happen are stored in subdirectories
of the /etc/systemd system directory.

/etc/xinetd.d: Contains a set of files, each of which defines an on-
demand network service that the xinetd daemon listens for on a
particular port. When the xinetd daemon process receives a
request for a service, it uses the information in these files to
determine which daemon processes to start to handle the request.

The following are some interesting configuration files in /etc:

aliases: Can contain distribution lists used by the Linux mail
services. (This file is located in /etc/mail in Ubuntu when you
install the sendmail package.)

bashrc: Sets system-wide defaults for bash shell users. (This may
be called bash.bashrc on some Linux distributions.)

crontab: Sets times for running automated tasks and variables
associated with the cron facility (such as the SHELL and PATH
associated with cron).

csh.cshrc (or cshrc): Sets system-wide defaults for csh (C shell)
users.

exports: Contains a list of local directories that are available to be

shared by remote computers using the Network File System
(NFS).

fstab: Identifies the devices for common storage media (hard
disk, DVD, CD-ROM, and so on) and locations where they are
mounted in the Linux system. This is used by the mount command
to choose which filesystems to mount when the system first boots.

group: Identifies group names and group IDs (GIDs) that are
defined on the system. Group permissions in Linux are defined by
the second of three sets of rwx (read, write, execute) bits
associated with each file and directory.

gshadow: Contains shadow passwords for groups.

host.conf: Used by older applications to set the locations in which
domain names (for example, redhat.com) are searched for on
TCP/IP networks (such as the Internet). By default, the local hosts
file is searched and then any name server entries in resolv.conf.

hostname: Contains the hostname for the local system (beginning
in RHEL 7 and recent Fedora and Ubuntu systems).

hosts: Contains IP addresses and hostnames that you can reach
from your computer. (Usually this file is used just to store names
of computers on your LAN or small private network.)

inittab: On earlier Linux systems, contained information that
defined which programs start and stop when Linux boots, shuts
down, or goes into different states in between. This configuration
file was the first one read when Linux started the init process.
This file is no longer used on Linux systems that support systemd.

mtab: Contains a list of filesystems that are currently mounted.

mtools.conf: Contains settings used by DOS tools in Linux.

named.conf: Contains DNS settings if you are running your own
DNS server (bind or bind9 package).

nsswitch.conf: Contains name service switch settings, for
identifying where critical system information (user accounts,
hostname-to-address mappings, and so on) comes from (local

http://redhat.com

host or via network services).

ntp.conf: Includes information needed to run the Network Time
Protocol (NTP).

passwd: Stores account information for all valid users on the local
system. Also includes other information, such as the home
directory and default shell. (Rarely includes the user passwords
themselves, which are typically stored in the /etc/shadow file.)

printcap: Contains definitions for the printers configured for your
computer. (If the printcap file doesn't exist, look for printer
information in the /etc/cups directory.)

profile: Sets system-wide environment and startup programs for
all users. This file is read when the user logs in.

protocols: Sets protocol numbers and names for a variety of
Internet services.

rpc: Defines remote procedure call names and numbers.

services: Defines TCP/IP and UDP service names and their port
assignments.

shadow: Contains encrypted passwords for users who are defined
in the passwd file. (This is viewed as a more secure way to store
passwords than the original encrypted password in the passwd file.
The passwd file needs to be publicly readable, whereas the shadow
file can be unreadable by all but the root user.)

shells: Lists the shell command-line interpreters (bash, sh, csh,
and so on) that are available on the system as well as their
locations.

sudoers: Sets commands that can be run by users, who may not
otherwise have permission to run the command, using the sudo
command. In particular, this file is used to provide selected users
with root permission.

rsyslog.conf: Defines what logging messages are gathered by the
rsyslogd daemon and in which files they are stored. (Typically, log
messages are stored in files contained in the /var/log directory.)

xinetd.conf: Contains simple configuration information used by
the xinetd daemon process. This file mostly points to the
/etc/xinetd.d directory for information about individual services.

Another directory, /etc/X11, includes subdirectories that each contain
system-wide configuration files used by X and different X window
managers available for Linux. The xorg.conf file (configures your
computer and monitor to make it usable with X) and configuration
directories containing files used by xdm and xinit to start X are in here.

Directories relating to window managers contain files that include the
default values that a user will get if that user starts one of these
window managers on your system. The twm window manager may
have system-wide configuration files in these directories.

Administrative log files and systemd journal
One of the things that Linux does well is keep track of itself. This is a
good thing when you consider how much is going on in a complex
operating system.

Sometimes you are trying to get a new facility to work and it fails
without giving you the foggiest reason why. Other times, you want to
monitor your system to see whether people are trying to access your
computer illegally. In any of those cases, you want to be able to refer to
messages coming from the kernel and services running on the system.

For Linux systems that don't use the systemd facility, the main utility
for logging error and debugging messages is the rsyslogd daemon.
(Some older Linux systems use syslogd and syslogd daemons.)
Although you can still use rsyslogd with systemd systems, systemd has
its own method of gathering and displaying messages called the
systemd journal (journalctl command).

Using journalctl to view the systemd journal
The primary command for viewing messages from the systemd journal
is the journalctl command. The boot process, the kernel, and all
systemd-managed services direct their status and error messages to the
systemd journal.

Using the journalctl command, you can display journal messages in
many different ways. Here are some examples:

journalctl

journalctl --list-boots | head

-2 93bdb6164… Sat 2020-01-04 21:07:28 EST—Sat 2020-01-04

21:19:37 EST

-1 7336cb823… Sun 2020-01-05 10:38:27 EST—Mon 2020-01-06

09:29:09 EST

 0 eaebac25f… Sat 2020-01-18 14:11:41 EST—Sat 2020-01-18

16:03:37 EST

journalctl -b 488e152a3e2b4f6bb86be366c55264e7

journalctl -k

In these examples, the journalctl command with no options lets you
page through all messages in the systemd journal. To list the boot IDs
for each time the system was booted, use the –list-boots option. To
view messages associated with a particular boot instance, use the -b
option with one of the boot instances. To see only kernel messages, use
the -k option. Here are some more examples:

journalctl _SYSTEMD_UNIT=sshd.service

journalctl PRIORITY=0

journalctl -a -f

Use the _SYSTEMD_UNIT= options to show messages for specific services
(here, the sshd service) or for any other systemd unit file (such as other
services or mounts). To see messages associated with a particular
syslog log level, set PRIORITY= to a value from 0 to 7. In this case, only
emergency (0) messages are shown. To follow messages as they come
in, use the -f option; to show all fields, use the -a option.

Managing log messages with rsyslogd
The rsyslogd facility, and its predecessor syslogd, gather log messages
and direct them to log files or remote log hosts. Logging is done
according to information in the /etc/rsyslog.conf file. Messages are
typically directed to log files that are usually in the /var/log directory,
but they can also be directed to log hosts for additional security. Here
are a few common log files:

boot.log: Contains boot messages about services as they start up.

messages: Contains many general informational messages about
the system.

secure: Contains security-related messages, such as login activity
or any other act that authenticates users.

Refer to Chapter 13, “Understanding Server Administration,” for
information on configuring the rsyslogd facility.

Using Other Administrative Accounts
You don't hear much about logging in with other administrative user
accounts (besides root) on Linux systems. It was a fairly common
practice in UNIX systems to have several different administrative
logins that allowed administrative tasks to be split among several
users. For example, people sitting near a printer could have lp
permissions to move print jobs to another printer if they knew a
printer wasn't working.

In any case, administrative logins are available with Linux; however,
logging in directly as those users is disabled by default. The accounts
are maintained primarily to provide ownership for files and processes
associated with particular services. When daemon processes are run
under separate administrative logins, having one of those processes
cracked does not give the cracker root permission and the ability to
access other processes and files. Consider the following examples:

lp: User owns such things as the /var/log/cups printing log file
and various printing cache and spool files. The home directory for
lp is /var/spool/lpd.

apache: User can set up content files and directories on an Apache
web server. It is primarily used to run the web server processes
(httpd) in RHEL and Fedora systems, while the www-data user
runs the Apache service (apache2) on Ubuntu systems.

avahi: User runs the avahi daemon process to provide zeroconf
services on your network.

chrony: User runs the chronyd daemon, which is used to maintain
accurate computer clocks.

postfix: User owns various mail server spool directories and files.
The user runs the daemon processes used to provide the postfix
service (master).

bin: User owns many commands in /bin in traditional UNIX
systems. This is not the case in some Linux systems (such as
Ubuntu, Fedora, and Gentoo) because root owns most executable

files. The home directory of bin is /bin.

news: User could do administration of Internet news services,
depending on how you set permission for /var/spool/news and
other news-related resources. The home directory for news is
/etc/news.

rpc: User runs the remote procedure calls daemon (rpcbind),
which is used to receive calls for services on the host system. The
NFS service uses the RPC service.

By default, the administrative logins in the preceding list are disabled.
You would need to change the default shell from its current setting
(usually /sbin/nologin or /bin/false) to a real shell (typically
/bin/bash) to be able to log in as these users. As mentioned earlier,
however, they are really not intended for interactive logins.

Checking and Configuring Hardware
In a perfect world, after installing and booting Linux, all of your
hardware is detected and available for access. Although Linux systems
have become quite good at detecting hardware, sometimes you must
take special steps to get your computer hardware working. Also, the
growing use of removable USB devices (CDs, DVDs, flash drives,
digital cameras, and removable hard drives) has made it important for
Linux to do the following:

Efficiently manage hardware that comes and goes

Look at the same piece of hardware in different ways. (For
example, it should be able to see a printer as a fax machine,
scanner, and storage device as well as a printer.)

Linux kernel features added in the past few years have made it
possible to change drastically the way that hardware devices are
detected and managed. The Udev subsystem dynamically names and
creates devices as hardware comes and goes.

If this sounds confusing, don't worry. It's designed to make your life as
a Linux user much easier. The result of features built on the kernel is
that device handling in Linux has become more automatic and more
flexible:

More automatic For most common hardware, when a hardware
device is connected or disconnected, it is automatically detected
and identified. Interfaces to access the hardware are added so it is
accessible to Linux. Then the fact that the hardware is present (or
removed) is passed to the user level, where applications listening
for hardware changes are ready to mount the hardware and/or
launch an application (such as an image viewer or music player).

More flexible If you don't like what happens automatically
when a hardware item is connected or disconnected, you can
change it. For example, features built into GNOME and KDE
desktops let you choose what happens when a music CD or data
DVD is inserted, or when a digital camera is connected. If you

prefer that a different program be launched to handle it, you can
easily make that change.

The following sections cover several issues related to getting your
hardware working properly in Linux. First, it describes how to check
information about the hardware components of your system. It then
covers how to configure Linux to deal with removable media. Finally,
it describes how to use tools for manually loading and working with
drivers for hardware that is not detected and loaded properly.

Checking your hardware
When your system boots, the kernel detects your hardware and loads
drivers that allow Linux to work with that hardware. Because
messages about hardware detection scroll quickly off the screen when
you boot, to view potential problem messages you have to redisplay
those messages after the system comes up.

There are a few ways to view kernel boot messages after Linux comes
up. Any user can run the dmesg command to see what hardware was
detected and which drivers were loaded by the kernel at boot time. As
new messages are generated by the kernel, those messages are also
made available to the dmesg command.

A second way to see boot messages is the journalctl command to
show the messages associated with a particular boot instance (as
shown earlier in this chapter).

NOTE
After your system is running, many kernel messages are sent to the
/var/log/messages file. So, for example, if you want to see what
happens when you plug in a USB drive, you can type tail -f
/var/log/messages and watch as devices and mount points are
created. Likewise, you could use the journalctl -f command to
follow messages as they come into the systemd journal.

The following is an example of some output from the dmesg command
that was trimmed down to show some interesting information:

$ dmesg | less

[0.000000] Linux version 5.0.9-301.fc30.x86_64

 (mockbuild@bkernel04.phx2.fedoraproject.org) (gcc version

9.0.1 20190312

 (Red Hat 9.0.1-0.10) (GCC)) #1 SMP Tue Apr 23 23:57:35

UTC 2019

[0.000000] Command line:

 BOOT_IMAGE=(hd0,msdos1)/vmlinuz-5.0.9-301.fc30.x86_64

 root=/dev/mapper/fedora_localhost--live-root ro

 resume=/dev/mapper/fedora_localhost--live-swap

 rd.lvm.lv=fedora_localhost-live/root

 rd.lvm.lv=fedora_localhost-live/swap rhgb quiet

…

 S31B1102 USB DISK 1100 PQ: 0 ANSI: 0 CCS

[79.177466] sd 9:0:0:0: Attached scsi generic sg2 type 0

[79.177854] sd 9:0:0:0: [sdb]

 8343552 512-byte logical blocks: (4.27 GB/3.97

GiB)

[79.178593] sd 9:0:0:0: [sdb] Write Protect is off

From this output, you first see the Linux kernel version, followed by
kernel command-line options. The last few lines reflect a 4GB USB
drive being plugged into the computer.

If something goes wrong detecting your hardware or loading drivers,
you can refer to this information to see the name and model number of
hardware that's not working. Then you can search Linux forums or
documentation to try to solve the problem. After your system is up and

running, some other commands let you look at detailed information
about your computer's hardware. The lspci command lists PCI buses
on your computer and devices connected to them. Here's a snippet of
output:

$ lspci

00:00.0 Host bridge: Intel Corporation

 5000X Chipset Memory ControllerHub

00:02.0 PCI bridge: Intel Corporation 5000 Series Chipset

 PCI Express x4 Port 2

00:1b.0 Audio device: Intel Corporation 631xESB/632xESB

 High Definition Audio Controller (rev 09)

00:1d.0 USB controller: Intel Corporation

631xESB/632xESB/3100

 Chipset UHCI USBController#1 (rev 09)

07:00.0 VGA compatible controller: nVidia Corporation NV44

0c:02.0 Ethernet controller: Intel Corporation 82541PI

 Gigabit Ethernet Controller (rev 05)

The host bridge connects the local bus to the other components on the
PCI bridge. I cut down the output to show information about the
different devices on the system that handle various features: sound
(Audio device), flash drives and other USB devices (USB controller),
the video display (VGA compatible controller), and wired network
cards (Ethernet controller). If you are having trouble getting any of
these devices to work, noting the model names and numbers gives you
something to Google.

To get more verbose output from lspci, add one or more -v options.
For example, using lspci -vvv, I received information about my
Ethernet controller, including latency, capabilities of the controller,
and the Linux driver (e1000) being used for the device.

If you are specifically interested in USB devices, try the lsusb
command. By default, lsusb lists information about the computer's
USB hubs along with any USB devices connected to the computer's
USB ports:

$ lsusb

Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root

hub

Bus 002 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root

hub

Bus 003 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root

hub

Bus 004 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root

hub

Bus 005 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root

hub

Bus 002 Device 002: ID 413c:2105 Dell Computer Corp.

 Model L100 Keyboard

Bus 002 Device 004: ID 413c:3012 Dell Computer Corp.

 Optical Wheel Mouse

Bus 001 Device 005: ID 090c:1000 Silicon Motion, Inc. -

 Taiwan 64MB QDI U2 DISK

From the preceding output, you can see the model of a keyboard,
mouse, and USB flash drive connected to the computer. As with lspci,
you can add one or more -v options to see more details.

To see details about your processor, run the lscpu command. That
command gives basic information about your computer's processors.

$ lscpu

Architecture: x86_64

CPU op-mode(s): 32-bit, 64-bit

CPU(s): 4

On-line CPU(s) list: 0-3

Thread(s) per core: 1

Core(s) per socket: 4

…

From the sampling of output of lscpu, you can see that this is a 64-bit
system (x86-64), it can operate in 32-bit or 64-bit modes, and there
are four CPUs.

Managing removable hardware
Linux systems such as Red Hat Enterprise Linux, Fedora, and others,
which support full GNOME desktop environments, include simple
graphical tools for configuring what happens when you attach popular
removable devices to the computer. So, with a GNOME desktop
running, you simply plug in a USB device or insert a CD or DVD, and a
window may pop up to deal with that device.

Although different desktop environments share many of the same

underlying mechanisms (in particular, Udev) to detect and name
removable hardware, they offer different tools for configuring how
they are mounted or used. Udev (using the udevd daemon) creates and
removes devices (/dev directory) as hardware is added and removed
from the computer. Settings that are of interest to someone using a
desktop Linux system, however, can be configured with easy-to-use
desktop tools.

The Nautilus file manager used with the GNOME desktop lets you
define what happens when you attach removable devices or insert
removable media into the computer from the File Management
Preferences window. The descriptions in this section are based on
GNOME 3.32 in Fedora 30.

From the GNOME 3.32 desktop, select Activities and type
Removable Media. Then select the Removable Media Setting entry.

The following settings are available from the Removable Media
window. These settings relate to how removable media are handled
when they are inserted or plugged in. In most cases, you are prompted
about how to handle a medium that is inserted or connected.

CD audio: When an audio CD is inserted, you can choose to be
prompted for what to do (default), do nothing, open the contents
in a folder window, or select from various audio CD players to be
launched to play the content. Rhythmbox (music player), Audio
CD Extractor (CD burner), and Brasero (CD burner) are among
the choices that you have for handling an inserted audio CD.

DVD video: When a commercial video DVD is inserted, you are
prompted for what to do with that DVD. You can change that
default to launch Totem (videos), Brasero (DVD burner), or
another media player you have installed (such as MPlayer).

Music player: When inserted media contains audio files, you are
asked what to do. You can select to have Rhythmbox or some
other music player begin playing the files by selecting that player
from this box.

Photos: When inserted media (such as a memory card from a
digital camera) contains digital images, you are asked what to do

with those images. You can select to do nothing, or you can select
to have the images opened in the Shotwell image viewer (the
default application for viewing images on the GNOME desktop) or
another installed photo manager.

Software: When inserted media contains installable software,
the Software window opens by default. To change that behavior
(to ask what to do, do nothing, or open the media contents in a
folder), you can select the box for those choices.

Other Media: Select the Type box under the Other Media
heading to select how less commonly used media are handled. For
example, you can select what actions are taken to handle audio
DVDs or blank Blu-ray discs, CDs, or DVDs. You can select what
applications to launch for Blu-ray video disc, ebook readers, and
Picture CDs.

Note that the settings described here are in effect only for the user who
is currently logged in. If multiple users have login accounts, each can
have their own way of handling removable media.

NOTE
The Totem movie player does not play movie DVDs unless you add
extra software to decrypt the DVD. You should look into legal
issues and other movie player options if you want to play
commercial DVD movies from Linux.

The options to connect regular USB flash drives or hard drives are not
listed on this window. If you connect one of those drives to your
computer, however, devices are automatically created when you plug
them in (named /dev/sda, /dev/sdb, and so on). Any filesystems found
on those devices are automatically mounted on /run/media/username,
and you are prompted if you want to open a Nautilus window to view
files on those devices. This is done automatically, so you don't have to
do any special configuration to make this happen.

When you are finished with a USB drive, right-click the device's name
in the Nautilus file manager window and select Safely Remove Drive.
This action unmounts the drive and removes the mount point in the
/run/media/username directory. After that, you can safely unplug the
USB drive from your computer.

Working with loadable modules
If you have added hardware to your computer that isn't properly
detected, you might need to load a module manually for that
hardware. Linux comes with a set of commands for loading,
unloading, and getting information about hardware modules.

Kernel modules are installed in /lib/modules/ subdirectories. The
name of each subdirectory is based on the release number of the
kernel. For example, if the kernel were 5.3.8-200.fc30.x86_64, the
/lib/modules/5.3.8-200.fc30.x86_64 directory would contain drivers
for that kernel. Modules in those directories can then be loaded and
unloaded as they are needed.

Commands for listing, loading, unloading, and getting information

about modules are available with Linux. The following sections
describe how to use those commands.

Listing loaded modules
To see which modules are currently loaded into the running kernel on
your computer, use the lsmod command. Consider the following
example:

lsmod

Module Size Used by

vfat 17411 1

fat 65059 1 vfat

uas 23208 0

usb_storage 65065 2 uas

fuse 91446 3

ipt_MASQUERADE 12880 3

xt_CHECKSUM 12549 1

nfsv3 39043 1

rpcsec_gss_krb5 31477 0

nfsv4 466956 0

dns_resolver 13096 1 nfsv4

nfs 233966 3 nfsv3,nfsv4

.

.

.

i2c_algo_bit 13257 1 nouveau

drm_kms_helper 58041 1 nouveau

ttm 80772 1 nouveau

drm 291361 7 ttm,drm_kms_helper,nouveau

ata_generic 12923 0

pata_acpi 13053 0

e1000 137260 0

i2c_core 55486 5 drm,i2c_i801,drm_kms_helper

This output shows a variety of modules that have been loaded on a
Linux system, including one for a network interface card (e1000).

To find information about any of the loaded modules, use the modinfo
command. For example, you can enter the following:

/sbin/modinfo -d e1000

Intel(R) PRO/1000 Network Driver

Not all modules have descriptions available and, if nothing is

available, no data are returned. In this case, however, the e1000
module is described as an Intel(R) PRO/1000 Network Driver module.
You can also use the -a option to see the author of the module or -n to
see the object file representing the module. The author information
often has the email address of the driver's creator, so you can contact
the author if you have problems or questions about it.

Loading modules
You can load any module (as root user) that has been compiled and
installed (to a /lib/modules subdirectory) into your running kernel
using the modprobe command. A common reason for loading a module
is to use a feature temporarily (such as loading a module to support a
special filesystem on some removable media you want to access).
Another reason to load a module is to identify that module as one that
will be used by a particular piece of hardware that could not be
autodetected.

Here is an example of the modprobe command being used to load the
parport module, which provides the core functions to share parallel
ports with multiple devices:

modprobe parport

After parport is loaded, you can load the parport_pc module to define
the PC-style ports available through the interface. The parport_pc
module lets you optionally define the addresses and IRQ numbers
associated with each device sharing the parallel port, as in the
following example:

modprobe parport_pc io=0x3bc irq=auto

In this example, a device is identified as having an address of 0x3bc,
and the IRQ for the device is autodetected.

The modprobe command loads modules temporarily—they disappear at
the next reboot. To add the module to your system permanently, add
the modprobe command line to one of the startup scripts run at boot
time.

Removing modules

Use the rmmod command to remove a module from a running kernel.
For example, to remove the module parport_pc from the current
kernel, type the following:

rmmod parport_pc

If it is not currently busy, the parport_pc module is removed from the
running kernel. If it is busy, try killing any process that might be using
the device. Then run rmmod again. Sometimes, the module you are
trying to remove depends on other modules that may be loaded. For
instance, the usbcore module cannot be unloaded because it is a built-
in module:

rmmod usbcore

rmmod: ERROR: Module usbcore is builtin.

Instead of using rmmod to remove modules, you could use the modprobe
-r command. With modprobe -r, instead of just removing the module
you request, you can also remove dependent modules that are not
being used by other modules.

Summary
Many features of Linux, especially those that can potentially damage
the system or impact other users, require that you gain root privilege.
This chapter describes different ways of obtaining root privilege: direct
login, su command, or sudo command. It also covers some of the key
responsibilities of a system administrator and components
(configuration files, browser-based tools, and so on) that are critical to
a system administrator's work.

The next chapter describes how to install a Linux system. Approaches
to installing Linux that are covered in that chapter include how to
install from live media and from installation media.

Exercises
Use these exercises to test your knowledge of system administration
and to explore information about your system hardware. These tasks
assume that you are running a Fedora or Red Hat Enterprise Linux
system (although some tasks work on other Linux systems as well). If
you are stuck, solutions to the tasks are shown in Appendix B
(although in Linux, there are often multiple ways to complete a task).

1. From a shell as root user (or using sudo), enable Cockpit
(cockpit.socket) using the systemctl command.

2. Open your web browser to the Cockpit interface (9090) on your
system.

3. Find all files under the /var/spool directory that are owned by
users other than root and display a long listing of them.

4. Become the root user using the su - command. To prove that you
have root privilege, create an empty or plain-text file named
/mnt/test.txt. Exit the shell when you are finished. If you are
using Ubuntu, you must set your root password first (sudo passwd
root).

5. Log in as a regular user and become root using su -. Edit the
/etc/sudoers file to allow your regular user account to have full
root privilege via the sudo command.

6. As the user to whom you just gave sudoers privilege, use the sudo
command to create a file called /mnt/test2.txt. Verify that the file
is there and owned by the root user.

7. Run the journalctl -f command and plug a USB drive into a USB
port on your computer. If it doesn't mount automatically, mount
it on /mnt/test. In a second terminal, unmount the device and
remove it, continuing to watch the output from journalctl -f.

8. Run a command to see what USB devices are connected to your
computer.

9. Pretend that you added a TV card to your computer, but the

module needed to use it (bttv) was not properly detected and
loaded. Load the bttv module yourself, and then look to see that it
was loaded. Were other modules loaded with it?

10. Remove the bttv module along with any other modules that were
loaded with it. List your modules to make sure that this was done.

CHAPTER 9
Installing Linux

IN THIS CHAPTER
Choosing an installation method

Installing a single- or multi-boot system

Performing a Live media installation of Fedora

Installing Red Hat Enterprise Linux

Understanding cloud-based installations

Partitioning the disk for installation

Understanding the GRUB boot loader

Installing Linux has become a fairly easy thing to do—if you are
starting with a computer that is up to spec (hard disk, RAM, CPU, and
so on) and you don't mind totally erasing your hard drive. With cloud
computing and virtualization, installation can be even simpler. It
allows you to bypass traditional installation and spin a Linux system
up or down within a few minutes by adding metadata to prebuilt
images.

This chapter starts off with a simple installation on a physical
computer from Live media and progresses to more complex
installation topics.

To ease you into the subject of installing Linux, I cover three different
ways of installing Linux and step you through each process:

Installing from Live media A Linux Live media ISO is a
single, read-only image that contains everything you need to start
a Linux operating system. That image can be burned to a DVD or
USB drive and booted from that medium. With the Live media,
you can totally ignore your computer's hard disk; in fact, you can

run Live media on a system with no hard disk. After you are
running the Live Linux system, some Live media ISOs allow you
to launch an application that permanently installs the contents of
the Live medium to your hard disk. The first installation
procedure in this chapter shows you how to install Linux
permanently from a Fedora Live media ISO.

Installing from an installation DVD An installation DVD,
available with Fedora, RHEL, Ubuntu, and other Linux
distributions, offers more flexible ways of installing Linux. In
particular, instead of just copying the whole Live media contents
to your computer, with an installation DVD you can choose
exactly which software package you want. The second installation
procedure I show in this chapter steps you through an installation
process from a Red Hat Enterprise Linux 8 installation DVD.

Installing in the enterprise Sitting in front of a computer and
clicking through installation questions isn't inconvenient if you
are installing a single system. But what if you need to install
dozens or hundreds of Linux systems? What if you want to install
those systems in particular ways that need to be repeated over
multiple installations? Later in this chapter, I describe efficient
ways of installing multiple Linux systems using network
installation features and kickstart files.

A fourth method of installation not covered in this chapter is to install
Linux to a cloud environment (such as Amazon Web Services) or
virtual machine on a virtualization host, such as Virtual Box or a
VMware system. Chapter 27 and Chapter 28 describe ways of
installing or deploying a virtual machine on a Linux KVM host or in a
cloud environment.

To try the procedures in this chapter along with me, you should have a
computer in front of you that you don't mind totally erasing. As an
alternative, you can use a computer that has another operating system
installed (such as Windows), as long as there is enough unused disk
space available outside of that operating system. I describe the
procedure, and risk of data loss, if you decide to set up one of these
“dual boot” (Linux and Windows) arrangements.

Choosing a Computer
You can get a Linux distribution that runs on handheld devices or an
old PC in your closet with as little as 24MB of RAM and a 486
processor. To have a good desktop PC experience with Linux, however,
you should consider what you want to be able to do with Linux when
you are choosing your computer.

Be sure to consider the basic specifications that you need for a PC-type
computer to run the Fedora and Red Hat Enterprise Linux
distributions. Because Fedora is used as the basis for Red Hat
Enterprise Linux releases, hardware requirements are similar for basic
desktop and server hardware for those two distributions.

Processor A 1GHz Pentium processor is the minimum for a GUI
installation. For most applications, a 32-bit processor is fine
(x86). However, if you want to set up the system to do
virtualization, you need a 64-bit processor (x86_64).

NOTE
If you have a less powerful computer than the minimum
described here, consider using a lightweight Linux
distribution. Lightweight Ubuntu distributions include
Peppermint OS (https://peppermintos.com/) and Lubuntu
(https://lubuntu.net/). For a lightweight Fedora-based
distribution, try the LXDE desktop
(https://spins.fedoraproject.org/lxde/). For a Linux
distribution requiring the least resources, you could try Tiny
Core Linux (http://tinycorelinux.net/).

RAM Fedora recommends at least 1GB of RAM, but at least 2GB
or 3GB would be much better. On my RHEL desktop, I'm running
a web browser, word processor, and mail reader, and I'm
consuming over 2GB of RAM.

DVD or USB drive You need to be able to boot up the
installation process from a DVD or USB drive. In recent releases,
the Fedora live media ISO has become too big to fit on a CD, so
you need to burn it to a DVD or USB drive. If you can't boot from
a DVD or USB drive, there are ways to start the installation from a
hard disk or by using a PXE install. After the installation process
is started, more software can sometimes be retrieved from
different locations (over the network or from hard disk, for
example).

https://peppermintos.com/
https://lubuntu.net/
https://spins.fedoraproject.org/lxde/
http://tinycorelinux.net/

NOTE
PXE (pronounced pixie) stands for Preboot eXecution
Environment (PXE). You can boot a client computer from a
Network Interface Card (NIC) that is PXE-enabled. If a PXE
boot server is available on the network, it can provide
everything a client computer needs to boot. What it boots can
be an installer. So, with a PXE boot, it is possible to do a
complete Linux installation without a CD, DVD, or any other
physical medium.

Network card You need wired or wireless networking hardware
to be able to add more software or get software updates. Fedora
offers free software repositories if you can connect to the Internet.
For RHEL, updates are available as part of the subscription price.

Disk space Fedora recommends at least 20GB of disk space for
an average desktop installation, although installations can range
(depending on which packages you choose to install) from 600MB
(for a minimal server with no GUI install) to 7GB (to install all
packages from the installation DVD). Consider the amount of data
that you need to store. Although documents can consume very
little space, videos can consume massive amounts of space. (By
comparison, you can install Tiny Core Linux to disk with only
about 16MB of disk space, which includes a GUI.)

Special hardware features Some Linux features require
special hardware features. For example, to use Fedora or RHEL as
a virtualization host using KVM, the computer must have a
processor that supports virtualization. These include AMD-V or
Intel-VT chips.

If you're not sure about your computer hardware, there are a few ways
to check what you have. If you are running Windows, the System
Properties window can show you the processor you have as well as the
amount of RAM that's installed. As an alternative, with the Fedora
Live CD booted, open a shell and type dmesg | less to see a listing of

hardware as it is detected on your system.

With your hardware in place, you can choose to install Linux from a
Live CD or from installation media, as described in the following
sections.

Installing Fedora from Live Media
In Chapter 2, you learned how to get and boot up Linux Live media.
This chapter steps you through an installation process of a Fedora Live
DVD so that it is permanently installed on your hard disk.

Simplicity is the main advantage of installing from Live media.
Essentially, you are just copying the kernel, applications, and settings
from the ISO image to the hard disk. There are fewer decisions that
you have to make to do this kind of installation, but you also don't get
to choose exactly which software packages to install. After the
installation, you can add and remove packages as you please.

The first decisions that you must make about your Live media
installation include where you want to install the system and whether
you want to keep existing operating systems around when your
installation is done:

Single-boot computer The easiest way to install Linux is to not
have to worry about other operating systems or data on the
computer and have Linux replace everything. When you are done,
the computer boots up directly to Fedora.

Multi-boot computer If you already have Windows installed on
a computer and you don't want to erase it, you can install Fedora
along with Windows on that system. Then, at boot time, you can
choose which operating system to start up. To be able to install
Fedora on a system with another operating system installed, you
must have either extra disk space available (outside the Windows
partition) or be able to shrink the Windows system to gain enough
free space to install Fedora. Because multi-boot computers are
tedious to set up and risk damaging your installed system, I
recommend installing Linux on a separate computer, even an old
used one, or on a virtual machine, as opposed to multi-booting.

Bare metal or virtual system The resulting Fedora
installation can be installed to boot up directly from the computer
hardware or from within an existing operating system on the
computer. If you have a computer that is running as a virtual host,

you can install Fedora on that system as a virtual guest.
Virtualization host software includes KVM, Xen, and VirtualBox
(for Linux and UNIX systems as well as Windows and the Mac
OS), Hyper-V (for Microsoft systems), and VMware (for Linux,
Windows, and Mac OS). You can use the Fedora Live ISO image
from disk or burned to a DVD to start an installation from your
chosen hypervisor host. (Chapter 27, “Using Linux for Cloud
Computing,” describes how to set up a KVM virtualization host.)

The following procedure steps you through the process of installing
the Fedora Live ISO described in Chapter 2 to your local computer.
Because the Fedora 30 installation is very similar to the Red Hat
Enterprise Linux 8 installation described later in this chapter, you can
refer to that procedure if you want to go beyond the simple selections
shown here (particularly in the area of storage configuration).

CAUTION
Before beginning the procedure, be sure to make backup copies of
any data on the computer that you still want to keep. Although, you
can choose not to erase selected disk partitions (as long as there is
enough space available on other partitions), there is always a risk
that data can be lost when you are manipulating disk partitions.
Also, unplug any USB drives that you have plugged into your
computer because they could be overwritten.

1. Get Fedora. Choose the Fedora Live media image that you want to
use, download it to your local system, and burn it to an
appropriate medium. See Appendix A for information on how to
get the Fedora Live media and burn it to a DVD or USB drive.

2. Boot the Live image. Insert the DVD or USB drive. When the
BIOS screen appears, look for a message that tells you to press a
particular function key (such as F12) to interrupt the boot process
and select the boot medium. Select the DVD or USB drive,
depending on which you have, and Fedora should come up and
display the boot screen. When you see the boot screen, select Start
Fedora-Workstation-Live.

3. Start the installation. When the Welcome to Fedora screen
appears, position your mouse over the Install to Hard Drive area
and select it. Figure 9.1 shows an example of the Install to Hard
Drive selection on the Fedora Live media.

FIGURE 9.1 Start the installation process from Live media.

4. Select the language. When prompted, choose the language type
that best suits you (such as U.S. English) and select Next. You
should see the Installation summary screen, as shown in Figure
9.2.

FIGURE 9.2 Select configuration options from the Installation
Summary screen.

5. Select Time & Date. From the Time & Date screen, you can select
your time zone either by clicking the map or choosing the region
and city from drop-down boxes. To set the date and time, if you
have an Internet connection, you can select the Network Time
button to turn it on, or you can select OFF and set the date and
time manually from boxes on the bottom of the screen. Select
Done in the upper-right corner when you are finished.

6. Select the installation destination. Available storage devices (such
as your hard drive) are displayed, with your hard drive selected as
the installation destination. If you want the installer to install
Fedora automatically, reclaiming existing disk space, make sure
that your disk is selected (not a USB drive or other device
connected to your computer), then make the following selections:

a. Automatic … If there is enough available disk space on the
selected disk drive, you can continue with the installation by
selecting Continue. Otherwise, you need to reclaim disk space
as follows:

I would like to make additional space available… If
you want to erase the hard drive completely, select this check
box and click Continue. You can erase some or all of the

partitions that currently contain data.

b. Reclaim Disk Space. From this screen, you can select Delete
All. Then select Reclaim Space. Partitioning is set up
automatically and you are returned to the Installation
Summary screen.

7. Select the keyboard. You can just use the default English (U.S.)
keyboard or select Keyboard to choose a different keyboard
layout.

8. Begin installation. Select Begin Installation to begin installing to
hard disk.

9. Finish the configuration. When the first part of the installation is
complete, click Quit.

10. Reboot. Select the little on/off button from the menu on the top-
right corner of the screen. When prompted, click the Restart
button. Eject or remove the Live media when the system boot
screen appears. The computer should boot to your newly installed
Fedora system. (You may actually need to power off the computer
for it to boot back up.)

11. Begin using Fedora. A first boot screen appears at this point,
allowing you to create a user account and password, among other
things. You are automatically logged in as that user account when
configuration is done. That account has sudo privileges, so you can
immediately begin doing administrative tasks as needed.

12. Get software updates. To keep your system secure and up to date,
one of the first tasks that you should do after installing Fedora is
to get the latest versions of the software you just installed. If your
computer has an Internet connection (plugging into a wired
Ethernet network or selecting an accessible wireless network from
the desktop takes care of that), you can simply open a Terminal as
your new user and type sudo dnf update to download and update
all of your packages from the Internet. If a new kernel is installed,
you can reboot your computer to have that new kernel take effect.

At this point, you can begin using the desktop, as described in Chapter
2. You can also use the system to perform exercises from any of the

chapters in this book.

Installing Red Hat Enterprise Linux from
Installation Media
In addition to offering a live DVD, most Linux distributions offer a
single image or set of images that can be used to install the
distribution. For this type of installation media, instead of copying the
entire contents of the medium to disk, software is split up into
packages that you can select to meet your exact needs. A full
installation DVD, for example, can allow you to install anything from a
minimal system to a fully featured desktop to a full-blown server that
offers multiple services.

In this chapter, I use a Red Hat Enterprise Linux 8 installation DVD as
the installation medium. Review the hardware information and
descriptions of dual booting in the previous section before beginning
your RHEL installation.

Follow this procedure to install Red Hat Enterprise Linux from an
installation DVD.

1. Get the installation media. The process of downloading RHEL
install ISO images is described on the Red Hat Enterprise Linux
product page. If you are not yet a Red Hat customer, you can
apply for an evaluation copy here:
https://www.redhat.com/en/technologies/linux-

platforms/enterprise-linux.

This requires that you create a Red Hat account. If that is not
possible, you can download an installation DVD from a mirror
site of the CentOS project to get a similar experience:
https://wiki.centos.org/Download.

For this example, I used the 6.7G RHEL 8 DVD ISO rhel-8.0-
x86_64-dvd.iso. After you have the DVD ISO, you can burn it to a
physical USB drive or dual-layer DVD, as described in Appendix
A.

2. Boot the installation media. Insert the USB drive or DVD into
your computer and reboot. (If you need to, interrupt the boot

https://www.redhat.com/en/technologies/linux-platforms/enterprise-linux
http://wiki.centos.org/Download

prompt to select to boot from the selected USB or DVD.) The
Welcome screen appears.

3. Select Install or Test Media. Select the Install or the “Test this
media & install” entry to do a new installation of RHEL. The
media test verifies that the DVD has not been corrupted during
the copy or burning process. If you need to modify the installation
process, you can add boot options by pressing the Tab key with a
boot entry highlighted and typing in the options you want. See the
section “Using installation boot options” later in this chapter.

4. Select a language. Select your language and choose Continue. The
Installation Summary screen appears. From that screen, you can
select to change any of the available Localization, Software, and
System features, as shown in Figure 9.3.

FIGURE 9.3 Choose from Localization, Software, and System
topics on the Installation Summary screen.

5. Keyboard. Choose from different types of keyboards available
with the languages you selected earlier. Type some text to see how
the keys are laid out.

6. Language Support. You have a chance to add support for
additional languages (beyond what you set by default earlier).

Select Done when you are finished.

7. Time & Date. Choose a time zone for your machine from either
the map or the list shown (as described in the section “Installing
Fedora from Live Media”). Either set the time manually with
up/down arrows or select Network Time to have your system try
to connect to networked time servers automatically to sync system
time. Select Done when you are finished.

8. Installation Source. The installation DVD is used, by default, to
provide the RPM packages that are used during installation. You
have the option of selecting “On the network” and choosing a Web
URL (http, https, or ftp) identifying where the Red Hat
Enterprise Linux software repository is located. After choosing
the DVD or a network location, you can add additional yum
repositories to have those repositories used during installation as
well. Select Done when you are finished.

9. Software Selection. The default “Server with GUI” selection
provides a GNOME 3 desktop system on top of a basic server
install. Other choices include "Server" (which has no GUI),
"Minimal Install" (which starts with a basic package set), and
"Workstation" (geared for end users). You can select to add other
services or other base environments to include. Select Done when
you are ready to continue.

10. Installation Destination. The new RHEL system is installed, by
default, on the local hard drive using automatic partitioning. You
also have the option of attaching network storage or special
storage, such as Firmware RAID. (See the section “Partitioning
hard drives” later in this chapter for details on configuring
storage.) Click Done when you are finished. You may be asked to
verify that it's okay to delete existing storage.

11. Kdump. Enabling kdump sets aside RAM to be used to capture the
resulting kernel dump in the event that your kernel crashes.
Without kdump, there would be no way to diagnose a crashed
kernel. By default, enabling kdump sets aside 160MB plus 2 bits
for every 4KB of RAM for saving kernel crashes.

12. Network & Host Name. Any network interface cards that are
discovered can be configured at this point. If a DHCP service is
available on the network, network address information is assigned
to the interface after you select ON. Select Configure if you prefer
to configure the network interface manually. Fill in the Hostname
box if you want to set the system's hostname. Setting up your
network and hostname during installation can make it easier to
begin using your system after installation. Click Done to continue.

13. Security Policy. By choosing a security policy (none is chosen by
default), you can ensure that your system complies with a selected
security standard. All fields are optional and can be changed later.

14. System Purpose. This optional selection lets you choose the
system's role, service-level agreement, and usage.

15. Begin the installation. Click the Begin Installation button to start
the install process. A progress bar marks the progress of the
installation. As the system is installing, you can set the root
password and create a new user account for your new system.

16. Root Password. Set the password for the root user and verify it
(type it again). Click Done to accept it. If the password is too short
or too weak, you stay on the page (where you can set a new
password). If you decide to keep the weak password instead, click
Done again to accept the weak password.

17. User Creation. It is good practice to log into a Linux system with a
non-root user account and request root privilege as needed. You
can set up a user account, including a username, full name, and
password. You can select “Make this user administrator” to give
that user sudo privileges (allowing the account to act as the root
user as needed). Select Done when you are finished. If the
password you enter is too short or otherwise weak, you must
change it or click Done again if you still want to use the weak
password.

18. Complete the installation. When installation is finished, click
Reboot. Pop out the DVD when the system restarts and Red Hat
Enterprise Linux starts up from the hard disk.

19. Run firstboot. If you installed a desktop interface, the firstboot
screen appears the first time you boot the system. Here's what you
do:

a. License Information. Read and click the check box to accept
the license information, then click Done.

b. Subscription Manager. When prompted, you can leave the
default subscription management system in place
(subscription.rhn.redhat.com) or enter the location of a Red
Hat Satellite server to register your system. Click Next. Enter
your Red Hat account and password, then click Register to
register and entitle your system to updates. If the
subscription found is acceptable, click Attach to enable the
subscription.

20. Select Finish Configuration when you are done.

You should now be able to log in to your Red Hat Enterprise Linux
system. One of the first things that you should do is to get software
updates for the new system. Do this by logging into the system and
running sudo dnf upgrade from a Terminal window.

http://subscription.rhn.redhat.com

Understanding Cloud-Based Installations
When you install a Linux system on a physical computer, the installer
can see the computer's hard drive, network interfaces, CPUs, and
other hardware components. When you install Linux in a cloud
environment, those physical components are abstracted into a pool of
resources. So, to install a Linux distribution in an Amazon EC2,
Google Compute Engine, or OpenStack cloud platform, you need to go
about things differently.

The common way of installing Linux in a cloud is to start with a file
that is an image of an installed Linux system. Typically, that image
includes all of the files needed by a basic, running Linux system.
Metadata is added to that image from a configuration file or by filling
out a form from a cloud controller that creates and launches the
operating system as a virtual machine.

The kind of information added to the image might include a particular
hostname, root password, and new user account. You might also want
to choose to have a specific amount of disk space, a particular network
configuration, and a certain number of CPU processors and RAM.

Methods for installing Linux in a local cloud-like KVM environment
are discussed in Chapter 28, “Deploying Linux to the Cloud.” That
chapter covers how to run a Linux system as a virtual machine image
on a KVM environment, Amazon EC2 cloud, or OpenStack
environment.

Installing Linux in the Enterprise
If you were managing dozens, hundreds, even thousands of Linux
systems in a large enterprise, it would be terribly inefficient to have to
go to each computer to type and click through each installation.
Fortunately, with Red Hat Enterprise Linux and other distributions,
you can automate installation in such a way that all you need to do is
to turn on a computer and boot from the computer's network interface
card to get your desired Linux installation.

Although we have focused on installing Linux from a DVD or USB
media, there are many other ways to launch a Linux installation and
many ways to complete an installation. The following descriptions step
through the installation process and describe ways of changing that
process along the way:

Launch the installation medium. You can launch an
installation from any medium that you can boot from a computer:
CD, DVD, USB drive, hard disk, or network interface card with
PXE support. The computer goes through its boot order and looks
at the master boot record on the physical medium or looks for a
PXE server on the network.

Start the anaconda kernel. The job of the boot loader is to
point to the special kernel (and possibly an initial RAM disk) that
starts the Linux installer (called anaconda). So, any of the media
types just described simply needs to point to the location of the
kernel and initial RAM disk to start the installation. If the
software packages are not on the same medium, the installation
process prompts you for where to get those packages.

Add kickstart or other boot options. Boot options (described
later in this chapter) can be passed to the anaconda kernel to
configure how it starts up. One option supported by Fedora and
RHEL allows you to pass the location of a kickstart file to the
installer. That kickstart can contain all of the information needed
to complete the installation: root password, partitioning, time
zone, and so on to configure the installed system further. After the

installer starts, it either prompts for needed information or uses
the answers provided in the kickstart file.

Find software packages. Software packages don't have to be
on the installation medium. This allows you to launch an
installation from a boot medium that contains only a kernel and
initial RAM disk. From the kickstart file or from an option you
enter manually to the installer, you can identify the location of the
repository holding the RPM software packages. That location can
be a local CD (cdrom), website (http), FTP site (ftp), NFS share
(nfs), NFS ISO (nfsiso), or local disk (hd).

Modify installation with kickstart scripts. Scripts included
in a kickstart can run commands you choose before or after the
installation to further configure the Linux system. Those
commands can add users, change permissions, create files and
directories, grab files over the network, or otherwise configure the
installed system exactly as you specify.

Although installing Linux in enterprise environments is beyond the
scope of this book, I want you to understand the technologies that are
available when you want to automate the Linux installation process.
Here are some of those technologies available to use with Red Hat
Enterprise Linux, along with links to where you can find more
information about them:

Install server If you set up an installation server, you don't have
to carry the software packages around to each machine where you
install RHEL. Essentially, you copy all of the software packages
from the RHEL installation medium to a web server (http), FTP
server (ftp), or NFS server (nfs) and then point to the location of
that server when you boot the installer. The RHEL 8 Installation
Guide describes how to set up a local or network installation
source:
https://access.redhat.com/documentation/en-

us/red_hat_enterprise_linux/8/html-

single/performing_a_standard_rhel_installation/index#prepare-

installation-source:preparing-for-your-installation

PXE server If you have a computer with a network interface

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/performing_a_standard_rhel_installation/index#prepare-installation-source:preparing-for-your-installation

card that supports PXE booting (as most do), you can set your
computer's BIOS to boot from that NIC. If you have set up a PXE
server on that network, that server can present a menu to the
computer containing entries to launch an installation process. The
RHEL Installation Guide provides information on how to set up
PXE servers for installation:
https://access.redhat.com/documentation/en-

us/red_hat_enterprise_linux/8/html-

single/performing_a_standard_rhel_installation/index#booting-

the-installation-using-pxe_booting-the-installer

Kickstart files To automate an installation completely, you
create what is called a kickstart file. By passing a kickstart file as a
boot option to a Linux installer, you can provide answers to all of
the installation questions that you would normally have to click
through.

When you install RHEL, a kickstart file containing answers to all
installation questions for the installation you just did is
contained in the /root/anaconda-ks.cfg file. You can present that
file to your next installation to repeat the installation
configuration or use that file as a model for different
installations.

See the Advanced RHEL Installation Guide for information on
performing a kickstart installation:
https://access.redhat.com/documentation/en-

us/red_hat_enterprise_linux/8/html-

single/performing_an_advanced_rhel_installation/index/#performing_an_automated_installation_using_kickstart

… and creating your own kickstart files
https://access.redhat.com/documentation/en-

us/red_hat_enterprise_linux/8/html-

single/performing_an_advanced_rhel_installation/index/#creating-

kickstart-files_installing-rhel-as-an-experienced-user

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/performing_a_standard_rhel_installation/index#booting-the-installation-using-pxe_booting-the-installer
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/performing_an_advanced_rhel_installation/index/#performing_an_automated_installation_using_kickstart
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/performing_an_advanced_rhel_installation/index/#creating-kickstart-files_installing-rhel-as-an-experienced-user

Exploring Common Installation Topics
Some of the installation topics touched upon earlier in this chapter
require further explanation for you to be able to implement them fully.
Read through the following sections to get a greater understanding of
specific installation topics.

Upgrading or installing from scratch
If you have an earlier version of Linux already installed on your
computer, Fedora, Ubuntu, and other Linux distributions offer an
upgrade option. Red Hat Enterprise Linux offers a limited upgrade
path from RHEL 7 to RHEL 8.

Upgrading lets you move a Linux system from one major release to the
next. Between minor releases, you can simply update packages as
needed (for example, by typing yum update). Here are a few general
rules before performing an upgrade:

Remove extra packages. If you have software packages that
you don't need, remove them before you do an upgrade. Upgrade
processes typically upgrade only those packages that are on your
system. Upgrades generally do more checking and comparing
than clean installs do, so any package that you can remove saves
time during the upgrade process.

Check configuration files. A Linux upgrade procedure often
leaves copies of old configuration files. You should check that the
new configuration files still work for you.

TIP
Installing Linux from scratch goes faster than an upgrade. It also
results in a cleaner Linux system. So, if you don't need the data on
your system (or if you have a backup of your data), I recommend
that you do a fresh installation. Then you can restore your data to a
freshly installed system.

Some Linux distributions, most notably Gentoo, have taken the
approach of providing ongoing updates. Instead of taking a new
release every few months, you simply continuously grab updated
packages as they become available and install them on your system.

Dual booting
It is possible to have multiple operating systems installed on the same
computer. One way to do this is by having multiple partitions on a
hard disk and/or multiple hard disks and then installing different
operating systems on different partitions. As long as the boot loader
contains boot information for each of the installed operating systems,
you can choose which one to run at boot time.

CAUTION
Although tools for resizing Windows partitions and setting up
multi-boot systems have improved in recent years, there is still
some risk of losing data on Windows/Linux dual-boot systems.
Different operating systems often have different views of partition
tables and master boot records that can cause your machine to
become unbootable (at least temporarily) or lose data
permanently. Always back up your data before you try to resize a
Windows filesystem to make space for Linux.

If the computer you are using already has a Windows system on it,
quite possibly the entire hard disk is devoted to Windows. Although
you can run a bootable Linux, such as KNOPPIX or Tiny Core Linux,
without touching the hard disk, to do a more permanent installation,
you'll want to find disk space outside of the Windows installation.
There are a few ways to do this:

Add a hard disk. Instead of messing with your Windows
partition, you can simply add a hard disk and devote it to Linux.

Resize your Windows partition. If you have available space
on a Windows partition, you can shrink that partition so that free
space is available on the disk to devote to Linux. Commercial tools
such as Acronis Disk Director (https://www.acronis.com/en-
us/personal/disk-manager) are available to resize your disk
partitions and set up a workable boot manager. Some Linux
distributions (particularly bootable Linux distributions used as
rescue media) include a tool called GParted (which includes
software from the Linux-NTFS project for resizing Windows
NTFS partitions).

https://www.acronis.com/en-us/personal/disk-manager

NOTE
Type dnf install gparted (in Fedora) or apt-get install
gparted (in Ubuntu) to install GParted. Run gparted as root to
start it.

Before you try to resize your Windows partition, you might need to
defragment it. To defragment your disk on some Windows systems so
that all your used space is put in order on the disk, open My
Computer, right-click your hard disk icon (typically C:), select
Properties, click Tools, and select Defragment Now.

Defragmenting your disk can be a fairly long process. The result of
defragmentation is that all of the data on your disk are contiguous,
creating lots of contiguous free space at the end of the partition.
Sometimes, you have to complete the following special tasks to make
this true:

If the Windows swap file is not moved during defragmentation,
you must remove it. Then, after you defragment your disk again
and resize it, you need to restore the swap file. To remove the
swap file, open the Control Panel, open the System icon, click the
Performance tab, and select Virtual Memory. To disable the swap
file, click Disable Virtual Memory.

If your DOS partition has hidden files that are on the space you
are trying to free up, you need to find them. In some cases, you
can't delete them. In other cases, such as swap files created by a
program, you can safely delete those files. This is a bit tricky
because some files should not be deleted, such as DOS system
files. You can use the attrib -s -h command from the root
directory to deal with hidden files.

After your disk is defragmented, you can use commercial tools
described earlier (Acronis Disk Director) to repartition your hard disk
to make space for Linux. Or, you can use the open-source alternative
GParted.

After you have cleared enough disk space to install Linux (see the disk
space requirements described earlier in this chapter), you can install
Ubuntu, Fedora, RHEL, or another Linux distribution. As you set up
your boot loader during installation, you can identify Windows, Linux,
and any other bootable partitions so that you can select which one to
boot when you start your computer.

Installing Linux to run virtually
Using virtualization technology, such as KVM, VMware, VirtualBox, or
Xen, you can configure your computer to run multiple operating
systems simultaneously. Typically, you have a host operating system
running (such as your Linux or Windows desktop), and then you
configure guest operating systems to run within that environment.

If you have a Windows system, you can use commercial VMware
products to run Linux on your Windows desktop. Get a trial of
VMware Workstation (https://www.vmware.com/try-vmware) to see if
you like it. Then run your installed virtual guests with the free VMware
Player. With a full-blown version of VMware Workstation, you can run
multiple distributions at the same time.

Open-source virtualization products that are available with Linux
systems include VirtualBox (https://www.virtualbox.org), Xen
(https://xenproject.org), and KVM (https://www.linux-kvm.org).
Some Linux distributions still use Xen. However, all Red Hat systems
currently use KVM as the basis for Red Hat's hypervisor features in
RHEL, Red Hat Virtualization, and other cloud projects. See Chapter
28 for information on installing Linux as a virtual machine on a Linux
KVM host.

Using installation boot options
When the anaconda kernel launches at boot time for RHEL or Fedora,
boot options provided on the kernel command line modify the
behavior of the installation process. By interrupting the boot loader
before the installation kernel boots, you can add your own boot
options to direct how the installation behaves.

When you see the installation boot screen, depending on the boot

http://www.vmware.com/try-vmware
https://www.virtualbox.org
https://xenproject.org
https://www.linux-kvm.org

loader, press Tab or some other key to be able to edit the anaconda
kernel command line. The line identifying the kernel might look
something like the following:

vmlinuz initrd=initrd.img …

The vmlinuz is the compressed kernel and initrd.img is the initial
RAM disk (containing modules and other tools needed to start the
installer). To add more options, just type them at the end of that line
and press Enter.

So, for example, if you have a kickstart file available from /root/ks.cfg
on a CD, your anaconda boot prompt to start the installation using the
kickstart file could look like the following:

vmlinuz initrd=initrd.img ks=cdrom:/root/ks.cfg

For Red Hat Enterprise Linux 8 and the latest Fedora releases, kernel
boot options used during installation are transitioning to a new
naming method. With this new naming, a prefix of inst. can be placed
in front of any of the boot options shown in this section that are
specific to the installation process (for example, inst.xdriver or
inst.repo=dvd). For the time being, however, you can still use the
options shown in the next few sections with the inst. prefix.

Boot options for disabling features
Sometimes, a Linux installation fails because the computer has some
non-functioning or non-supported hardware. Often, you can get
around those issues by passing options to the installer that do such
things as disable selected hardware when you need to select your own
driver. Table 9.1 provides some examples.

Boot options for video problems
If you are having trouble with your video display, you can specify video
settings as noted in Table 9.2.

Boot options for special installation types
By default, installation runs in graphical mode when you're sitting at

the console answering questions. If you have a text-only console, or if
the GUI isn't working properly, you can run an installation in plain-
text mode: by typing text, you cause the installation to run in text
mode.

TABLE 9.1 Boot Options for Disabling Features

Installer
Option

Tells System

nofirewire Not to load support for firewire devices
nodma Not to load DMA support for hard disks
noide Not to load support for IDE devices
nompath Not to enable support for multipath devices
noparport Not to load support for parallel ports
nopcmcia Not to load support for PCMCIA controllers
noprobe Not to probe hardware; instead prompt user for drivers
noscsi Not to load support for SCSI devices
nousb Not to load support for USB devices
noipv6 Not to enable IPV6 networking
nonet Not to probe for network devices
numa-off To disable the Non-Uniform Memory Access (NUMA)

for AMD64 architecture
acpi=off To disable the Advanced Configuration and Power

Interface (ACPI)

TABLE 9.2 Boot Options for Video Problems

Boot Option Tells System
xdriver=vesa Use standard vesa video driver
resolution=1024x768 Choose exact resolution to use
nofb Don't use the VGA 16 framebuffer driver
skipddc Don't probe DDC of the monitor (the probe can

hang the installer)

graphical Force a graphical installation

If you want to start installation on one computer, but you want to
answer the installation questions from another computer, you can
enable a VNC (virtual network computing) installation. After you start
this type of installation, you can go to another system and open a vnc
viewer, giving the viewer the address of the installation machine (such
as 192.168.0.99:1). Table 9.3 provides the necessary commands, along
with what to tell the system to do.

Boot options for kickstarts and remote repositories
You can boot the installation process from an installation medium that
contains little more than the kernel and initial RAM disk. If that is the
case, you need to identify the repository where the software packages
exist. You can do that by providing a kickstart file or by identifying the
location of the repositories in some way. To force the installer to
prompt for the repository location (CD/DVD, hard drive, NFS, or
URL), add askmethod to the installation boot options.

TABLE 9.3 Boot Options for VNC Installations

Boot Option Tells System
vnc Run installation as a VNC server
vncconnect=

hostname[:port]

Connect to VNC client hostname and optional
port

vncpassword=

password
Client uses password (at least 8 characters) to
connect to installer

Using repo= options, you can identify software repository locations.
The following examples show the syntax to use for creating repo=
entries:

repo=hd:/dev/sda1:/myrepo

Repository in /myrepo on disk 1 first partition

repo=http://abc.example.com/myrepo

Repository available from /myrepo on web server

repo=ftp://ftp.example.com/myrepo

Repository available from /myrepo on FTP server

repo=cdrom

Repository available from local CD or DVD

repo=nfs::mynfs.example.com:/myrepo/

Repository available from /myrepo on NFS share

repo=nfsiso::nfs.example.com:/mydir/rhel7.iso

Installation ISO image available from NFS server

Instead of identifying the repository directly, you can specify it within
a kickstart file. The following are examples of some ways to identify
the location of a kickstart file.

ks=cdrom:/stuff/ks.cfg

Get kickstart from CD/DVD.

ks=hd:sda2:/test/ks.cfg

Get kickstart from test directory on hard disk(

sda2).

ks=http://www.example.com/ksfiles/ks.cfg

Get kickstart from a web server.

ks=ftp://ftp.example.com/allks/ks.cfg

Get kickstart from a FTP server.

ks=nfs:mynfs.example.com:/someks/ks.cfg

Get kickstart from an NFS server.

Miscellaneous boot options
Here are a few other options that you can pass to the installer that
don't fit in a category.

rescue

Instead of installing, run the kernel to open Linux rescue

mode.

mediacheck

Check the installation CD/DVD for checksum errors.

For further information on using the anaconda installer in rescue
mode (to rescue a broken Linux system), see Chapter 21,
“Troubleshooting Linux.” For information on the latest boot options
use in RHEL 8, refer to the RHEL 8 Installation Guide:
https://access.redhat.com/documentation/en-

us/red_hat_enterprise_linux/8/html-

single/performing_a_standard_rhel_installation/index#custom-boot-

options_booting-the-installer

Using specialized storage

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/performing_a_standard_rhel_installation/index#custom-boot-options_booting-the-installer

In large enterprise computing environments, it is common to store the
operating system and data outside of the local computer. Instead,
some special storage device beyond the local hard disk is identified to
the installer, and that storage device (or devices) can be used during
installation.

Once identified, the storage devices that you indicate during
installation can be used the same way that local disks are used. You
can partition them and assign a structure (filesystem, swap space, and
so on) or leave them alone and simply mount them where you want
the data to be available.

The following types of specialized storage devices can be selected from
the Specialized Storage Devices screen when you install Red Hat
Enterprise Linux, Fedora, or other Linux distributions:

Firmware RAID A firmware RAID device is a type of device that
has hooks in the BIOS, allowing it to be used to boot the operating
system, if you choose.

Multipath devices As the name implies, multipath devices
provide multiple paths between the computer and its storage
devices. These paths are aggregated, so these devices look like a
single device to the system using them, while the underlying
technology provides improved performance, redundancy, or both.
Connections can be provided by iSCSI or Fibre Channel over
Ethernet (FCoE) devices.

Other SAN devices Any device representing a Storage Area
Network (SAN).

While configuring these specialized storage devices is beyond the
scope of this book, know that if you are working in an enterprise where
iSCSI and FCoE devices are available, you can configure your Linux
system to use them at installation time. You need the following types
of information to do this:

iSCSI devices Have your storage administrator provide you with
the target IP address of the iSCSI device and the type of discovery
authentication needed to use the device. The iSCSI device may
require credentials.

Fibre Channel over Ethernet Devices (FCoE) For FCoE,
you need to know the network interface that is connected to your
FCoE switch. You can search that interface for available FCoE
devices.

Partitioning hard drives
The hard disk (or disks) on your computer provide the permanent
storage area for your data files, applications programs, and the
operating system itself. Partitioning is the act of dividing a disk into
logical areas that can be worked with separately. In Windows, you
typically have one partition that consumes the whole hard disk.
However, with Linux there are several reasons you may want to have
multiple partitions:

Multiple operating systems If you install Linux on a PC that
already has a Windows operating system, you may want to keep
both operating systems on the computer. For all practical
purposes, each operating system must exist on a completely
separate partition. When your computer boots, you can choose
which system to run.

Multiple partitions within an operating system To protect
their entire operating system from running out of disk space,
people often assign separate partitions to different areas of the
Linux filesystem. For example, if /home and /var were assigned to
separate partitions, then a gluttonous user who fills up the /home
partition wouldn't prevent logging daemons from continuing to
write to log files in the /var/log directory.

Multiple partitions also make doing certain kinds of backups
(such as an image backup) easier. For example, an image backup
of /home would be much faster (and probably more useful) than
an image backup of the root filesystem (/).

Different filesystem types Different kinds of filesystems have
different structures. Filesystems of different types must be on
their own partitions. Also, you might need different filesystems to
have different mount options for special features (such as read-
only or user quotas). In most Linux systems, you need at least one

filesystem type for the root of the filesystem (/) and one for your
swap area. Filesystems on CD-ROM use the iso9660 filesystem
type.

TIP
When you create partitions for Linux, you usually assign the
filesystem type as Linux native (using the ext2, ext3, ext4, or xfs
type on most Linux systems). If the applications that you are
running require particularly long filenames, large file sizes, or
many inodes (each file consumes an inode), you may want to
choose a different filesystem type.

Coming from Windows
If you have only used Windows operating systems before, you
probably had your whole hard disk assigned to C: and never
thought about partitions. With many Linux systems, you have the
opportunity to view and change the default partitioning based on
how you want to use the system.

During installation, systems such as Fedora and RHEL let you
partition your hard disk using graphical partitioning tools. The
following sections describe how to partition your disk during a Fedora
installation. See the section “Tips for creating partitions” for some
ideas for creating disk partitions.

Understanding different partition types
Many Linux distributions give you the option of selecting different
partition types when you partition your hard disk during installation.
Partition types include the following:

Linux partitions Use this option to create a partition for an
ext2, ext3, or ext4 filesystem type that is added directly to a
partition on your hard disk (or other storage medium). The xfs
filesystem type can also be used on a Linux partition. (In fact, xfs
is now the default filesystem type for RHEL 8 systems.)

LVM partitions Create an LVM partition if you plan to create or
add to an LVM volume group. LVMs give you more flexibility in
growing, shrinking, and moving partitions later than regular
partitions do.

RAID partitions Create two or more RAID partitions to create a
RAID array. These partitions should be on separate disks to create
an effective RAID array. RAID arrays can help improve
performance, reliability, or both as those features relate to
reading, writing, and storing your data.

Swap partitions Create a swap partition to extend the amount
of virtual memory available on your system.

The following sections describe how to add regular Linux partitions
and LVM, RAID, and swap partitions using the Fedora graphical
installer. If you are still not sure when you should use these different
partition types, refer to Chapter 12, “Managing Disks and
Filesystems,” for further information on configuring disk partitions.

Tips for creating partitions
Changing your disk partitions to handle multiple operating systems
can be very tricky, in part because each operating system has its own
ideas about how partitioning information should be handled as well as
different tools for doing it. Here are some tips to help you get it right:

If you are creating a dual-boot system, particularly for a Windows
system, try to install the Windows operating system first after
partitioning your disk. Otherwise, the Windows installation may
make the Linux partitions inaccessible.

The fdisk man page recommends that you use partitioning tools
that come with an operating system to create partitions for that
operating system. For example, the Windows fdisk knows how to
create partitions that Windows will like, and the Linux fdisk will
happily make your Linux partitions. After your hard disk is set up
for dual boot, however, you should probably not go back to
Windows-only partitioning tools. Use Linux fdisk or a product
made for multi-boot systems (such as Acronis Disk Director).

A master boot record (MBR) partition table can contain four
primary partitions, one of which can be marked to contain 184
logical drives. On a GPT partition table, you can have a maximum
of 128 primary partitions on most operating systems, including
Linux. You typically won't need nearly that many partitions. If you
need more partitions, use LVM and create as many logical
volumes as you like.

If you are using Linux as a desktop system, you probably don't need
lots of different partitions. However, some very good reasons exist for
having multiple partitions for Linux systems that are shared by lots of

users or are public web servers or file servers. Having multiple
partitions within Fedora or RHEL, for example, offers the following
advantages:

Protection from attacks Denial-of-service attacks sometimes
take actions that try to fill up your hard disk. If public areas, such
as /var, are on separate partitions, a successful attack can fill up a
partition without shutting down the whole computer. Because
/var is the default location for web and FTP servers, and is
expected to hold lots of data, entire hard disks often are assigned
to the /var filesystem alone.

Protection from corrupted filesystems If you have only one
filesystem (/), its corruption can cause the whole Linux system to
be damaged. Corruption of a smaller partition can be easier to fix
and often allows the computer to stay in service while the
correction is made.

Table 9.4 lists some directories that you may want to consider making
into separate filesystem partitions.

TABLE 9.4 Assigning Partitions to Particular Directories

Directory Explanation
/boot Sometimes, the BIOS in older PCs can access only the

first 1024 cylinders of your hard disk. To make sure that
the information in your /boot directory is accessible to
the BIOS, create a separate disk partition (by default,
RHEL 8 sets this partition to 1024 MiB) for /boot. Even
with several kernels installed, there is rarely a reason for
/boot to be larger than 1024 MiB.

/usr This directory structure contains most of the applications
and utilities available to Linux users. The original theory
was that if /usr were on a separate partition, you could
mount that filesystem as read-only after the operating
system had been installed. This would prevent attackers
from replacing or removing important system
applications with their own versions that may cause
security problems. A separate /usr partition is also useful

if you have diskless workstations on your local network.
Using NFS, you can share /usr over the network with
those workstations.

/var Your FTP (/var/ftp) and web server (/var/www)
directories are, by default in many Linux systems, stored
under /var. Having a separate /var partition can prevent
an attack on those facilities from corrupting or filling up
your entire hard disk.

/home Because your user account directories are located in this
directory, having a separate /home account can prevent a
reckless user from filling up the entire hard disk. It also
conveniently separates user data from your operating
system (for easy backups or new installs). Often, /home is
created as an LVM logical volume, so it can grow in size
as user demands increase. It may also be assigned user
quotas to limit disk use.

/tmp Protecting /tmp from the rest of the hard disk by placing it
on a separate partition can ensure that applications that
need to write to temporary files in /tmp can complete
their processing, even if the rest of the disk fills up.

Although people who use Linux systems rarely see a need for lots of
partitions, those who maintain and occasionally have to recover large
systems are thankful when the system they need to fix has several
partitions. Multiple partitions can limit the effects of deliberate
damage (such as denial-of-service attacks), problems from errant
users, and accidental filesystem corruption.

Using the GRUB boot loader
A boot loader lets you choose when and how to boot the operating
systems installed on your computer's hard disks. The GRand Unified
Bootloader (GRUB) is the most popular boot loader used for installed
Linux systems. There are two major versions of GRUB available today:

GRUB Legacy (version 1). This version of GRUB was used with
earlier versions of RHEL, Fedora, and Ubuntu.

GRUB 2. The current versions of Red Hat Enterprise Linux,
Ubuntu, and Fedora use GRUB 2 as the default boot loader.

NOTE
SYSLINUX is another boot loader that you will encounter with
Linux systems. The SYSLINUX boot loaders are not typically
used for installed Linux systems. However, SYSLINUX is
commonly used as the boot loader for bootable Linux CDs and
DVDs. SYSLINUX is particularly good for booting ISO9660
CD images (isolinux) and USB sticks (syslinux) and for
working on older hardware or for PXE booting (pxelinux) a
system over the network.

If you want to boot to a particular run level, you can add the run level
you want to the end of the kernel line. For example, to have RHEL
boot to run level 3 (multiuser plus networking mode), add 3 to the end
of the kernel line. You can also boot to single-user mode (1), multiuser
mode (2), or X GUI mode (5). Level 3 is a good choice if your GUI is
temporarily broken. Level 1 is good if you have forgotten your root
password.

By default, you will see a splash screen as Linux boots. If you want to
see messages showing activities happening as the system boots up, you
can remove the option rhgb quiet from the kernel line. This lets you
see messages as they scroll by. Pressing Esc during boot-up gets the
same result.

GRUB 2 represents a major rewrite of the GRUB Legacy project. It was
adopted as the default boot loader for the latest Red Hat Enterprise
Linux, Fedora, and Ubuntu releases. The major function of the GRUB
2 boot loader is still to find and start the operating system you want,
but now much more power and flexibility is built into the tools and
configuration files that get you there.

In GRUB 2, the configuration file is now named /boot/grub2/grub.cfg
or /etc/grub2-efi.cfg (for systems booted with EFI). Everything from
the contents of grub.cfg to the way grub.cfg is created is different
from the GRUB Legacy grub.conf file.

Here are some things you should know about the grub.cfg file:

Instead of editing grub.cfg by hand or having kernel RPM
packages add to it, grub.cfg is generated automatically from the
contents of the /etc/default/grub file and the /etc/grub.d/
directory. You should modify or add to those files to configure
GRUB 2 yourself.

The grub.cfg file can contain scripting syntax, including such
things as functions, loops, and variables.

Device names needed to identify the location of kernels and initial
RAM disks can be more reliably identified using labels or
universally unique identifiers (UUIDs). This prevents the
possibility of a disk device such as /dev/sda being changed to
/dev/sdb when you add a new disk (which would result in the
kernel not being found).

For Fedora and RHEL systems, *conf files in the
/boot/loader/entries directory are used to create entries that
appear on the GRUB menu that appears at boot time.

You could create your own entry for the GRUB boot menu by following
the format of an existing entry. The following file in the
/boot/loader/entries directory creates a menu entry for booting a
RHEL 8 kernel and initrd:

title Red Hat Enterprise Linux (4.18.0-80.el8.x86_64) 8.0

(Ootpa)

version 4.18.0-80.el8.x86_64

linux /vmlinuz-4.18.0-80.el8.x86_64

initrd /initramfs-4.18.0-80.el8.x86_64.img $tuned_initrd

options $kernelopts $tuned_params

id rhel-20190313123447-4.18.0-80.el8.x86_64

grub_users $grub_users

grub_arg --unrestricted

grub_class kernel

The menu entry for this selection appears as Red Hat Enterprise
Linux (4.18.0-80.el8.x86_64) 8.0 (Ootpa) on the GRUB 2 boot
menu.

The linux line identifies the location of the kernel (/vmlinuz-4.18.0-

80.el8.x86_64), followed by the location of the initrd (/initramfs-
4.18.0-80.el8.x86_64.img).

There are many, many more features of GRUB 2 that you can learn
about if you want to dig deeper into your system's boot loader. The
best documentation for GRUB 2 is available by typing info grub2 at
the shell. The info entry for GRUB 2 provides lots of information for
booting different operating systems, writing your own configuration
files, working with GRUB image files, setting GRUB environment
variables, and working with other GRUB features.

Summary
Although every Linux distribution includes a different installation
method, you need to do many common activities, regardless of which
Linux system you install. For every Linux system, you need to deal
with issues of disk partitioning, boot options, and configuring boot
loaders.

In this chapter, you stepped through installation procedures for a
Fedora Workstation (using a live media installation) and Red Hat
Enterprise Linux (from installation media). You learned how
deploying Linux in cloud environments can differ from traditional
installation methods by combining metadata with prebuilt base
operating system image files to run on large pools of compute
resources.

The chapter also covered special installation topics, including using
boot options and disk partitioning. With your Linux system now
installed, Chapter 10, “Getting and Managing Software,” describes how
to begin managing the software on your Linux system.

Exercises
Use these exercises to test your knowledge of installing Linux. I
recommend that you do these exercises on a computer that has no
operating system or data on it that you would fear losing (in other
words, one you don't mind erasing). If you have a computer that
allows you to install virtual systems, that is a safe way to do these
exercises as well. These exercises were tested using Fedora 30
Workstation Live media and a RHEL 8 Installation DVD.

1. Start installing from Fedora Live media, using as many of the
default options as possible.

2. After you have completely installed Fedora, update all of the
packages on the system.

3. Start installing from an RHEL installation DVD but make it so
that the installation runs in text mode. Complete the installation
in any way you choose.

4. Start installing from an RHEL installation DVD and set the disk
partitioning as follows: a 1024MB /boot, / (6G), /var (2G), and
/home (2G). Leave the rest as unused space.

CAUTION
Completing Exercise 4 ultimately deletes all content on your hard
disk. If you just want to use this exercise to practice partitioning,
you can reboot your computer before clicking Accept Changes at
the very end of this procedure without harming your hard disk. If
you go forward and partition your disk, assume that all data that
you have not explicitly changed has been deleted.

CHAPTER 10
Getting and Managing Software

IN THIS CHAPTER
Installing software from the desktop

Working with RPM packaging

Using YUM to manage packages

Using rpm to work with packages

Installing software in the enterprise

In Linux distributions such as Fedora and Ubuntu, you don't need to
know much about how software is packaged and managed to get the
software you want. Those distributions have excellent software
installation tools that automatically point to huge software
repositories. Just a few clicks and you're using the software in little
more time than it takes to download it.

The fact that Linux software management is so easy these days is a
credit to the Linux community, which has worked diligently to create
packaging formats, complex installation tools, and high-quality
software packages. Not only is it easy to get the software, but after it's
installed, it's easy to manage, query, update, and remove it.

This chapter begins by describing how to install software in Fedora
using the new Software graphical installation tool. If you are just
installing a few desktop applications on your own desktop system, you
may not need much more than that and occasional security updates.

To dig deeper into managing Linux software, next I describe what
makes up Linux software packages (comparing deb and rpm formatted
packaging), underlying software management components, and
commands (dnf, yum, and rpm) for managing software in Fedora and

Red Hat Enterprise Linux. That's followed by a description of how to
manage software packages in enterprise computing.

Managing Software on the Desktop
The Fedora Software window offers an intuitive way of choosing and
installing desktop applications that does not align with typical Linux
installation practices. The Ubuntu Software window offers the same
interface for Ubuntu users. In either case, with the Software window,
the smallest software component you install is an application. With
Linux, you install packages (such as rpms and debs).

Figure 10.1 shows an example of the Software window.

FIGURE 10.1 Install and manage software packages from the
Software window.

To get to the Software window in either Fedora or Ubuntu, select
Activities, then type Software, and press Enter. The first time you
open this window, you can select Enable to allow third-party software
repositories that are not part of the official redistributable Fedora
repositories. Using the Software window is the best way to install
desktop-oriented applications, such as word processors, games,
graphics editors, and educational applications.

From the Software window, you can select the applications that you
want to install from the Editor's Picks group (a handful of popular
applications), choose from categories of applications (Audio & Video,
Games, Graphics & Photography, and so on), or search by application
name or description. Select the Install button to have the Software
window download and install all of the software packages needed to

make the application work.

Other features of this window let you see all installed applications
(Installed tab) or view a list of applications that have updated
packages available for you to install (Updates tab). If you want to
remove an installed application, simply click the Remove button next
to the package name.

If you are using Linux purely as a desktop system, where you want to
write documents, play music, and do other common desktop tasks, the
Software window might be all you need to get the basic software you
want. By default, your system connects to the main Fedora software
repository and gives you access to hundreds of software applications.
As noted earlier, you also have the option of accessing third-party
applications that are still free for you to use but not redistribute.

Although the Software window lets you download and install hundreds
of applications from the Fedora software repository, that repository
actually contains tens of thousands of software packages. What
packages can you not see from that repository, when might you want
those other packages, and how can you gain access to those packages
(as well as packages from other software repositories)?

Going Beyond the Software Window
If you are managing a single desktop system, you might be quite
satisfied with the hundreds of packages that you can find through the
Software window. Open-source versions of most common types of
desktop applications are available to you through the Software window
after you have a connection from Fedora to the Internet.

However, the following are some examples of why you might want to
go beyond what you can do with the Software window:

More repositories Fedora and Red Hat Enterprise Linux
distribute only open-source, freely distributable software. You
may want to install some commercial software (such as Adobe
Flash Player) or non-free software (available from repositories
such as rpmfusion.org).

Beyond desktop applications Tens of thousands of software
packages in the Fedora repository are not available through the
Software window. Most of these packages are not associated with
graphical applications at all. For example, some packages contain
pure command-line tools, system services, programming tools, or
documentation that doesn't show up in the Software window.

Flexibility Although you may not know it, when you install an
application through the Software window, you may actually be
installing multiple RPM packages. This set of packages may just
be a default package set that includes documentation, extra fonts,
additional software plug-ins, or multiple language packs that you
may or may not want. With yum and rpm commands, you have
more flexibility on exactly which packages related to an
application or other software feature is installed on your system.

More complex queries Using commands such as yum and rpm,
you can get detailed information about packages, package groups,
and repositories.

Software validation Using rpm and other tools, you can check
whether a signed package has been modified before you installed

http://rpmfusion.org

it or whether any of the components of a package have been
tampered with since the package was installed.

Managing software installation Although the Software
window works well if you are installing desktop software on a
single system, it doesn't scale well for managing software on
multiple systems. Other tools are built on top of the rpm facility for
doing that.

Before I launch into some of the command-line tools for installing and
managing software in Linux, the next section describes how the
underlying packaging and package management systems in Linux
work. In particular, I focus on RPM packaging as it is used in Fedora,
Red Hat Enterprise Linux, and related distributions as well as Deb
packages, which are associated with Debian, Ubuntu, Linux Mint, and
related distributions.

Understanding Linux RPM and DEB Software
Packaging
On the first Linux systems, if you wanted to add software, you would
grab the source code from a project that produced it, compile it into
runnable binaries, and drop it onto your computer. If you were lucky,
someone would have already compiled it in a form that would run on
your computer.

The form of the package could be a tarball containing executable files
(commands), documentation, configuration files, and libraries. (A
tarball is a single file in which multiple files are gathered together for
convenient storage or distribution.) When you install software from a
tarball, the files from that tarball might be spread across your Linux
system in appropriate directories (/usr/share/man, /etc, /bin, and
/lib, to name just a few). Although it is easy to create a tarball and just
drop a set of software onto your Linux system, this method of
installing software makes it difficult to do these things:

Get dependent software You would need to know if the
software you were installing depended on other software being
installed for your software to work. Then you would have to track
down that software and install that too (which might itself have
some dependencies).

List the software Even if you knew the name of the command,
you might not know where its documentation or configuration
files were located when you looked for it later.

Remove the software Unless you kept the original tarball, or a
list of files, you wouldn't know where all of the files were when it
came time to remove them. Even if you knew, you would have to
remove each one individually.

Update the software Tarballs are not designed to hold
metadata about the contents that they contain. After the contents
of a tarball are installed, you may not have a way to tell what
version of the software you are using, making it difficult to track

down bugs and get new versions of your software.

To deal with these problems, packages progressed from simple tarballs
to more complex packaging. With only a few notable exceptions (such
as Gentoo, Slackware, and a few others), the majority of Linux
distributions went to one of two packaging formats—DEB and RPM:

DEB (.deb) packaging The Debian GNU/Linux project created
.deb packaging, which is used by Debian and other distributions
based on Debian (Ubuntu, Linux Mint, KNOPPIX, and so on).
Using tools such as apt-get, apt, and dpkg, Linux distributions
could install, manage, upgrade, and remove software.

RPM (.rpm) packaging Originally named Red Hat Package
Manager, but later recursively renamed RPM Package Manager,
RPM is the preferred package format for SUSE, Red Hat
distributions (RHEL and Fedora), and those based on Red Hat
distributions (CentOS, Oracle Linux, and so on). The rpm
command was the first tool to manage RPMs. Later, yum was
added to enhance the RPM facility, and now dnf is poised to
eventually replace yum.

For managing software on individual systems, there are proponents on
both sides of the RPM vs. DEB debate with valid points. Although
RPM is the preferred format for managing enterprise-quality software
installation, updates, and maintenance, DEB is very popular among
many Linux enthusiasts. This chapter covers both RPM (Fedora and
Red Hat Enterprise Linux) and (to some extent) DEB packaging and
software management.

Understanding DEB packaging
Debian software packages hold multiple files and metadata related to
some set of software in the format of an ar archive file. The files can be
executables (commands), configuration files, documentation, and
other software items. The metadata includes such things as
dependencies, licensing, package sizes, descriptions, and other
information. Multiple command-line and graphical tools are available
for working with DEB files in Ubuntu, Debian, and other Linux
distributions. Some of these include the following:

Ubuntu Software Center Select the Ubuntu Software
application from the GNOME Activities menu. The window that
appears lets you search for applications and packages that you
want by searching for keywords or navigating categories.

aptitude The aptitude command is a package installation tool
that provides a screen-oriented menu that runs in the shell. After
you run the command, use arrow keys to highlight the selection
you want, and press Enter to select it. You can upgrade packages,
get new packages, or view installed packages.

apt* There is a set of apt* commands (apt-get, apt, apt-config,
apt-cache, and so on) that can be used to manage package
installation.

The Ubuntu Software Center is fairly intuitive for finding and
installing packages. However, here are a few examples of commands
that can help you install and manage packages with apt* commands.
In this case, I'm looking for and installing the vsftpd package:

NOTE
Notice that the apt* commands are preceded by the sudo command
in these examples. That's because it is common practice for an
Ubuntu administrator to run administrative commands as a
regular user with sudo privilege.

 $ sudo apt-get update Get the latest

package versions

 $ sudo apt-cache search vsftpd Find package by key

word (such as vsftpd)

 $ sudo apt-cache show vsftpd Display information

about a package

 $ sudo apt-get install vsftpd Install the vsftpd

package

 $ sudo apt-get upgrade Update installed

packages if upgrade ready

 $ sudo apt-cache pkgnames List all packages

that are installed

There are many other uses of apt* commands that you can try out. If
you have an Ubuntu system installed, I recommend that you run man
apt to get an understanding of what the apt and related commands can
do.

Understanding RPM packaging
An RPM package is a consolidation of files needed to provide a
feature, such as a word processor, a photo viewer, or a file server. The
commands, configuration files, and documentation that make up the
software feature can be inside an RPM. However, an RPM file also
contains metadata that stores information about the contents of that
package, where the package came from, what it needs to run, and
other information.

What is in an RPM?
Before you even look inside an RPM, you can tell much about it by the
name of the RPM package itself. To find out the name of an RPM

package currently installed on your system (in this example the Firefox
web browser), you could type the following from the shell in Fedora or
Red Hat Enterprise Linux:

rpm -q firefox

firefox-67.0-4.fc30.x86_64

From this, you can tell that the base name of the package is firefox.
The version number is 67.0 (assigned by the upstream producer of
Firefox, the Mozilla Project). The release (assigned by the packager,
Fedora, each time the package is rebuilt at the same release number) is
4. The firefox package was built for Fedora 30 (fc30) and is compiled
for the x86 64-bit architecture (x86_64).

When the firefox package was installed, it was probably copied from
the installation medium (such as a CD or DVD) or downloaded from a
YUM repository (more on that later). If you had been given the RPM
file and it was sitting in a local directory, the name would appear as
firefox-67.0-4.fc30.x86_64.rpm and you could install it from there.
Regardless of where it came from, once the package is installed, the
name and other information about it are stored in an RPM database
on the local machine.

To find out more about what is inside an RPM package, you can use
options other than the rpm command to query that local RPM
database, as in this example:

rpm -qi firefox

Name : firefox

Version : 67.0

Release : 4.fc30

Architecture: x86_64

Install Date: Sun 02 Jun 2019 09:37:25 PM EDT

Group : Unspecified

Size : 266449296

License : MPLv1.1 or GPLv2+ or LGPLv2+

Signature : RSA/SHA256, Fri 24 May 2019 12:09:57 PM EDT,

Key ID ef3c111fcfc659b9

Source RPM : firefox-67.0-4.fc30.src.rpm

Build Date : Thu 23 May 2019 10:03:55 AM EDT

Build Host : buildhw-08.phx2.fedoraproject.org

Relocations : (not relocatable)

Packager : Fedora Project

Vendor : Fedora Project

URL : https://www.mozilla.org/firefox/

Bug URL : https://bugz.fedoraproject.org/firefox

Summary : Mozilla Firefox Web browser

Description :

Mozilla Firefox is an open-source web browser, designed for

standards

compliance, performance and portability.

Besides the information you got from the package name itself, the -qi
(query information) option lets you see who built the package (Fedora
Project), when it was built, and when it was installed. The group the
package is in (Unspecified), its size, and the licensing are listed. To
enable you to find out more about the package, the URL points to the
project page on the Internet and the Summary and Description lines
tell you what the package is used for.

Where do RPMs come from?
The software included with Linux distributions, or built to work with
those distributions, comes from thousands of open-source projects all
over the world. These projects, referred to as upstream software
providers, usually make the software available to anyone who wants it,
under certain licensing conditions.

A Linux distribution takes the source code and builds it into binaries.
Then it gathers those binaries together with documentation,
configuration files, scripts, and other components available from the
upstream provider.

After all of those components are gathered into the RPM, the RPM
package is signed (so that users can test the package for validity) and
placed in a repository of RPMs for the specific distribution and
architecture (32-bit x86, 64-bit x86, and so on). The repository is
placed on an installation CD or DVD or in a directory that is made
available as an FTP, web, or NFS server.

Installing RPMs
When you initially install a Fedora or Red Hat Enterprise Linux
system, many individual RPM packages make up that installation.
After Linux is installed, you can add more packages using the Software

window (as described earlier). Refer to Chapter 9, “Installing Linux,”
for information on installing Linux.

The first tool to be developed for installing RPM packages, however,
was the rpm command. Using rpm, you can install, update, query,
validate, and remove RPM packages. The command, however, has
some major drawbacks:

Dependencies For most RPM packages to work, some other
software (library, executables, and so on) must be installed on the
system. When you try to install a package with rpm, if a dependent
package is not installed, the package installation fails, telling you
which components were needed. At that point, you have to dig
around to find what package contained that component. When
you go to install it, that dependent package might itself have
dependencies that you need to install to get it to work. This
situation is lovingly referred to as “dependency hell” and is often
used as an example of why DEB packages were better than RPMs.
DEB packaging tools were made to resolve package dependencies
automatically, well before RPM-related packaging tools could do
that.

Location of RPMs The rpm command expects you to provide the
exact location of the RPM file when you try to install it. In other
words, you would have to give firefox-67.0-4.fc30.x86_64.rpm as
an option if the RPM were in the current directory or
http://example.com/firefox-67.0-4.fc30.x86_64.rpm if it were on
a server.

As Red Hat Linux and other RPM-based applications grew in
popularity, it became apparent that something had to be done to make
package installation more convenient. The answer was the YUM
facility.

http://example.com/firefox-67.0-4.fc30.x86_64.rpm

Managing RPM Packages with YUM
The YellowDog Updater Modified (YUM) project set out to solve the
headache of managing dependencies with RPM packages. Its major
contribution was to stop thinking about RPM packages as individual
components and think of them as parts of larger software repositories.

With repositories, the problem of dealing with dependencies fell not to
the person who installed the software but to the Linux distribution or
third-party software distributor that makes the software available. So,
for example, it would be up to the Fedora Project to make sure that
every component needed by every package in its Linux distribution
could be resolved by some other package in the repository.

Repositories could also build on each other. So, for example, the
rpmfusion.org repository could assume that a user already had access
to the main Fedora repository. If a package being installed from
rpmfusion.org needed a library or command from the main Fedora
repository, the Fedora package could be downloaded and installed at
the same time that you install the rpmfusion.org package.

The yum repositories could be put in a directory on a web server
(http://), on an FTP server (ftp://), on local media such as a CD or
DVD, or in a local directory (file://). The locations of these
repositories would then be stored on the user's system in the
/etc/yum.conf file or, more typically, in separate configuration files in
the /etc/yum.repos.d directory.

Transitioning from yum to dnf
The dnf command-line interface represents the next generation of
YUM. DNF, which refers to itself as Dandified YUM,
(https://github.com/rpm-software-management/dnf/) has been part of
Fedora since version 18 and has just been added as the default RPM
package manager for RHEL 8. Like yum, dnf is a tool for finding,
installing, querying, and generally managing RPM packages from
remote software repositories to your local Linux system.

While dnf maintains a basic command-line compatibility with yum, one

http://rpmfusion.org
http://rpmfusion.org
http://rpmfusion.org
https://github.com/rpm-software-management/dnf/

of its main differences is that it adheres to a strict API. That API
encourages the development of extensions and plug-ins to dnf.

For our purposes, almost all of the yum commands described in this
chapter can be replaced by dnf or used as they are. The yum command
is a symbolic link to dnf in Fedora and RHEL, so typing either
command has the same result. For more information on DNF, refer to
the DNF page at https://dnf.readthedocs.io/.

Understanding how yum works
This is the basic syntax of the yum command:

yum [options] command

Using that syntax, you can find packages, see package information,
find out about package groups, update packages, or delete packages, to
name a few features. With the YUM repository and configuration in
place, a user can install a package by simply typing something like the
following:

yum install firefox

The user only needs to know the package name (which could be
queried in different ways, as described in the section “Searching for
packages” later in this chapter). The YUM facility finds the latest
version of that package available from the repository, downloads it to
the local system, and installs it.

To gain more experience with the YUM facility, and to see where there
are opportunities for you to customize how YUM works on your
system, follow the descriptions of each phase of the YUM install
process described next.

https://dnf.readthedocs.io/

NOTE
In the latest Fedora and RHEL systems, the YUM configuration
files are now actually links to DNF files in the /etc/dnf directory.
Besides the main dnf configuration file (/etc/dnf/dnf.conf), that
directory primarily contains modules and plug-ins that add to your
ability to manage RPM packages.

1. Checking /etc/yum.conf:

When any yum command starts, it checks the file /etc/yum.conf
for default settings. The /etc/yum.conf file is the basic YUM
configuration file. You can also identify the location of
repositories here, although the /etc/yum.repos.d directory is the
more typical location for identifying repositories. Here's an
example of /etc/yum.conf on a RHEL 8 system, with a few others
added:

 [main]

 gpgcheck=1

 installonly_limit=3

 clean_requirements_on_remove=True

 best=True

 cachedir=/var/cache/yum/$basearch/$releasever

 keepcache=0

 debuglevel=2

 logfile=/var/log/yum.log

 exactarch=1

 plugins=1

The gpgcheck is used to validate each package against a key that
you receive from those who built the RPM. It is on by default
(gpgcheck=1). For packages in Fedora or RHEL, the key comes
with the distribution to check all packages. To install packages
that are not from your distribution, you need either to import the
key to verify those packages or to turn off that feature
(gpgcheck=0).

The install_onlylimit=3 setting allows up to three versions of
the same package to be kept on the system (don't set this to less
than 2, to ensure that you always have at least two kernel
packages). The clean_requirements_on_remove=True tells yum to
remove dependent packages when removing a package, if those
packages are not otherwise required. With best=True, when
upgrading a package, always try to use the highest version
available.

Other settings that you can add to yum.conf tell YUM where to
keep cache files (/var/cache/yum) and log entries
(/var/log/yum.log) and whether to keep cache files around after
a package is installed (0 means no). You can raise the debuglevel
value in the yum.conf file to above 2 if you want to see more
details in your log files.

Next, you can see whether the exact architecture (x86, x86_64,
and so on) should be matched when choosing packages to install
(1 means yes) and whether to use plug-ins (1 means yes) to allow
for things such as blacklists, white lists, or connecting to Red Hat
Network for packages.

To find other features that you can set in the yum.conf file, type
man yum.conf.

2. Checking /etc/yum.repos.d/*.repo files:

Software repositories can be enabled by dropping files ending in
.repo into the /etc/yum.repos.d/ directory that point to the
location of one or more repositories. In Fedora, even your basic
Fedora repositories are enabled from .repo files in this directory.
Here's an example of a simple yum configuration file named
/etc/yum.repos.d/myrepo.repo:

 [myrepo]

 name=My repository of software packages

 baseurl=http://myrepo.example.com/pub/myrepo

 enabled=1

 gpgcheck=1

 gpgkey=file:///etc/pki/rpm-gpg/MYOWNKEY

Each repository entry begins with the name of the repository

enclosed in square brackets. The name line contains a human-
readable description of the repository. The baseurl line identifies
the directory containing the RPM files, which can be an httpd://,
ftp://, or file:// entry.

The enabled line indicates whether the entry is active. A 1 is
active; 0 is inactive. If there is no enabled line, the entry is active.
The last two lines in the preceding code indicate whether to
check the signatures on packages in this repository. The gpgkey
line shows the location of the key that is used to check the
packages in this repository.

You can have as many repositories enabled as you like. However,
keep in mind that when you use yum commands, every repository
is checked and metadata about all packages is downloaded to the
local system running the yum command. So, to be more efficient,
don't enable repositories that you don't need.

3. Downloading RPM packages and metadata from a YUM
repository:

After yum knows the locations of the repositories, metadata from
the repodata directory of each repository is downloaded to the
local system. In fact, it is the existence of a repodata directory in
a directory of RPMs that indicates that it is a YUM repository.

Metadata information is stored on the local system in the
/var/cache/yum directory. Any further queries about packages,
package groups, or other information from the repository are
gathered from the cached metadata until a time-out period is
reached.

After the time-out period is reached, yum retrieves fresh metadata
if the yum command is run. By default, the time-out is 6 hours for
yum and 48 hours for dnf minutes. You can change that period by
setting metadata_expire in the /etc/yum.conf file.

Next, yum looks at the packages that you requested to install and
checks if any dependent packages are needed by those packages.
With the package list gathered, yum asks you if it is okay to
download all of those packages. If you choose yes, the packages

are downloaded to the cache directories and installed.

4. Installing RPM packages to Linux file system:

After all of the necessary packages are downloaded to the cache
directories, yum runs rpm commands to install each package. If a
package contains preinstall scripts (which might create a special
user account or make directories), those scripts are run. The
contents of the packages (commands, config files, docs, and so
on) are copied to the filesystem at locations specified in the RPM
metadata. Then any post install scripts are run. (Post install
scripts run additional commands needed to configure the system
after each package is installed.)

5. Storing YUM repository metadata to local RPM
database.

The metadata contained in each RPM package that is installed is
ultimately copied into the local RPM database. The RPM
database is contained in files that are stored in the /var/lib/rpm
directory. After information about installed packages is in the
local RPM database, you can do all sorts of queries of that
database. You can see what packages are installed, list
components of those packages, and see scripts or change logs
associated with each package. You can even validate installed
packages against the RPM database to see if anyone has
tampered with installed components.

The rpm command (described in the section “Installing, Querying,
and Verifying Software with the rpm Command” later in this
chapter) is the best tool for querying the RPM database. You can
run individual queries with rpm or use it in scripts to produce
reports or run common queries over and over again.

Now that you understand the basic functioning of the yum command,
your Fedora system should be automatically configured to connect to
the main Fedora repository and the Fedora Updates repository. You
can try some yum command lines to install packages right now. Or, you
can enable other third-party YUM repositories to draw software from.

Using YUM with third-party software repositories
The Fedora and Red Hat Enterprise Linux software repositories have
been screened to contain only software that meets criteria that make it
open and redistributable. In some instances, however, you may want
to go beyond those repositories. Before you do, you should understand
that some third-party repositories have these limitations:

They may have less stringent requirements for redistribution and
freedom from patent constraints than the Fedora and RHEL
repositories have.

They may introduce some software conflicts.

They may include software that is not open source and, although
it may be free for personal use, may not be redistributable.

They may slow down the process of installing all of your packages
(because metadata is downloaded for every repository you have
enabled).

For those reasons, I recommend that you either (1) don't enable any
extra software repositories, or (2) enable only the RPM Fusion
repository (http://rpmfusion.org) at first for Fedora and the EPEL
repository (http://fedoraproject.org/wiki/EPEL) for Red Hat
Enterprise Linux. RPM Fusion represents a fusion of several popular
third-party Fedora repositories (Freshrpms, Livna.org, and Dribble).
See the repository's FAQ for details (http://rpmfusion.org/FAQ). To
enable the Free RPM Fusion repository in Fedora, do the following:

1. Open a Terminal window.

2. Type su and enter the root password when prompted.

3. Type the following command on one line with no space in
between the slash and rpmfusion (if that doesn't work, go to the
fedora directory and choose the RPM appropriate for your version
of Fedora):

rpm -Uvh http://download1.rpmfusion.org/free/fedora/

rpmfusion-free-release-stable.noarch.rpm

The RPM Fusion Nonfree repository contains such things as codecs

http://rpmfusion.org
http://fedoraproject.org/wiki/EPEL
http://Livna.org
http://rpmfusion.org/FAQ

needed to play many popular multimedia formats. To enable the
Nonfree repository in Fedora, type the following (again, type the
following two lines on a single line, with no space between the two):

rpm -Uhv http://download1.rpmfusion.org/nonfree/fedora/

rpmfusion-nonfree-release-stable.noarch.rpm

Most of the other third-party repositories that might interest you
contain software that is not open source. For example, if you want to
install the Adobe Flash plug-in for Linux, download the YUM
repository package from Adobe, and you can use the yum command to
install the Flash plug-in and get updates later by running the yum
update command when updates are available.

Managing software with the yum command
The yum command has dozens of subcommands that you can use to
work with RPM packages on your system. The following sections
provide some examples of useful yum command lines to search for,
install, query, and update packages associated with your YUM
repositories. The section “Installing and removing packages” describes
how to install and remove installed packages with the yum command.

NOTE
Metadata, describing the contents of YUM repositories, is
downloaded from each of your enabled YUM repositories the first
time you run a yum command. Metadata is downloaded again after
the metadata_expire time is reached. The more YUM repositories
that you enable and the larger they are, the longer this download
can take. You can reduce this download time by increasing the
expire time (in the /etc/yum.conf file) or by not enabling
repositories you don't need.

Searching for packages
Using different searching subcommands, you can find packages based
on key words, package contents, or other attributes.

Let's say that you want to try out a different text editor but you can't
remember the name of the one you wanted. You could start by using
the search subcommand to look for the term editor in the name or
description:

yum search editor

…

eclipse-veditor.noarch : Eclipse-based Verilog/VHDL plugin

ed.x86_64 : The GNU line editor

emacs.x86_64 : GNU Emacs text editor

The search uncovered a long list of packages containing editor in the
name or description. The one I was looking for is named emacs. To get
information about that package, I can use the info subcommand:

yum info emacs

Name : emacs

Epoch : 1

Version : 26.2

Release : 1.fc30

Architecture : x86_64

Size : 3.2 M

Source : emacs-26.2-1.fc30.src.rpm

Repository : updates

Summary : GNU Emacs text editor

URL : http://www.gnu.org/software/emacs/

License : GPLv3+ and CC0-1.0

Description : Emacs is a powerful, customizable, self-

documenting, modeless text

 : editor. Emacs contains special code editing

features, a scripting

 : language (elisp), and the capability to read

mail, news, and more

 : without leaving the editor.

If you know the command, configuration file, or library name you
want but don't know what package it is in, use the provides
subcommand to search for the package. Here you can see that the
dvdrecord command is part of the wodim package:

yum provides dvdrecord

wodim-1.1.11-41.fc30.x86_64 : A command line CD/DVD

recording program

Repo : fedora

Matched from:

Filename : /usr/bin/dvdrecord

The list subcommand can be used to list package names in different
ways. Use it with a package base name to find the version and
repository for a package. You can list just packages that are available
or installed, or you can list all packages.

yum list emacs

emacs.i686 1:26.2-1.fc30 updates

yum list available

CUnit.i686 2.1.3-17.el8 rhel-8-for-x86_64-appstream-

rpms

CUnit.x86_64 2.1.3-17.el8 rhel-8-for-x86_64-appstream-

rpms

GConf2.i686 3.2.6-22.el8 rhel-8-for-x86_64-appstream-

rpms

LibRaw.i686 0.19.1-1.el8 rhel-8-for-x86_64-appstream-

rpm

…

yum list installed

Installed Packages

GConf2.x86_64 3.2.6-22.el8 @AppStream

ModemManager.x86_64 1.8.0-1.el8 @anaconda

…

yum list all

…

If you find a package but you want to see what components that
package is dependent on, you can use the deplist subcommand. With
deplist, you can see the components (dependency) but also the
package that component comes in (provider). Using deplist can help
if no package is available to provide a dependency, but you want to
know what the component is so that you can search other repositories
for it. Consider the following example:

yum deplist emacs | less

package: emacs-1:26.1-8.fc30.x86_64

 dependency: /bin/sh

 provider: bash-5.0.7-1.fc30.i686

 provider: bash-5.0.7-1.fc30.x86_64

 dependency: /usr/sbin/alternatives

 provider: alternatives-1.11-4.fc30.x86_64

Installing and removing packages
The install subcommand lets you install one or more packages, along
with any dependent packages needed. With yum install, multiple
repositories can be searched to fulfill needed dependencies. Consider
the following example of yum install:

yum install emacs

…

Package Architecture Version

Repository Size

==

Installing:

 emacs x86_64 1:26.2-1.fc30

updates 3.2 M

Installing dependencies:

 emacs-common x86_64 1:26.2-1.fc30

updates 38 M

 ImageMagick-libs x86_64 1:6.9.10.28-1.fc30

fedora 2.2 M

 fftw-libs-double x86_64 3.3.8-4.fc30

fedora 984 k

 …

Transaction Summary

==

Install 7 Packages

Total download size: 45 M

Installed size: 142 M

Is this ok [y/N]: y

You can see here that emacs requires that emacs-common and several
other packages be installed so all are queued up for installation. The
six packages together are 45MB to download, but they consume
142MB after installation. Pressing y installs them. You can put a -y on
the command line (just after the yum command) to avoid having to
press y to install the packages. Personally, however, I usually want to
see all of the packages about to be installed before I agree to the
installation.

You can reinstall a package if you mistakenly delete components of an
installed package. If you attempt a regular install, the system responds
with “nothing to do.” You must instead use the reinstall
subcommand. For example, suppose that you installed the zsh package
and then deleted /bin/zsh by mistake. You could restore the missing
components by typing the following:

yum reinstall zsh

You can remove a single package, along with its dependencies that
aren't required by other packages, with the remove subcommand. For
example, to remove the emacs package and dependencies, you could
type the following:

yum remove emacs

Removing:

 emacs x86_64 1:26.2-1.fc30 updates

38 M

Removing unused dependencies:

 ImageMagick-libs x86_64 1:6.9.10.28-1.fc30 fedora

8.9 M

 emacs-common x86_64 1:26.2-1.fc30 updates

89 M

 fftw-libs-double x86_64 3.3.8-4.fc30 fedora

4.2 M

 …

Transaction Summary

===

Remove 7 Packages

Freed space: 142 M

Is this ok [y/N]: y

Notice that the space shown for each package is the actual space
consumed by the package in the file system and not the download size
(which is considerably smaller).

An alternative method to remove a set of packages that you have
installed is to use the history subcommand. Using history, you can
see your yum activities and undo an entire transaction. In other words,
all of the packages that you installed can be uninstalled using the undo
option of the history subcommand, as in the following example:

yum history

ID | Command line | Date and time | Action(s)

| Altered

--

 12 | install emacs | 2019-06-22 11:14 | Install

| 7

…

yum history info 12

Transaction ID : 12

…

Command Line : install emacs

…

yum history undo 12

Undoing transaction 12, from Sat 22 Jun 2019 11:14:42 AM EDT

Install emacs-1:26.2-1.fc30.x86_64 @updates

 Install emacs-common-1:26.2-1.fc30.x86_64

@updates

 …

Before you undo the transaction, you can view the transaction to see
exactly which packages were involved. Viewing the transaction can
save you from mistakenly deleting packages that you want to keep. By
undoing transaction 12, you can remove all packages that were
installed during that transaction. If you are trying to undo an install

that included dozens or even hundreds of packages, undo can be a very
useful option.

Updating packages
As new releases of a package become available, they are sometimes put
into separate update repositories or simply added to the original
repository. If multiple versions of a package are available (whether in
the same repository or in another enabled repository), yum provides the
latest version when you install a package. For some packages, such as
the Linux kernel package, you can keep multiple versions of the same
package.

If a new version of a package shows up later, you can download and
install the new version of the package by using the update
subcommand.

The check-update subcommand can check for updates. The update
subcommand can be used to update a single package or to get updates
to all packages that are currently installed and have an update
available. Or, you can simply update a single package (such as the cups
package), as in this example:

yum check-update

…

file.x86_64 5.36-3.fc30 updates

file-libs.x86_64 5.36-3.fc30 updates

firefox.x86_64 67.0.4-1.fc30 updates

firewalld.noarch 0.6.4-1.fc30 updates

…

yum update

Dependencies resolved.

==

 Package Arch Version Repository

Size

==

Upgrading:

 NetworkManager x86_64 1:1.16.2-1.fc30 updates 1.7

M

 NetworkManager-adsl x86_64 1:1.16.2-1.fc30 updates 25

k

…

Transaction Summary

==

Install 7 Packages

Upgrade 172 Package(s)

Total download size: 50 M

Is this ok [y/N]: y

yum update cups

The preceding command requested to update the cups package. If
other dependent packages need to be updated to update cups, those
packages would be downloaded and installed as well.

Updating groups of packages
To make it easier to manage a whole set of packages at once, YUM
supports package groups. For example, you could install GNOME
Desktop Environment (to get a whole desktop) or Virtualization (to get
packages needed to set up the computer as a virtualization host). You
can start by running the grouplist subcommand to see a list of group
names:

yum grouplist | less

Available Environment Groups:

 Fedora Custom Operating System

 Minimal Install

 Fedora Server Edition

…

Installed Groups:

 LibreOffice

 GNOME Desktop Environment

 Fonts

…

Available Groups:

 Authoring and Publishing

 Books and Guides

 C Development Tools and Libraries

…

Let's say that you wanted to try out a different desktop environment.
You see LXDE, and you want to know what is in that group. To find
out, use the groupinfo subcommand:

yum groupinfo LXDE

Group: LXDE

 Description: LXDE is a lightweight X11 desktop environment…

 Mandatory Packages:

…

 lxde-common

 lxdm

 lxinput

 lxlauncher

 lxmenu-data

…

In addition to showing a description of the group, groupinfo shows
Mandatory Packages (those that are always installed with the group),
Default Packages (those that are installed by default but can be
excluded), and Optional Packages (which are part of the group but not
installed by default). When you use some graphical tools to install
package groups, you can uncheck default packages or check optional
packages to change whether they are installed with the group.

If you decide that you want to install a package group, use the
groupinstall subcommand:

yum groupinstall LXDE

This groupinstall resulted in 101 packages from the group being
installed and 5 existing packages being updated. If you decide that you
don't like the group of packages, you can remove the entire group at
once using the groupremove subcommand:

yum groupremove LXDE

Maintaining your RPM package database and cache
Several subcommands to yum can help you do maintenance tasks, such
as checking for problems with your RPM database or clearing out the
cache. The YUM facility has tools for maintaining your RPM packages
and keeping your system's software efficient and secure.

Clearing out the cache is something that you want to do from time to
time. If you decide to keep downloaded packages after they are
installed (they are removed by default, based on the keepcache=0
setting in the /etc/yum.conf file), your cache directories (under
/var/cache/yum) can fill up. Metadata stored in cache directories can
be cleared, causing fresh metadata to be downloaded from all enabled

YUM repositories the next time yum is run. Here are ways to clear that
information:

yum clean packages

14 files removed

yum clean metadata

Cache was expired

16 files removed

yum clean all

68 files removed

Although unlikely, it's possible that the RPM database can become
corrupted. This can happen if something unexpected occurs, such as
pulling out the power cord when a package is partially installed. You
can check the RPM database to look for errors (yum check) or just
rebuild the RPM database files. Here's an example of a corrupt RPM
database and the rpm command that you can use to fix it:

yum check

error: db5 error(11) from dbenv->open: Resource temporarily

unavailable

error: cannot open Packages index using db5-Resource

temporarily unavailable(11)

error: cannot open Packages database in /var/lib/rpm

Error: Error: rpmdb open failed

rpm --rebuilddb

yum check

The yum clean examples in the preceding command lines remove
cached data from the /var/cache/yum subdirectories. The rpm --
rebuilddb example rebuilds the database. The yum check example can
check for problems with the local RPM cache and database but notice
that we used the rpm command to fix the problem.

In general, the command best suited for working with the local RPM
database is the rpm command.

Downloading RPMs from a YUM repository
If you just want to examine a package without actually installing it,
you can download that package with the dnf command or, in earlier
releases, use the yumdownloader command. Either case causes the
package that you name to be downloaded from the YUM repository

and copied to your current directory.

For example, to download the latest version of the Firefox web
browser package with yumdownloader from the YUM repository to your
current directory, type the following:

yumdownloader firefox

firefox-67.0.4-1.fc30.x86_64.rpm 6.1 MB/s | 92 MB

00:14

To use the dnf command, type this:

dnf download firefox

firefox-60.7.0-1.el8_0.x86_64.rpm 6.1 MB/s | 93 MB

00:15

With any downloaded RPM package now sitting in your current
directory, you can use a variety of rpm commands to query or use that
package in different ways (as described in the next section).

Installing, Querying, and Verifying Software
with the rpm Command
There is a wealth of information about installed packages in the local
RPM database. The rpm command contains dozens of options to enable
you to find information about each package, such as the files it
contains, who created it, when it was installed, how large it is, and
many other attributes. Because the database contains fingerprints
(md5sums) of every file in every package, it can be queried with RPM
to find out if files from any package have been tampered with.

The rpm command can still do basic install and upgrade activities,
although most people only use rpm in that way when there is a package
sitting in the local directory, ready to be installed. So, let's get one in
our local directory to work with. Type the following to download the
latest version of the zsh package:

dnf download zsh

zsh-5.5.1-6.el8.x86_64.rpm 3.0 MB/s | 2.9 MB 00:00

With the zsh package downloaded to your current directory, try some
rpm commands on it.

Installing and removing packages with rpm
To install a package with the rpm command, type the following:

rpm -i zsh-5.5.1-6.el8.x86_64.rpm

Notice that the entire package name is given to install with rpm, not
just the package base name. If an earlier version of zsh were installed,
you could upgrade the package using -U. Often, people use -h and -v
options to get hash signs printed and more verbose output during the
upgrade:

rpm -Uhv zsh-5.5.1-6.el8.x86_64.rpm

Verifying… ######################### [100%]

Preparing… ######################### [100%]

 1:zsh-5.5.1-6.el8 ######################### [100%]

Although an install (-i) only installs a package if the package is not
already installed, an upgrade (-U) installs the package even if it is
already installed. A third type of install, called freshen (-F), installs a
package only if an existing, earlier version of a package is installed on
the computer, as in this example:

rpm -Fhv *.rpm

You could use the previous freshen command if you were in a directory
containing thousands of RPMs but only wanted to update those that
were already installed (in an earlier version) on your system and skip
those that were not yet installed.

You can add a few interesting options to any of your install options.
The --replacepkgs option enables you to reinstall an existing version
of a package (if, for example, you had mistakenly deleted some
components), and the --oldpackage enables you to replace a newer
package with an earlier version.

rpm -Uhv --replacepkgs emacs-26.1-5.el8.x86_64.rpm

rpm -Uhv --oldpackage zsh-5.0.2-25.el7_3.1.x86_64.rpm

You can remove a package with the -e option. You only need the base
name of a package to remove it. Here's an example:

rpm -e emacs

The rpm -e emacs command would be successful because no other
packages are dependent on emacs. However, it would leave behind
emacs-common, which was installed as a dependency to emacs. If you had
tried to remove emacs-common first, that command would fail with a
“Failed dependencies” message.

Querying rpm information
After the package is installed, you can query for information about it.
Using the -q option, you can see information about the package
including a description (-qi), list of files (-ql), documentation (-qd),
and configuration files (-qc).

rpm -qi zsh

Name : zsh

Version : 5.5.1

Release : 6.el8

…

rpm -ql zsh

/etc/skel/.zshrc

/etc/zlogin

/etc/zlogout

…

rpm -qd zsh

/usr/share/doc/zsh/BUGS

/usr/share/doc/zsh/CONTRIBUTORS

/usr/share/doc/zsh/FAQ

…

rpm -qc zsh

/etc/skel/.zshrc

/etc/zlogin

/etc/zlogout

…

You can use options to query any piece of information contained in an
RPM. You can find what an RPM needs for it to be installed (--
requires), what version of software a package provides (--provides),
what scripts are run before and after an RPM is installed or removed
(--scripts), and what changes have been made to an RPM (--
changelog).

rpm -q --requires emacs-common

/bin/sh

/usr/bin/pkg-config

/usr/sbin/alternatives

…

rpm -q --provides emacs-common

config(emacs-common) = 1:26.2-1.fc30

emacs-common = 1:26.2-1.fc30

emacs-common(x86-64) = 1:26.2-1.fc30

emacs-el = 1:26.2-1.fc30

pkgconfig(emacs) = 1:26.2

rpm -q --scripts httpd

postinstall scriptlet (using /bin/sh):

if [$1 -eq 1] ; then

 # Initial installation

 systemctl --no-reload preset httpd.service…

…

rpm -q --changelog httpd | less

* Thu May 02 2019 Lubos Uhliarik <luhliari@redhat.com> -

2.4.39-4

- httpd dependency on initscripts is unspecified (#1705188)

* Tue Apr 09 2019 Joe Orton <jorton@redhat.com> - 2.4.39-3

…

In the previous two examples, you can see that scripts inside the httpd
package uses systemctl command to set up the httpd service. The --
changelog option enables you to see why changes have been made to
each version of the package.

Using a feature called --queryformat, you can query different tags of
information and output them in any form you like. Run the --
querytags option to be able to see all of the tags that are available:

rpm --querytags | less

ARCH

ARCHIVESIZE

BASENAMES

BUGURL

…

rpm -q binutils --queryformat "The package is %{NAME} \

 and the release is %{RELEASE}\n"

The package is binutils and the release is 29.fc30

All of the queries that you have done so far have been to the local RPM
database. By adding a -p to those query options, you can query an
RPM file sitting in your local directory instead. The -p option is a great
way to look inside a package that someone gives you to investigate
what it is before you install it on your system.

If you haven't already, get the zsh package and put it in your local
directory (dnf download zsh). Then run some query commands on the
RPM file.

rpm -qip zsh-5.7.1-1.fc30.x86_64.rpm View info about the

RPM file

rpm -qlp zsh-5.7.1-1.fc30.x86_64.rpm List all files in the

RPM file

rpm -qdp zsh-5.7.1-1.fc30.x86_64.rpm Show docs in the RPM

file

rpm -qcp zsh-5.7.1-1.fc30.x86_64.rpm List config files in

the RPM file

Verifying RPM packages

Using the -V option, you can check the packages installed on your
system to see if the components have been changed since the packages
were first installed. Although it is normal for configuration files to
change over time, it is not normal for binaries (the commands in /bin,
/sbin, and so on) to change after installation. Binaries that are
changed are probably an indication that your system has been cracked.

In this example, I'm going to install the zsh package and mess it up. If
you want to try along with the examples, be sure to remove or reinstall
the package when you are finished.

rpm -i zsh-5.7.1-1.fc30.x86_64.rpm

echo hello> /bin/zsh

rm /etc/zshrc

rpm -V zsh

missing c /etc/zshrc

S.5….T. /bin/zsh

In this output, you can see that the /bin/zsh file has been tampered
with and /etc/zshrc has been removed. Each time that you see a letter
or a number instead of a dot from the rpm -V output, it is an indication
of what has changed. Letters that can replace the dots (in order)
include the following:

S file Size differs

M Mode differs (includes permissions and file type)

5 MD5 sum differs

D Device major/minor number mismatch

L readLink(2) path mismatch

U User ownership differs

G Group ownership differs

T mTime differs

P caPabilities differ

Those indicators are from the Verify section of the rpm man page. In
my example, you can see the file size has changed (S), the md5sum
checked against the file's fingerprint has changed (5), and the
modification time (T) on the file differs.

To restore the package to its original state, use rpm with the --
replacepkgs option, as shown next. (The yum reinstall zsh command
would work as well.) Then check it with -V again. No output from -V
means that every file is back to its original state.

rpm -i --replacepkgs zsh-5.7.1-1.fc30.x86_64.rpm

rpm -V zsh

It is good practice to back up your RPM database (from /var/lib/rpm)
and copy it to some read-only medium (such as a CD). Then, when you
go to verify packages that you suspect were cracked, you know that you
aren't checking it against a database that has also been cracked.

Managing Software in the Enterprise
At this point, you should have a good working knowledge of how to
install, query, remove, and otherwise manipulate packages with
graphical tools, the yum command, and the rpm command. When you
start working with RPM files in a large enterprise, you need to extend
that knowledge.

Features used to manage RPM packages in the enterprise with Red
Hat Enterprise Linux offer a bit more complexity and much more
power. Instead of having one big software repository, as Fedora does,
RHEL provides software using Red Hat Subscription Management,
requiring paid subscriptions/entitlements that allow access to a
variety of software channels and products (RHEL, Red Hat
Virtualization, Red Hat Software Collections, and so on).

In terms of enterprise computing, one of the great benefits of the
design of RPM packages is that their management can be automated.
Other Linux packaging schemes allow packages to stop and prompt
you for information when they are being installed (such as asking for a
directory location or a username). RPM packages install without
interruption, offering some of the following advantages:

Kickstart files All of the questions that you answer during a
manual install, and all of the packages that you select, can be
added into a file called a kickstart file. When you start a Fedora or
Red Hat Enterprise Linux installer, you can provide a kickstart
file at the boot prompt. From that point on, the entire installation
process completes on its own. Any modifications to the default
package installs can be made by running pre and post scripts from
the kickstart file to do such things as add user accounts or modify
configuration files.

PXE boot You can configure a PXE server to allow client
computers to boot an anaconda (installer) kernel and a select
kickstart file. A completely blank computer with a network
interface card (NIC) that supports PXE booting can simply boot
from its NIC to launch a fresh installation. In other words, turn on

the computer, and if it hits the NIC in its boot order, a few
minutes later you can have a freshly installed system, configured
to your exact specifications without intervention.

Satellite server (Spacewalk) Red Hat Enterprise Linux
systems can be deployed using what is referred to as Satellite
Server. Built into Satellite Server are the same features that you
have from Red Hat CDN to manage and deploy new systems and
updates. RHEL systems can be configured to get automatic
software updates at times set from the satellite server. Sets of
packages called Errata that fix specific problems can be quickly
and automatically deployed to the systems that need them.

Container Images Instead of installing individual RPMs on a
system, you can package up a few or a few hundred RPMs into a
container image. The container image is like an RPM in that it
holds a set of software, but unlike an RPM in that it is more easily
added to a system, run directly, and deleted from a system than
an RPM is.

Descriptions of how to use kickstart files, Satellite Servers, containers
and other enterprise-ready installation features are beyond the scope
of this book. But the understanding you have gained from learning
about YUM and RPM remain critical components of all of the features
just mentioned.

Summary
Software packaging in Fedora, Red Hat Enterprise Linux, and related
systems is provided using software packages based on the RPM
Package Manager (RPM) tools. Debian, Ubuntu, and related systems
package software into DEB files. You can try easy-to-use graphical
tools such as the Software window for finding and installing packages.
The primary command-line tools include the yum, dnf, and rpm
commands for Red Hat–related systems and aptitude, apt* and dpkg
for Debian-related systems.

Using these software management tools, you can install, query, verify,
update, and remove packages. You can also do maintenance tasks,
such as clean out cache files and rebuild the RPM database. This
chapter describes many of the features of the Software window, as well
as yum, dnf, and rpm commands.

With your system installed and the software packages that you need
added, it's time to configure your Fedora, RHEL, Debian, or Ubuntu
system further. If you expect to have multiple people using your
system, your next task could be to add and otherwise manage user
accounts on your system. Chapter 11, “Managing User Accounts,”
describes user management in Fedora, RHEL, and other Linux
systems.

Exercises
These exercises test your knowledge of working with RPM software
packages in Fedora or Red Hat Enterprise Linux. To do the exercises, I
recommend that you have a Fedora system in front of you that has an
Internet connection. (Most of the procedures work equally well on a
registered RHEL system.)

You need to be able to reach the Fedora repositories (which should be
set up automatically). If you are stuck, solutions to the tasks are shown
in Appendix B (although in Linux, there are often multiple ways to
complete a task).

1. Search the YUM repository for the package that provides the
mogrify command.

2. Display information about the package that provides the mogrify
command, and determine what is that package's home page
(URL).

3. Install the package containing the mogrify command.

4. List all of the documentation files contained in the package that
provides the mogrify command.

5. Look through the changelog of the package that provides the
mogrify command.

6. Delete the mogrify command from your system and verify its
package against the RPM database to see that the command is
indeed missing.

7. Reinstall the package that provides the mogrify command, and
make sure that the entire package is intact again.

8. Download the package that provides the mogrify command to
your current directory.

9. Display general information about the package you just
downloaded by querying the package's RPM file in the current
directory.

10. Remove the package containing the mogrify command from your
system.

CHAPTER 11
Managing User Accounts

IN THIS CHAPTER
Working with user accounts

Working with group accounts

Configuring centralized user accounts

Adding and managing users are common tasks for Linux system
administrators. User accounts keep boundaries between the people
who use your systems and between the processes that run on your
systems. Groups are a way of assigning rights to your system that can
be assigned to multiple users at once.

This chapter describes not only how to create a new user, but also how
to create predefined settings and files to configure the user's
environment. Using tools such as the useradd and usermod commands,
you can assign settings such as the location of a home directory, a
default shell, a default group, and specific user ID and group ID
values. With Cockpit, you can add and manage user accounts through
a web UI.

Creating User Accounts
Every person who uses your Linux system should have a separate user
account. Having a user account provides you with an area in which to
store files securely as well as a means of tailoring your user interface
(GUI, path, environment variables, and so on) to suit the way that you
use the computer.

You can add user accounts to most Linux systems in several ways.
Fedora and Red Hat Enterprise Linux systems offer Cockpit, which
includes an Account selection for creating and managing user
accounts. If Cockpit is not yet installed and enabled, do that as follows:

yum install cockpit -y

systemctl enable --now cockpit.socket

To create a user account through Cockpit, do the following:

1. Open the Cockpit interface from your web browser
(hostname:9090).

2. Log in as root (or as a user with root privilege), select the “Reuse
my password for privileged tasks” check box, and select Accounts.

3. Select Create New Account.

Figure 11.1 shows an example of the Create New Account pop-up
window:

FIGURE 11.1 Add and modify user accounts from Cockpit.

4. Begin adding a new user account to your Linux system. Here are
the fields you need to fill in:

Full Name Use the user's real name, typically used with
uppercase and lowercase letters, as the user would write it in
real life. Technically, this information is stored in the
comment field of the passwd file, but by convention, most
Linux and UNIX systems expect this field to hold each user's
full name.

User Name This is the name used to log in as this user.
When you choose a username, don't begin with a number (for
example, 26jsmith). Also, it's best to use all lowercase letters,
no control characters or spaces, and a maximum of eight
characters, by convention. The useradd command allows up
to 32 characters, but some applications can't deal with
usernames that long. Tools such as ps display user IDs
(UIDs) instead of names if names are too long. Having users
named Jsmith and jsmith can cause confusion with programs
(such as sendmail) that don't distinguish case.

Password, Confirm Enter the password you want the user

to have in the Password and Confirm fields. The password
should be at least eight characters long and contain a mixture
of uppercase and lowercase letters, numbers, and
punctuation. It should not contain real words, repeated
letters, or letters in a row on the keyboard. Through this
interface, you must set a password that meets the above
criteria. (If you want to add a password that doesn't meet this
criteria, you can use the useradd command, described later in
this chapter.)Bars underneath the password fields turn from
red to green as you improve the strength of your password.

Access To create an account that you are not quite ready to
use, select the Lock Account check box. That prevents anyone
from logging into the account until you uncheck that box or
change that information in the passwd file.

5. Select Create to add the user to the system. An entry for the new
user account is added to the /etc/passwd file and the new group
account to the /etc/group file. (I will describe those later in this
chapter.)

The Cockpit Accounts screen lets you modify a small set of information
about a regular user after it has been created. To modify user
information later, do the following:

1. Select the user account that you want to change. A screen appears
with available selections for that user account.

2. You can delete but not modify the username, but you can change
the following: information:

Full Name Because the user's full name is just a comment,
you can change that as you please.

Roles By default, you have the opportunity to select check
boxes that allow the user to be added to the role of Server
Administrator (giving the user root privilege by being added
to the wheel group) or Image Builder (allowing the user to
build containers and other image types through the weldr
group). Other roles might be added to this list by other
Cockpit components. If the user is logged in, that user must

log out to obtain those privileges.

Access You can choose Lock Account to lock the account,
select to lock the account on a particular date, or never lock
the account (setting no account expiration date).

Password You can choose Set Password to set a new
password for that user or Force Change to force the user to
change their password the next time they log in. By default,
passwords never expire. You can change that to have the
password expire every set number of days.

Authorized Public SSH Keys If you have a public SSH
key for the user, you can select the plus sign (+) for this field,
paste that key into the text box, and select Add key. With that
key in place, the user with the associated private key is
allowed to log into that user account via SSH without needing
to enter a password.

3. Changes take effect immediately, so you can simply leave the
window when you are done modifying the user account.

The Accounts area of the Cockpit web UI was designed to simplify the
process of creating and modifying user accounts. More features
associated with user accounts can be added or modified from the
command line. The next part of this chapter describes how to add user
accounts from the command line with useradd and change them with
the usermod command.

Adding users with useradd
Sometimes, a Linux system doesn't have a desktop tool or web UI
available for adding users. Other times, you might find it more
convenient to add lots of users at once with a shell script or change
user account features that are not available from Cockpit. For those
cases, commands are available to enable you to add and modify user
accounts from the command line.

The most straightforward method for creating a new user from the
shell is the useradd command. After opening a Terminal window with
root permission, you simply invoke useradd at the command prompt,

with details of the new account as parameters.

The only required parameter is the login name of the user, but you
probably want to include some additional information ahead of it.
Each item of account information is preceded by a single-letter option
code with a dash in front of it. The following options are available with
useradd:

-c "comment": Provide a description of the new user account.
Typically, this is the person's full name. Replace comment with the
name of the user account (-c Jake). Use quotes to enter multiple
words (for example,-c ″Jake Jackson″).

-d home_dir: Set the home directory to use for the account. The
default is to name it the same as the login name and to place it in
/home. Replace home_dir with the directory name to use (for
example, -d /mnt/homes/jake).

-D: Rather than create a new account, save the supplied
information as the new default settings for any new accounts that
are created.

-e expire_date: Assign the expiration date for the account in
YYYY-MM-DD format. Replace expire_date with a date that you
want to use. (For example, to expire an account on May 5, 2022,
use -e 2022-05-05.)

-f -1: Set the number of days after a password expires until the
account is permanently disabled. The default, -1, disables the
option. Setting this to 0 disables the account immediately after the
password has expired. Replace -1 (that's minus one) with the
number to use.

-g group: Set the primary group (it must already exist in the
/etc/group file) the new user will be in. Replace group with the
group name (for example, -g wheel). Without this option, a new
group is created that is the same as the username and is used as
that user's primary group.

-G grouplist: Add the new user to the supplied comma-separated
list of supplementary groups (for example, -G
wheel,sales,tech,lunch). (If you use -G later with usermod, be sure

to use -aG and not just -G. If you don't, existing supplementary
groups are removed and the groups you provide here are the only
ones assigned.)

-k skel_dir: Set the skeleton directory containing initial
configuration files and login scripts that should be copied to a new
user's home directory. This parameter can be used only in
conjunction with the -m option. Replace skel_dir with the
directory name to use. (Without this option, the /etc/skel
directory is used.)

-m: Automatically create the user's home directory and copy the
files in the skeleton directory (/etc/skel) to it. (This is the default
action for Fedora and RHEL, so it's not required. It is not the
default for Ubuntu.)

-M: Do not create the new user's home directory, even if the
default behavior is set to create it.

-n: Turn off the default behavior of creating a new group that
matches the name and user ID of the new user. This option is
available with Fedora and RHEL systems. Other Linux systems
often assign a new user to the group named users instead.

-o: Use with -u uid to create a user account that has the same
UID as another username. (This effectively lets you have two
different usernames with authority over the same set of files and
directories.)

-p passwd: Enter a password for the account you are adding. This
must be an encrypted password. Instead of adding an encrypted
password here, you can simply use the passwd user command later
to add a password for user. (To generate an encrypted MD5
password, type openssl passwd.)

-s shell: Specify the command shell to use for this account.
Replace shell with the command shell (for example, -s
/bin/csh).

-u user_id: Specify the user ID number for the account (for
example, -u 1793). Without the -u option, the default behavior is
to assign the next available number automatically. Replace

user_id with the ID number. User IDs that are automatically
assigned to regular users begin at 1000, so you should use IDs for
regular users that are above that number in a way that doesn't
collide with the automatic assignments.

Let's create an account for a new user. The user's full name is Sara
Green, with a login name of sara. To begin, become root user and type
the following command:

useradd -c "Sara Green" sara

Next, set the initial password for sara using the passwd command.
You're prompted to type the password twice:

passwd sara

Changing password for user sara.

New password: **********

Retype new password: **********

NOTE
Asterisks in this example represent the password you type.
Nothing is actually displayed when you type the password. Also,
keep in mind that running passwd as root user lets you add short or
blank passwords that regular users cannot add themselves.

In creating the account for sara, the useradd command performs
several actions:

Reads the /etc/login.defs and /etc/default/useradd files to get
default values to use when creating accounts.

Checks command-line parameters to find out which default values
to override.

Creates a new user entry in the /etc/passwd and /etc/shadow files
based on the default values and command-line parameters.

Creates any new group entries in the /etc/group file. (Fedora
creates a group using the new user's name.)

Creates a home directory based on the user's name in the /home
directory.

Copies any files located within the /etc/skel directory to the new
home directory. This usually includes login and application
startup scripts.

The preceding example uses only a few of the available useradd
options. Most account settings are assigned using default values. You
can set more values explicitly if you want to. Here's an example that
uses a few more options to do so:

useradd -g users -G wheel,apache -s /bin/tcsh -c "Sara

Green" sara

In this case, useradd is told to make users the primary group sara
belongs to (-g), add her to the wheel and apache groups, and assign
tcsh as her primary command shell (-s). A home directory in /home

under the user's name (/home/sara) is created by default. This
command line results in a line similar to the following being added to
the /etc/passwd file:

sara:x:1002:1007:Sara Green:/home/sara:/bin/tcsh

Each line in the /etc/passwd file represents a single user account
record. Each field is separated from the next by a colon (:) character.
The field's position in the sequence determines what it is. As you can
see, the login name is first. The password field contains an x because,
in this example, the shadow password file is used to store encrypted
password data (in /etc/shadow).

The user ID selected by useradd is 1002. The primary group ID is 1007,
which corresponds to a private sara group in the /etc/group file. The
comment field was correctly set to Sara Green, the home directory was
automatically assigned as /home/sara, and the command shell was
assigned as /bin/tcsh, exactly as specified with the useradd options.

By leaving out many of the options (as I did in the first useradd
example), defaults are assigned in most cases. For example, by not
using -g sales or -G wheel,apache, the group name sara was assigned
to the new user. Some Linux systems (other than Fedora and RHEL)
assign users as the group name by default. Likewise, excluding -s
/bin/tcsh causes /bin/bash to be assigned as the default shell.

The /etc/group file holds information about the different groups on
your Linux system and the users who belong to them. Groups are
useful for enabling multiple users to share access to the same files
while denying access to others. Here is the /etc/group entry created
for sara:

sara:x:1007:

Each line in the group file contains the name of a group, a group
password (usually filled with an x), the group ID number associated
with it, and a list of users in that group. By default, each user is added
to their own group, beginning with the next available GID, starting
with 1000.

Setting user defaults
The useradd command determines the default values for new accounts
by reading the /etc/login.defs and /etc/default/useradd files. You
can modify those defaults by editing the files manually with a standard
text editor. Although login.defs is different on different Linux
systems, the following is an example containing many of the settings
that you might find in a login.defs file:

PASS_MAX_DAYS 99999

PASS_MIN_DAYS 0

PASS_MIN_LEN 5

PASS_WARN_AGE 7

UID_MIN 1000

UID_MAX 60000

SYS_UID_MIN 200

SYS_UID_MAX 999

GID_MIN 1000

GID_MAX 60000

SYS_GID_MIN 201

SYS_GID_MAX 999

CREATE_HOME yes

All uncommented lines contain keyword/value pairs. For example, the
keyword PASS_MIN_LEN is followed by some white space and the value 5.
This tells useradd that the user password must be at least five
characters. Other lines enable you to customize the valid range of
automatically assigned user ID numbers or group ID numbers.
(Fedora starts at UID 1000; earlier systems started with UID 100.)
Permanent administrative user and group account numbers are
reserved for up to 199 and 200, respectively. So, you can assign your
own administrative user and group accounts starting at 200 and 201,
respectively, up to ID number 999.

A comment section that explains the keyword's purpose precedes each
keyword (which I edited out here to save space). Altering a default
value is as simple as editing the value associated with a keyword and
saving the file before running the useradd command.

If you want to view other default settings, find them in the
/etc/default/useradd file. You can also see default settings by typing
the useradd command with the -D option, as follows:

useradd -D

GROUP=100

HOME=/home

INACTIVE=-1

EXPIRE=

SHELL=/bin/bash

SKEL=/etc/skel

CREATE_MAIL_SPOOL=yes

You can also use the -D option to change defaults. When run with this
flag, useradd refrains from actually creating a new user account;
instead, it saves any additionally supplied options as the new default
values in /etc/default/useradd. Not all useradd options can be used in
conjunction with the -D option. You can use only the five options listed
here.

-b default_home: Set the default directory in which user home
directories are created. Replace default_home with the directory
name to use (for example, -b /garage). Usually, this is /home.

-e default_expire_date: Set the default expiration date on which
the user account is disabled. The default_expire_date value
should be replaced with a date in the form YYYY-MM-DD (for
example, -e 2011-10-17).

-f default_inactive: Set the number of days after a password has
expired before the account is disabled. Replace default_inactive
with a number representing the number of days (for example, -f
7).

-g default_group: Set the default group in which new users will be
placed. Normally, useradd creates a new group with the same
name and ID number as the user. Replace default_group with the
group name to use (for example, -g bears).

-s default_shell: Set the default shell for new users. This is
/bin/bash, typically. Replace default_shell with the full path to
the shell that you want as the default for new users (for example, -
s /bin/ash).

To set any of the defaults, give the -D option first and add the defaults
that you want to set. For example, to set the default home directory
location to /home/everyone and the default shell to /bin/tcsh, enter the

following:

useradd -D -b /home/everyone -s /bin/tcsh

In addition to setting up user defaults, an administrator can create
default files that are copied to each user's home directory for use.
These files can include login scripts and shell configuration files (such
as .bashrc). Keep in mind that setting up these kinds of files is the
purpose of the default /etc/skel directory.

Other commands that are useful for working with user accounts
include usermod (to modify settings for an existing account) and
userdel (to delete an existing user account).

Modifying users with usermod
The usermod command provides a simple and straightforward method
for changing account parameters. Many of the options available with it
mirror those found in useradd. The options that can be used with this
command include the following:

-c username: Change the description associated with the user
account. Replace username with the name of the user account (-c
jake). Use quotes to enter multiple words (for example, -c ″Jake
Jackson″).

-d home_dir: Change the home directory to use for the account.
The default is to name it the same as the login name and to place
it in /home. Replace home_dir with the directory name to use (for
example, -d /mnt/homes/jake).

-e expire_date: Assign a new expiration date for the account in
YYYY-MM-DD format. Replace expire_date with a date you want to
use. (For October 15, 2022, use -e 2022-10-15.)

-f -1: Change the number of days after a password expires until
the account is permanently disabled. The default, -1, disables the
option. Setting this to 0 disables the account immediately after the
password has expired. Replace -1 with the number to use.

-g group: Change the primary group (as listed in the /etc/group
file) the user will be in. Replace group with the group name (for

example, -g wheel).

-G grouplist: Set the user's secondary groups to the supplied
comma-separated list of groups. If the user is already in at least
one group besides the user's private group, you must add the -a
option as well (-Ga). If not, the user belongs to only the new set of
groups and loses membership to any previous groups.

-l login_name: Change the login name of the account.

-L: Lock the account by putting an exclamation point at the
beginning of the encrypted password in /etc/shadow. This locks
the account while still allowing you to leave the password intact
(the -U option unlocks it).

-m: Available only when –d is used. This causes the contents of the
user's home directory to be copied to the new directory.

-o: Use only with -u uid to remove the restriction that UIDs must
be unique.

-s shell: Specify a different command shell to use for this
account. Replace shell with the command shell (for example, -s
bash).

-u user_id: Change the user ID number for the account. Replace
user_id with the ID number (for example, -u 1474).

-U: Unlocks the user account (by removing the exclamation mark
at the beginning of the encrypted password).

The following are examples of the usermod command:

usermod -s /bin/csh chris

usermod -Ga sales,marketing, chris

The first example changes the shell to the csh shell for the user named
chris. In the second example, supplementary groups are added for the
user chris. The -a option (-Ga) makes sure that the supplementary
groups are added to any existing groups for the user chris. If the -a is
not used, existing supplementary groups for chris are erased and the
new list of groups includes the only supplementary groups assigned to
that user.

Deleting users with userdel
Just as usermod is used to modify user settings and useradd is used to
create users, userdel is used to remove users. The following command
removes the user chris:

userdel -r chris

Here, the user chris is removed from the /etc/password file. The –r
option removes the user's home directory as well. If you choose not to
use –r, as follows, the home directory for chris is not removed:

userdel chris

Keep in mind that simply removing the user account does not change
anything about the files that user leaves around the system (except
those that are deleted when you use -r). However, ownership of files
left behind appear as belonging to the previous owner's user ID
number when you run ls -l on the files.

Before you delete the user, you may want to run a find command to
find all files that would be left behind by the user. After you delete the
user, you could search on user ID to find files left behind. Here are two
find commands to do those things:

find / -user chris -ls

find / -uid 504 -ls

Because files that are not assigned to any username are considered to
be a security risk, it is a good idea to find those files and assign them to
a real user account. Here's an example of a find command that finds
all files in the filesystem that are not associated with any user (the files
are listed by UID):

find / -nouser -ls

Understanding Group Accounts
Group accounts are useful if you want to share a set of files with
multiple users. You can create a group and change the set of files to be
associated with that group. The root user can assign users to that
group so they can have access to files based on that group's
permission. Consider the following file and directory:

$ ls -ld /var/salesdocs /var/salesdocs/file.txt

drwxrwxr-x. 2 root sales 4096 Jan 14 09:32 /var/salesstuff/

-rw-rw-r--. 1 root sales 0 Jan 14 09:32

/var/salesstuff/file.txt

Looking at permissions on the directory /var/salesdocs (rwxrwxr-x),
you see the second set of rwx shows that any member of the group
(sales) has permission to read files in that directory (r is read), create
and delete files from that directory (w is write), and change to that
directory (x is execute). The file named file.txt can be read and
changed by members of the sales group (based on the second rw-).

Using group accounts
Every user is assigned to a primary group. In Fedora and RHEL, by
default, that group is a new group with the same name as the user. So,
if the user were named sara, the group assigned to her would also be
sara. The primary group is indicated by the number in the third field
of each entry in the /etc/passwd file; for example, the group ID 1007
here:

sara:x:1002:1007:Sara Green:/home/sara:/bin/tcsh

That entry points to an entry in the /etc/group file:

sara:x:1007:

Let's turn to the sara user and group accounts for examples. Here are a
few facts about using groups:

When sara creates a file or directory, by default, that file or
directory is assigned to sara's primary group (also called sara).

The user sara can belong to zero or more supplementary groups.
If sara were a member of groups named sales and marketing,
those entries could look like the following in the /etc/group file:

sales:x:1302:joe,bill,sally,sara

marketing:x:1303:mike,terry,sara

The user sara can't add herself to a supplementary group. She
can't even add another user to her sara group. Only someone with
root privilege can assign users to groups.

Any file assigned to the sales or marketing group is accessible to
sara with group and other permissions (whichever provides the
most access). If sara wants to create a file with the sales or
marketing groups assigned to it, she could use the newgrp
command. In this example, sara uses the newgrp command to
have sales become her primary group temporarily and creates a
file:

[sara]$ touch file1

[sara]$ newgrp sales

[sara]$ touch file2

[sara]$ ls -l file*

-rw-rw-r--. 1 sara sara 0 Jan 18 22:22 file1

-rw-rw-r--. 1 sara sales 0 Jan 18 22:23 file2

[sara]$ exit

It is also possible to allow users to become a member of a group
temporarily with the newgrp command without actually being a
member of that group. To do that, someone with root permission can
use gpasswd to set a group password (such as gpasswd sales). After
that, any user can type newgrp sales into a shell and temporarily use
sales as their primary group by simply entering the group password
when prompted.

Creating group accounts
As the root user, you can create new groups from the command line
with the groupadd command. Also, as noted earlier, groups are created
automatically when a user account is created.

Group ID numbers from 0 through 999 are assigned to special

administrative groups. For example, the root group is associated with
GID 0. Regular groups begin at 1000 for Red Hat Enterprise Linux
and Fedora. On the first UNIX systems, GIDs went from 0 to 99. Other
Linux systems reserve GIDs between 0 to 500 for administrative
groups. A relatively new feature, described earlier, reserves
administrative user and group accounts up to 199 and 200,
respectively, and lets you create your own administrative accounts
between those numbers and 999.

Here are some examples of creating a group account with the groupadd
command:

groupadd kings

groupadd -g 1325 jokers

In the examples just shown, the group named kings is created with the
next available group ID. After that, the group jokers is created using
the 1325 group ID. Some administrators like using an undefined group
number above 200 and under 1000 so that the group they create
doesn't intrude on the group designations above 1000 (so UID and
GID numbers can go along in parallel).

To change a group later, use the groupmod command, as in the
following example:

groupmod -g 330 jokers

groupmod -n jacks jokers

In the first example, the group ID for jokers is changed to 330. In the
second, the name jokers is changed to jacks. If you then wanted to
assign any of the groups as supplementary groups to a user, you can
use the usermod command (as described earlier in this chapter).

Managing Users in the Enterprise
The basic Linux method of handling user and group accounts has not
changed since the first UNIX systems were developed decades ago.
However, as Linux systems have become used in more complex ways,
features for managing users, groups, and the permissions associated
with them have been added on to the basic user/group model so that it
could be more flexible and more centralized:

More flexible In the basic model, only one user and one group
can be assigned to each file. Also, regular users have no ability to
assign specific permissions to different users or groups and very
little flexibility setting up collaborative files/directories.
Enhancements to this model allow regular users to set up special
collaborative directories (using features such as sticky bit and set
GID bit directories). Using Access Control Lists (ACLs), any user
can also assign specific permissions to files and directories to any
users and groups they like.

More centralized When you have only one computer, storing
user information for all users in the /etc/passwd file is probably
not a hardship. However, if you need to authenticate the same set
of users across thousands of Linux systems, centralizing that
information can save lots of time and heartache. Red Hat
Enterprise Linux includes features that enable you to authenticate
users from LDAP servers or Microsoft Active Directories servers.

The following sections describe how to use features such as Access
Control Lists (ACLs) and shared directories (sticky bit and set GID bit
directories) to provide powerful ways to share files and directories
selectively.

Setting permissions with Access Control Lists
The Access Control List (ACL) feature was created so that regular
users could share their files and directories selectively with other users
and groups. With ACLs, a user can allow others to read, write, and
execute files and directories without leaving those filesystem elements

wide open or requiring the root user to change the user or group
assigned to them.

Here are a few things to know about ACLs:

For ACLs to be used, they must be enabled on a filesystem when
that filesystem is mounted.

In Fedora and Red Hat Enterprise Linux, ACLs are automatically
enabled on any filesystem created when the system is installed.

If you create a filesystem after installation (such as when you add
a hard disk), you need to make sure that the acl mount option is
used when the filesystem is mounted (more on that later).

To add ACLs to a file, you use the setfacl command; to view ACLs
set on a file, you use the getfacl command.

To set ACLs on any file or directory, you must be the actual owner
(user) assigned to it. In other words, being assigned user or group
permissions with setfacl does not give you permission to change
ACLs on those files yourself.

Because multiple users and groups can be assigned to a
file/directory, the actual permission a user has is based on a union
of all user/group designations to which they belong. For example,
if a file had read-only permission (r--) for the sales group and
read/write/execute (rwx) for the market group, and mary
belonged to both, mary would have rwx permission.

NOTE
If ACLs are not enabled on the filesystem you are trying to use with
setfacl, see the section “Enabling ACLs” later in this chapter for
information on how to mount a filesystem with ACLs enabled.

Setting ACLs with setfacl
Using the setfacl command, you can modify permissions (-m) or
remove ACL permissions (-x). The following is an example of the
syntax of the setfacl command:

setfacl -m u:username:rwx filename

In the example just shown, the modify option (-m) is followed by the
letter u, indicating that you are setting ACL permissions for a user.
After a colon (:), you indicate the username, followed by another colon
and the permissions that you want to assign. As with the chmod
command, you can assign read (r), write (w), and/or execute (x)
permissions to the user or group (in the example, full rwx permission is
given). The last argument is replaced by the actual filename you are
modifying.

The following are some examples of the user mary using the setfacl
command to add permission for other users and groups on a file:

[mary]$ touch /tmp/memo.txt

[mary]$ ls -l /tmp/memo.txt

-rw-rw-r--. 1 mary mary 0 Jan 21 09:27 /tmp/memo.txt

[mary]$ setfacl -m u:bill:rw /tmp/memo.txt

[mary]$ setfacl -m g:sales:rw /tmp/memo.txt

In the preceding example, mary created a file named /tmp/memo.txt.
Using the setfacl command, she modified (-m) permissions for the
user named bill so that he now has read/write (rw) permissions to
that file. Then she modified permissions for the group sales so that
anyone belonging to that group would also have read/write
permissions. Look at ls -l and getfacl output on that file now:

[mary]$ ls -l /tmp/memo.txt

-rw-rw-r--+ 1 mary mary 0 Jan 21 09:27 /tmp/memo.txt

[mary]$ getfacl /tmp/memo.txt

file: tmp/memo.txt

owner: mary

group: mary

user::rw-

user:bill:rw-

group::rw-

group:sales:rw-

mask::rw-

other::r--

From the ls -l output, notice the plus sign (+) in the rw-rw-r--+
output. The plus sign indicates that ACLs are set on the file, so you
know to run the getfacl command to see how ACLs are set. The
output shows mary as owner and group (same as what you see with ls
-l), the regular user permissions (rw-), and permissions for ACL user
bill (rw-). The same is true for group permissions and permissions for
the group sales. Other permissions are r--.

The mask line (near the end of the previous getfacl example) requires
some special discussion. As soon as you set ACLs on a file, the regular
group permission on the file sets a mask of the maximum permission
an ACL user or group can have on a file. So, even if you provide an
individual with more ACL permissions than the group permissions
allow, the individual's effective permissions do not exceed the group
permissions as in the following example:

[mary]$ chmod 644 /tmp/memo.txt

[mary]$ getfacl /tmp/memo.txt

file: tmp/memo.txt

owner: mary

group: mary

user::rw-

user:bill:rw- #effective:r--

group::rw- #effective:r--

group:sales:rw- #effective:r--

mask::r--

other::r--

Notice in the preceding example that even though the user bill and
group sales have rw- permissions, their effective permissions are r--.
So, bill or anyone in sales would not be able to change the file unless

mary were to open permissions again (for example, by typing chmod 664
/tmp/memo.txt).

Setting default ACLs
Setting default ACLs on a directory enables your ACLs to be inherited.
This means that when new files and directories are created in that
directory, they are assigned the same ACLs. To set a user or group ACL
permission as the default, you add a d: to the user or group
designation. Consider the following example:

[mary]$ mkdir /tmp/mary

[mary]$ setfacl -m d:g:market:rwx /tmp/mary/

[mary]$ getfacl /tmp/mary/

file: tmp/mary/

owner: mary

group: mary

user::rwx

group::rwx

other::r-x

default:user::rwx

default:group::rwx

default:group:sales:rwx

default:group:market:rwx

default:mask::rwx

default:other::r-x

To make sure that the default ACL worked, create a subdirectory. Then
run getfacl again. You will see that default lines are added for user,
group, mask, and other, which are inherited from the directory's ACLs:

[mary]$ mkdir /tmp/mary/test

[mary]$ getfacl /tmp/mary/test

file: tmp/mary/test

owner: mary

group: mary

user::rwx

group::rwx

group:sales:rwx

group:market:rwx

mask::rwx

other::r-x

default:user::rwx

default:group::rwx

default:group:sales:rwx

default:group:market:rwx

default:mask::rwx

default:other::r-x

Notice that when you create a file in that directory, the inherited
permissions are different. Because a regular file is created without
execute permission, the effective permission is reduced to rw-:

[mary@cnegus ~]$ touch /tmp/mary/file.txt

[mary@cnegus ~]$ getfacl /tmp/mary/file.txt

file: tmp/mary/file.txt

owner: mary

group: mary

user::rw-

group::rwx #effective:rw-

group:sales:rwx #effective:rw-

group:market:rwx #effective:rw-

mask::rw-

other::r--

Enabling ACLs
In recent Fedora and RHEL systems, xfs and ext filesystem types
(ext2, ext3, and ext4) are automatically created with ACL support. On
other Linux systems, or on filesystems created on other Linux systems,
you can add the acl mount option in several ways:

Add the acl option to the fifth field in the line in the /etc/fstab
file that automatically mounts the filesystem when the system
boots up.

Implant the acl line in the Default mount options field in the
filesystem's super block, so that the acl option is used whether the
filesystem is mounted automatically or manually.

Add the acl option to the mount command line when you mount
the filesystem manually with the mount command.

Keep in mind that in Fedora and Red Hat Enterprise Linux systems,
you only have to add the acl mount option to those filesystems that
were created elsewhere. The anaconda installer automatically adds
ACL support to every filesystem it creates during install time and mkfs
adds acl to every filesystem you create with that tool. To check that the

acl option has been added to an ext filesystem, determine the device
name associated with the filesystem, and run the tune2fs -l command
to view the implanted mount options, as in this example:

mount | grep home

/dev/mapper/mybox-home on /home type ext4 (rw)

tune2fs -l /dev/mapper/mybox-home | grep "mount options"

Default mount options: user_xattr acl

First, I typed the mount command to see a list of all filesystems that are
currently mounted, limiting the output by grepping for the word home
(because I was looking for the filesystem mounted on /home). After I
saw the filesystem's device name, I used it as an option to tune2fs -l
to find the default mount options line. There, I could see that mount
options user_xattr (for extended attributes such as SELinux) and acl
were both implanted in the filesystem super block so that they would
be used when the filesystem was mounted.

If the Default mount options field is blank (such as when you have just
created a new filesystem), you can add the acl mount option using the
tune2fs -o command. For example, on a different Linux system, I
created a filesystem on a removable USB drive that was assigned as
the /dev/sdc1 device. To implant the acl mount option and check that
it is there, I ran the following commands:

tune2fs -o acl /dev/sdc1

tune2fs -l /dev/sdc1 | grep "mount options"

Default mount options: acl

You can test that this worked by remounting the filesystem and trying
to use the setfacl command on a file in that filesystem.

A second way to add acl support to a filesystem is to add the acl
option to the line in the /etc/fstab file that automatically mounts the
filesystem at boot time. The following is an example of what a line
would look like that mounts the ext4 filesystem located on the
/dev/sdc1 device to the /var/stuff directory:

/dev/sdc1 /var/stuff ext4 acl 1 2

Instead of the defaults entry in the fourth field, I added acl. If there
were already options set in that field, add a comma after the last

option and add acl. The next time the filesystem is mounted, ACLs are
enabled. If the filesystem were already mounted, I could type the
following mount command as root to remount the filesystem using acl
or any other values added to the /etc/fstab file:

mount -o remount /dev/sdc1

A third way that you can add ACL support to a filesystem is to mount
the filesystem by hand and specifically request the acl mount option.
So, if there were no entry for the filesystem in the /etc/fstab file, after
creating the mount point (/var/stuff), type the following command to
mount the filesystem and include ACL support:

mount -o acl /dev/sdc1 /var/stuff

Keep in mind that the mount command only mounts the filesystem
temporarily. When the system reboots, the filesystem is not mounted
again, unless you add an entry to the /etc/fstab file.

Adding directories for users to collaborate
A special set of three permission bits are typically ignored when you
use the chmod command to change permissions on the filesystem.
These bits can set special permissions on commands and directories.
The focus of this section is setting the bits that help you create
directories to use for collaboration.

As with read, write, and execute bits for user, group, and other, these
special file permission bits can be set with the chmod command. If, for
example, you run chmod 775 /mnt/xyz, the implied permission is
actually 0775. To change permissions, you can replace the number 0
with any combination of those three bits (4, 2, and 1), or you can use
letter values instead. (Refer to Chapter 4, “Moving Around the
Filesystem,” if you need to be reminded about how permissions work.)
The letters and numbers are shown in Table 11.1.

TABLE 11.1 Commands to Create and Use Files

Name Numeric value Letter value
Set user ID bit 4 u+s

Set group ID bit 2 g+s
Sticky bit 1 o+t

The bits in which you are interested for creating collaborative
directories are the set group ID bit (2) and sticky bit (1). If you are
interested in other uses of the set user ID and set group ID bits, refer
to the sidebar “Using Set UID and Set GID Bit Commands.”

Creating group collaboration directories (set GID bit)
When you create a set GID directory, any files created in that directory
are assigned to the group assigned to the directory itself. The idea is to
have a directory where all members of a group can share files but still
protect them from other users. Here's a set of steps for creating a
collaborative directory for all users in the group I created called sales:

1. Create a group to use for collaboration:

groupadd -g 301 sales

2. Add to the group some users with which you want to be able to
share files (I used mary):

usermod -aG sales mary

3. Create the collaborative directory:

mkdir /mnt/salestools

3. Using Set UID and Set GID Bit
Commands
The set UID and set GID bits are used on special executable
files that allow commands set to be run differently than most.
Normally, when a user runs a command, that command runs
with that user's permissions. In other words, if I run the vi
command as chris, that instance of the vi command would
have the permissions to read and write files that the user chris
could read and write.

Commands with the set UID or set GID bits set are different. It
is the owner and group assigned to the command, respectively,
that determines the permissions the command has to access
resources on the computer. So, a set UID command owned by
root would run with root permissions; a set GID command
owned by apache would have apache group permissions.

Examples of applications that have set UID bits turned on are
the su and newgrp commands. In both of those cases, the
commands must be able to act as the root user to do their jobs.
However, to actually get root permissions, a user must provide
a password. You can tell su is a set UID bit command because
of the s where the first execute bit (x) usually goes:

 $ ls /bin/su

 -rwsr-xr-x. 1 root root 30092 Jan 30 07:11 su

4. Assign the group sales to the directory:

 # chgrp sales /mnt/salestools

5. Change the directory permission to 2775. This turns on the set
group ID bit (2), full rwx for the user (7), rwx for group (7), and r-x
(5) for other:

 # chmod 2775 /mnt/salestools

6. Become mary (run su - mary). As mary, create a file in the shared
directory and look at the permissions. When you list permissions,
you can see that the directory is a set GID directory because a
lowercase s appears where the group execute permission should
be (rwxrwsr-x):

 # su - mary

 [mary]$ touch /mnt/salestools/test.txt

 [mary]$ ls -ld /mnt/salestools/ /mnt/salestools/test.txt

 drwxrwsr-x. 2 root sales 4096 Jan 22 14:32 /mnt/salestools/

 -rw-rw-r--. 1 mary sales 0 Jan 22 14:32

/mnt/salestools/test.txt

Typically, a file created by mary would have the group mary assigned to
it. But because test.txt was created in a set group ID bit directory, the
file is assigned to the sales group. Now, anyone who belongs to the
sales group can read from or write to that file, based on group
permissions.

Creating restricted deletion directories (sticky bit)
A restricted deletion directory is created by turning on a directory's
sticky bit. What makes a restricted deletion directory different than
other directories? Normally, if write permission is open to a user on a
file or directory, that user can delete that file or directory. However, in
a restricted deletion directory, unless you are the root user or the
owner of the directory, you can never delete another user's files.

Typically, a restricted deletion directory is used as a place where lots of
different users can create files. For example, the /tmp directory is a
restricted deletion directory:

$ ls -ld /tmp

drwxrwxrwt. 116 root root 36864 Jan 22 14:18 /tmp

You can see that the permissions are wide open, but instead of an x for
the execute bit for other, the t indicates that the sticky bit is set. The
following is an example of creating a restricted deletion directory with
a file that is wide open for writing by anyone:

[mary]$ mkdir /tmp/mystuff

[mary]$ chmod 1777 /tmp/mystuff

[mary]$ cp /etc/services /tmp/mystuff/

[mary]$ chmod 666 /tmp/mystuff/services

[mary]$ ls -ld /tmp/mystuff /tmp/mystuff/services

drwxrwxrwt. 2 mary mary 4096 Jan 22 15:28 /tmp/mystuff/

-rw-rw-rw-. 1 mary mary 640999 Jan 22 15:28

/tmp/mystuff/services

With permissions set to 1777 on the /tmp/mystuff directory, you can
see that all permissions are wide open, but a t appears instead of the
last execute bit. With the /tmp/mystuff/services file open for writing,
any user could open it and change its contents. However, because the
file is in a sticky bit directory, only root and mary can delete that file.

Centralizing User Accounts
Although the default way of authenticating users in Linux is to check
user information against the /etc/passwd file and passwords from the
/etc/shadow file, you can authenticate in other ways as well. In most
large enterprises, user account information is stored in a centralized
authentication server, so each time you install a new Linux system,
instead of adding user accounts to that system, you have the Linux
system query the authentication server when someone tries to log in.

As with local passwd/shadow authentication, configuring centralized
authentication requires that you provide two types of information:
account information (username, user/group IDs, home directory,
default shell, and so on) and authentication method (different types of
encrypted passwords, smart cards, retinal scans, and so on). Linux
provides ways of configuring those types of information.

Authentication domains that are supported via the authconfig
command include LDAP, NIS, and Windows Active Directory.

Supported centralized database types include the following:

LDAP The Lightweight Directory Access Protocol (LDAP) is a
popular protocol for providing directory services (such as phone
books, addresses, and user accounts). It is an open standard that
is configured in many types of computing environments.

NIS The Network Information Service (NIS) was originally
created by Sun Microsystems to propagate information such as
user accounts, host configuration, and other types of system
information across many UNIX systems. Because NIS passes
information in clear text, most enterprises now use the more
secure LDAP or Winbind protocols for centralized authentication.

Winbind Selecting Winbind from the Authentication
Configuration window enables you to authenticate your users
against a Microsoft Active Directory (AD) server. Many large
companies extend their desktop authentication setup to do server
configuration as well as using an AD server.

If you are looking into setting up your own centralized authentication
services and you want to use an open-source project, I recommend
looking into the 389 Directory Server
(https://directory.fedoraproject.org/). Fedora and other Linux
systems offer this enterprise-quality LDAP server.

https://directory.fedoraproject.org/

Summary
Having separate user accounts is the primary method of setting secure
boundaries between the people who use your Linux system. Regular
users typically can control the files and directories within their own
home directories but very little outside of those directories.

In this chapter, you learned how to add user and group accounts, how
to modify them, and even how to extend user and group accounts
beyond the boundaries of the local /etc/passwd file. You also learned
that authentication can be done by accessing centralized LDAP
servers.

The next chapter introduces another basic topic needed by Linux
system administrators: how to manage disks. In that chapter, you
learn how to partition disks, add filesystems, and mount them so the
contents of the disk partitions are accessible to those using your
system.

Exercises
Use these exercises to test your knowledge of adding and managing
user and group accounts in Linux. These tasks assume that you are
running a Fedora or Red Hat Enterprise Linux system (although some
tasks work on other Linux systems as well). If you are stuck, solutions
to the tasks are shown in Appendix B (although in Linux, you often
have multiple ways to complete a task).

1. Add a local user account to your Linux system that has a
username of jbaxter and a full name of John Baxter and that uses
/bin/sh as its default shell. Let the UID be assigned by default. Set
the password for jbaxter to: My1N1te0ut!

2. Create a group account named testing that uses group ID 315.

3. Add jbaxter to the testing group and the bin group.

4. Open a shell as jbaxter (either a new login session or using a
current shell) and temporarily have the testing group be your
default group so that when you type touch
/home/jbaxter/file.txt, the testing group is assigned as the file's
group.

5. Note what user ID has been assigned to jbaxter, and delete the
user account without deleting the home directory assigned to
jbaxter.

6. Find any files in the /home directory (and any subdirectories) that
are assigned to the user ID that recently belonged to the user
named jbaxter.

7. Copy the /etc/services file to the default skeleton directory so
that it shows up in the home directory of any new user. Then add
a new user to the system named mjones, with a full name of Mary
Jones and a home directory of /home/maryjones.

8. Find all files under the /home directory that belong to mjones. Are
there any files owned by mjones that you didn't expect to see?

9. Log in as mjones, and create a file called /tmp/maryfile.txt. Using

ACLs, assign the bin user read/write permission to that file. Then
assign the lp group read/write permission to that file.

10. Still as mjones, create a directory named /tmp/mydir. Using ACLs,
assign default permissions to that directory so that the adm user
has read/write/execute permission to that directory and any files
or directories created in it. Create the /tmp/mydir/testing/
directory and /tmp/mydir/newfile.txt file, and make sure that the
adm user was also assigned full read/write/execute permissions.
(Note that despite rwx permission being assigned to the adm user,
the effective permission on newfile.txt is only rw. What could you
do to make sure that adm gets execute permission as well?)

CHAPTER 12
Managing Disks and Filesystems

IN THIS CHAPTER
Working with shell scripts

Creating logical volumes with LVM

Adding filesystems

Mounting filesystems

Unmounting filesystems

Your operating system, applications, and data all need to be kept on
some kind of permanent storage so that when you turn your computer
off and then on again, it is all still there. Traditionally, that storage has
been provided by a hard disk in your computer. To organize the
information on that disk, the disk is usually divided into partitions,
with most partitions given a structure referred to as a filesystem.

This chapter describes how to work with hard drives. Hard drive tasks
include partitioning, adding filesystems, and managing those
filesystems in various ways. Storage devices that are attached to the
systems such as removable devices, including hard disk drives (HDDs)
and solid state drives (SSDs), and network devices can be partitioned
and managed in the same ways.

After covering basic partitions, I describe how Logical Volume
Manager (LVM) can be used to make it easier to grow, shrink, and
otherwise manage filesystems more efficiently.

Understanding Disk Storage
The basics of how data storage works are the same in most modern
operating systems. When you install the operating system, the disk is
divided into one or more partitions. Each partition is formatted with a
filesystem. In the case of Linux, some of the partitions may be
specially formatted for elements such as swap area or LVM physical
volumes. Disks are used for permanent storage; random access
memory (RAM) and swap are used for temporary storage. For
example, when you run a command, that command is copied from the
hard disk into RAM so that your computer processor (CPU) can access
it more quickly.

Your CPU can access data much faster from RAM than it can from a
hard disk, although SSDs are more like RAM than HDDs. However, a
disk is usually much larger than RAM, RAM is much more expensive,
and RAM is erased when the computer reboots. Think of your office as
a metaphor for RAM and disk. A disk is like a file cabinet where you
store folders of information you need. RAM is like the top of your
desk, where you put the folder of papers while you are using it but put
it back in the file cabinet when you are not.

If RAM fills up by running too many processes or a process with a
memory leak, new processes fail if your system doesn't have a way to
extend system memory. That's where a swap area comes in. A swap
space is a hard disk swap partition or a swap file where your computer
can “swap out” data from RAM that isn't being used at the moment
and then “swap in” the data back to RAM when it is again needed.
Although it is better never to exceed your RAM (performance takes a
hit when you swap), swapping out is better than having processes just
fail.

Another special partition is a Logical Volume Manager (LVM)
physical volume. LVM physical volumes enable you to create pools of
storage space called volume groups. From those volume groups, you
have much more flexibility for growing and shrinking logical volumes
than you have resizing disk partitions directly.

For Linux, at least one disk partition is required, assigned to the root
(/) of the entire Linux filesystem. However, it is more common to
have separate partitions that are assigned to particular directories,
such as /home, /var, and/or /tmp. Each of the partitions is connected to
the larger Linux filesystem by mounting it to a point in the filesystem
where you want that partition to be used. Any file added to the mount
point directory of a partition, or a subdirectory, is stored on that
partition.

NOTE
The word mount refers to the action of connecting a filesystem
from a hard disk, USB drive, or network storage device to a
particular point in the filesystem. This action is done using the
mount command, along with options to tell the command where the
storage device is located and to which directory in the filesystem to
connect it.

The business of connecting disk partitions to the Linux filesystem is
done automatically and invisibly to the end user. How does this
happen? Each regular disk partition created when you install Linux is
associated with a device name. An entry in the /etc/fstab file tells
Linux each partition's device name and where to mount it (as well as
other bits of information). The mounting is done when the system
boots.

Most of this chapter focuses on understanding how your computer's
disk is partitioned and connected to form your Linux filesystem as well
as how to partition disks, format filesystems and swap space, and have
those items used when the system boots. The chapter then covers how
to do partitioning and filesystem creation manually.

Coming from Windows
Filesystems are organized differently in Linux than they are in
Microsoft Windows operating systems. Instead of drive letters (for
example, A:, B:, C:) for each local disk, network filesystem, CD
ROM, or other type of storage medium, everything fits neatly into
the Linux directory structure.

Some drives are connected (mounted) automatically into the
filesystem when you insert removable media. For example, a CD
might be mounted on /media/cdrom. If the drive isn't mounted
automatically, it is up to an administrator to create a mount point
in the filesystem and then connect the disk to that point.

Linux can understand VFAT filesystems, which are often the
default format when you buy a USB flash drive. A VFAT and exFAT
USB flash drive provides a good way to share data between Linux
and Windows systems. Linux kernel support is available for NTFS
filesystems, which are usually used with Windows these days.
However, NTFS, and sometimes exFAT, often require that you
install additional kernel drivers in Linux.

VFAT file systems are often used when files need to be exchanged
between different types of operating systems. Because VFAT was
used in MS DOS and early Windows operating systems, it offers a
good lowest common denominator for sharing files with many
types of systems (including Linux). NTFS is the file system type
most commonly used with modern Microsoft Windows systems.

Partitioning Hard Disks
Linux provides several tools for managing your hard disk partitions.
You need to know how to partition your disk if you want to add a disk
to your system or change your existing disk configuration.

The following sections demonstrate disk partitioning using a
removable USB flash drive and a fixed hard disk. To be safe, I use a
USB flash drive that doesn't contain any data that I want to keep in
order to practice partitioning.

Changing partitioning can make a system
unbootable!
I don't recommend using your system's primary hard disk to
practice changing partitioning because a mistake can make your
system unbootable. Even if you use a separate USB flash drive to
practice, a bad entry in /etc/fstab can hang your system on
reboot. If after changing partitions your system fails to boot, refer
to Chapter 21, “Troubleshooting Linux,” for information on how to
fix the problem.

Understanding partition tables
PC architecture computers have traditionally used Master Boot
Record (MBR) partition tables to store information about the sizes
and layouts of the hard disk partitions. There are many tools for
managing MBR partitions that are quite stable and well known. A few
years ago, however, a new standard called Globally Unique Identifier
(GUID) partition tables began being used on systems as part of the
UEFI computer architecture to replace the older BIOS method of
booting the system.

Many Linux partitioning tools have been updated to handle GUID
partition tables (gpt). Other tools for handling GUID partition tables
have been added. Because the popular fdisk command does not
support gpt partitions, the parted command is used to illustrate
partitioning in this chapter.

Limitations imposed by the MBR specification brought about the need
for GUID partitions. In particular, MBR partitions are limited to 2TB
in size. GUID partitions can create partitions up to 9.4ZB (zettabytes).

Viewing disk partitions
To view disk partitions, use the parted command with the ‐l option.

The following is an example of partitioning on a 160GB fixed hard
drive on a Red Hat Enterprise Linux 8 system:

parted -l /dev/sda

Disk /dev/sda: 160.0 GB, 160000000000 bytes, 312500000

sectors

Units = sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/O size (minimum/optimal): 512 bytes / 512 bytes

Disk label type: dos

Disk identifier: 0x0008870c

 Device Boot Start End Blocks Id

System

/dev/sda1 * 2048 1026047 512000 83

Linux

/dev/sda2 1026048 304281599 151627776 8e

Linux LVM

When a USB flash drive is inserted, it is assigned to the next available
sd device. The following example shows the partitioning on the hard
drive (/dev/sda) and a USB drive from a Fedora 30 system, where
/dev/sdb is assigned as the USB device name (the second disk on the
system). This USB drive is a new 128GB USB flash drive:

fdisk -l /dev/sdb

Although this drive was assigned to /dev/sdb, your drive might be
assigned to a different device name. Here are some things to look for:

A SCSI or USB storage device, represented by an sd? device (such
as sda, sdb, sdc, and so on) can have up to 16 minor devices (for
example, the main /dev/sdc device and /dev/sdc1 through
/dev/sdc15). So, there can be 15 partitions total. A NVMe SSD
storage device, represented by a nvme device (such as nvme0, nvme1,
nvme2, and so on) can be divided into one or more namespaces
(most devices just use the first namespace) and partitions. For
example, /dev/nvme0n1p1 represents the first partition in the first
namespace on the first NVMe SSD.

For x86 computers, disks can have up to four primary partitions.
So, to have more than four total partitions, one must be an
extended partition. Any partitions beyond the four primary
partitions are logical partitions that use space from the extended

partition.

The id field indicates the type of partition. Notice that there is a
Linux LVM partition in the first example.

Your first primary hard disk usually appears as /dev/sda. With RHEL
and Fedora installations, there is usually at least one LVM partition
created by the installer, out of which other partitions can be assigned.
So, the output of fdisk might be as simple as the following:

parted -l

Disk /dev/sda: 500.1 GB, 500107862016 bytes

The first partition is roughly 210MB and is mounted on the /boot/efi
directory. The second partition (1074MB) is mounted on the /boot
partition. For older MBR partition tables, there is only a /boot
partition. The boot under the Flags column indicates that the partition
is bootable. The rest of the disk is consumed by the LVM partition,
which is ultimately used to create logical volumes.

For the moment, I recommend that you leave the hard disk alone and
find a USB flash drive that you do not mind erasing. You can try the
commands I demonstrate on that drive.

Creating a single‐partition disk
To add a new storage medium (hard disk, USB flash drive, or similar
device) to your computer so that it can be used by Linux, you first need
to connect the disk device to your computer and then partition the
disk. Here's the general procedure:

1. Install the new hard drive or insert the new USB flash drive.

2. Partition the new disk.

3. Create the filesystems on the new disk.

4. Mount the filesystems.

The easiest way to add a disk or flash drive to Linux is to have the
entire disk devoted to a single Linux partition. You can have multiple
partitions, however, and assign them each to different types of
filesystems and different mount points if you like.

The following process takes you through partitioning a USB flash drive
to be used for Linux that has only one partition. If you have a USB
flash drive (any size) that you don't mind erasing, you can work
through this procedure as you read. The section following this
describes how to partition a disk with multiple partitions.

WARNING
If you make a mistake partitioning your disk with parted, make
sure that you correct that change. Unlike fdisk, where you could
just type q to exit without saving your changes, parted makes your
changes immediately, so you are not able just to quit to abandon
changes.

1. For a USB flash drive, just plug it into an available USB port.
Going forward, I use a 128GB USB flash drive, but you can get a
USB flash drive of any size.

2. Determine the device name for the USB drive. As root user from a
shell, type the following journalctl command, and then insert the
USB flash drive. Messages appear, indicating the device name of
the drive you just plugged in (press Ctrl+C to exit the tail
command when you are finished):

journalctl -f

kernel: usb 4-1: new SuperSpeed Gen 1 USB device number 3

using

xhci_hcd

kernel: usb 4-1: New USB device found, idVendor=0781,

idProduct=5581, bcdDevice= 1.00

kernel: usb 4-1: New USB device strings: Mfr=1, Product=2,

SerialNumber=3

kernel: usb 4-1: Product: Ultra

kernel: usb 4-1: Manufacturer: SanDisk

…

kernel: sd 6:0:0:0: Attached scsi generic sg2 type 0

kernel: sdb: sdb1

kernel: sd 6:0:0:0: [sdb] Attached SCSI removable disk

udisksd[809]: Mounted /dev/sdb1 at /run/media/chris/7DEB-

B010

on behalf of uid 1000

3. From the output, you can see that the USB flash drive was found
and assigned to /dev/sdb. (Your device name may be different.) It
also contains a single formatted partition: sdb1. Be sure you
identify the correct disk or you could lose all data from disks you

may want to keep!

4. If the USB flash drive mounts automatically, unmount it. Here is
how to find the USB partitions in this example and unmount
them:

mount | grep sdb

/dev/sdb1 on /run/media…

umount /dev/sdb1

5. Use the parted command to create partitions on the USB drive.
For example, if you are formatting the second USB, SATA, or SCSI
disk (sdb), you can type the following:

parted /dev/sdb

GNU Parted 3.2

Using /dev/sdb

Welcome to GNU Parted! Type 'help' to view a list of

commands.

(parted)

Now you are in parted command mode, where you can use the
parted single letter command set to work with your partitions.

6. If you start with a new USB flash drive, it may have one partition
that is entirely devoted to a Windows compatible filesystem (such
as VFAT or fat32). Use p to view all partitions and rm to delete the
partition. Here's what it looked like when I did that:

 (parted) p

 Model: SanDisk Ultra (scsi)

 Disk /dev/sdb: 123GB

 Sector size (logical/physical): 512B/512B

 Partition Table: msdos

 Disk Flags:

 Number Start End Size Type File

system Flags

 1 16.4kB 123GB 123GB primary fat32

lba

   (parted) rm
 Partition number? 1

7. Relabel the disk as having a gpt partition table.

    (parted) mklabel gpt
  Warning: The existing disk label on /dev/sdb
will be destroyed and all data

 on this disk will be lost. Do you want to

continue?

 Yes/No? Yes

    (parted)

8. To create a new partition, type mkpart. You are prompted for the
file system type, then the start and end of the partition. This
example names the partition alldisk, uses xfs as the file system
type, starts the partition at 1M and ends at 123GB:

    (parted) mkpart
 Partition name? []? alldisk

 File system type? [ext2]? xfs

 Start? 1

 End? 123GB

9. Double check that the drive is partitioned the way you want by
pressing p. (Your output will differ, depending on the size of your
drive.)

   (parted) p
 Model: SanDisk Ultra (scsi)

 Disk /dev/sdb: 123GB

 Sector size (logical/physical): 512B/512B

 Partition Table: gpt

 Disk Flags:

 Number Start End Size File system Name

Flags

 1 1049kB 123GB 123GB xfs

alldisk

10. Although the partitioning is done, the new partition is not yet
ready to use. For that, you have to create a filesystem on the new
partition. To create a filesystem on the new disk partition, use the
mkfs command. By default, this command creates an ext2
filesystem, which is usable by Linux. However, in most cases you
want to use a journaling filesystem (such as ext3, ext4, or xfs). To
create an xfs filesystem on the first partition of the second hard
disk, type the following:

 # mkfs -t xfs /dev/sdb1

10. TIP
You can use different commands, or options to this command,
to create other filesystem types. For example, use mkfs.exfat
to create a VFAT filesystem, mkfs.msdos for DOS, or mkfs.ext4
for the ext4 filesystem type. You may want a VFAT or exFAT
(available with Ubuntu) filesystem if you want to share files
among Linux, Windows, and Mac systems.

11. To be able to use the new filesystem, you need to create a mount
point and mount it to the partition. Here is an example of how to
do that. You then check to make sure that the mount succeeded.

 # mkdir /mnt/test

 # mount /dev/sdb1 /mnt/test

 # df -h /mnt/sdb1

 Filesystem Size Used Avail Use% Mounted

on

 /dev/sdb1 115G 13M 115G 1%

/mnt/test

The df command shows that /dev/sdb1 is mounted on /mnt/test
and that it offers about 115GB of disk space. The mount command
shows all mounted filesystems, but here I just list sdb1 to show
that it is mounted.

Any files or directories that you create later in the /mnt/test
directory, and any of its subdirectories, are stored on the
/dev/sdb1 device.

12. When you are finished using the drive, you can unmount it with
the umount command, after which you can safely remove the drive
(see the description of the umount command later if this command
fails):

 # umount /dev/sdb1

13. You don't usually set up a USB flash drive to mount automatically
every time the system boots because it mounts automatically

when you plug it in. But if you decide that you want to do that,
edit /etc/fstab and add a line describing what and where to
mount. Here is an example of a line you might add:

 /dev/sdb1 /mnt/test xfs defaults 0

1

In this example, the partition (/dev/sdb1) is mounted on the
/mnt/test directory as an xfs filesystem. The defaults keyword
causes the partition to be mounted at boot time. The number 0
tells the system not to back up files automatically from this
filesystem with the dump command (dump is rarely used anymore,
but the field is here). The 1 in the last column tells the system to
check the partition for errors after a certain number of mounts.

At this point, you have a working, permanently mounted disk
partition. The next section describes how to partition a disk that has
multiple partitions.

Creating a multiple‐partition disk
Now that you understand the basic process of partitioning a disk,
adding a filesystem, and making that filesystem available (temporarily
and permanently), it is time to try a more complex example. Taking
that same 128GB USB flash drive, I ran the procedure described later
in this section to create multiple partitions on one disk.

In this procedure, I configure a Master Boot Record (MBR) partition
to illustrate how extended partitions work and to use the older fdisk
command. I create two partitions of 5GB (sdb1 and sdb2), two 3GB
(sdb3 and sdb5), and 4GB (sdb6). The sdb4 device is an extended
partition, which consumes all remaining disk space. Space from the
sdb5 and sdb6 partitions is taken from the extended partition. This
leaves plenty of space to create new partitions.

As before, insert the USB flash drive and determine the device name
(in my case, /dev/sdb). Also, be sure to unmount any partitions that
mount automatically when you insert the USB flash drive.

TIP
When you indicate the size of each partition, type the plus sign and
the number of megabytes or gigabytes you want to assign to the
partition. For example, +1024M to create a 1024 megabyte partition
or +10G for a 10 gigabyte partition. Be sure to remember the plus
sign (+) and the M or G! If you forget the M or G, fdisk thinks you
mean sectors and you get unexpected results.

1. I started this procedure by overwriting the USB drive with the dd
command (dd if=/dev/zero of=/dev/sd<number> bs=1M
count=100). This allowed me to start with a fresh master boot
record. Please be careful to use the right drive number, or you
could erase your operating system!

2. Create six new partitions as follows.

 # fdisk /dev/sdb

 Welcome to fdisk (util-linux 2.33.2).

 Changes will remain in memory only, until you

decide to write them.

 Be careful before using the write command.

 Device does not contain a recognized partition

table.

 Created a new DOS disklabel with disk identifier

0x8933f665.

 Command (m for help): n

 Partition type

 p primary (0 primary, 0 extended, 4 free)

 e extended (container for logical

partitions)

 Select (default p): p

 Partition number (1-4, default 1): 1

 First sector (2048-240254975, default 2048):

 Last sector, +/-sectors or +/-size{K,M,G,T,P}

(2048-240254975, default 240254975): +5G

 Created a new partition 1 of type 'Linux' and of

size 5 GiB.

 Command (m for help): n

 Partition type

 p primary (1 primary, 0 extended, 3 free)

 e extended (container for logical

partitions)

 Select (default p): p

 Partition number (2-4, default 2): 2

 First sector (10487808-240254975, default

10487808):

 Last sector, +/-sectors or +/-size{K,M,G,T,P}

(10487808-240254975, default 240254975): +5G

 Created a new partition 2 of type 'Linux' and of

size 5 GiB.

 Command (m for help): n

 Partition type

 p primary (2 primary, 0 extended, 2 free)

 e extended (container for logical

partitions)

 Select (default p): p

 Partition number (3,4, default 3): 3

 First sector (20973568-240254975, default

20973568):

 Last sector, +/-sectors or +/-size{K,M,G,T,P}

(20973568-240254975, default 240254975): +3G

 Created a new partition 3 of type 'Linux' and of

size 3 GiB.

 Command (m for help): n

 Partition type

 p primary (3 primary, 0 extended, 1 free)

 e extended (container for logical

partitions)

 Select (default e): e

 Selected partition 4

 First sector (27265024-240254975, default

27265024):

 Last sector, +/-sectors or +/-size{K,M,G,T,P}

(27265024-240254975, default 240254975): <ENTER>

 Created a new partition 4 of type 'Extended'

and of size 101.6 GiB.

 Command (m for help): n

 All primary partitions are in use.

 Adding logical partition 5

 First sector (27267072-240254975, default

27267072):

 Last sector, +/-sectors or +/-size{K,M,G,T,P}

(27267072-240254975, default 240254975): +3G

 Created a new partition 5 of type 'Linux' and of

size 3 GiB.

 Command (m for help): n

 All primary partitions are in use.

 Adding logical partition 6

 First sector (33560576-240254975, default

33560576):

 Last sector, +/-sectors or +/-size{K,M,G,T,P}

(33560576-240254975, default 240254975): +4G

 Created a new partition 6 of type 'Linux' and of

size 4 GiB.

3. Check the partitioning before saving by typing p. Notice that there
are five usable partitions (sdc1, sdc2, sdc3, sdc5, and sdc6) and
that the sectors between the Start and End for sdc4 are being
consumed by sdc5 and sdc6.

 Command (m for help): p

 …

 Device Boot Start End Sectors

Size Id Type

 /dev/sdb1 2048 10487807 10485760

5G 83 Linux

 /dev/sdb2 10487808 20973567 10485760

5G 82 Linux

 /dev/sdb3 20973568 27265023 6291456

3G 83 Linux

 /dev/sdb4 27265024 240254975 212989952

101.6G 5 Extended

 /dev/sdb5 27267072 33558527 6291456

3G 83 Linux

 /dev/sdb6 33560576 41949183 8388608

4G 83 Linux

4. The default partition type is Linux. I decided that I wanted to use
some of the partitions for swap space (type 82), FAT32 (type x),

and Linux LVM (type 8e). To do that, I type t and indicate which
partition type to use. Type L to see a list of partition types.

 Command (m for help): t

 Partition number (1-6): 2

 Hex code (type L to list codes): 82

 Changed type of partition 'Linux' to 'Linux swap

/ Solaris'.

 Command (m for help): t

 Partition number (1-6): 5

 Hex code (type L to list codes): c

 Changed type of partition 'Linux' to 'W95 FAT32

(LBA)'.

 Command (m for help): t

 Partition number (1-6): 6

 Hex code (type L to list codes): 8e

 Changed type of partition 'Linux' to 'Linux

LVM'.

5. I check that the partition table is the way I want it and then write
the changes:

 Command (m for help): p

 …

 Device Boot Start End Sectors

Size Id Type

 /dev/sdb1 2048 10487807 10485760

5G 83 Linux

 /dev/sdb2 10487808 20973567 10485760

 5G  82 Linux swap / Solaris
 /dev/sdb3 20973568 27265023 6291456

3G 83 Linux

 /dev/sdb4 27265024 240254975 212989952

101.6G 5 Extended

 /dev/sdb5 27267072 33558527 6291456

3G c W95 FAT32 (LBA)

 /dev/sdb6 33560576 41949183 8388608 4G 8e

Linux LVM

 Command (m for help): w

 The partition table has been altered!

 The kernel still uses the old partitions. The

new table will be used at the next reboot.

 Syncing disks

6. After the write is completed, check that the kernel knows about
the changes to the partition table. To do that, search the
/proc/partitions for sdb. If the new devices are not there, run the
partprobe /dev/sdb command on the drive or reboot your
computer.

 # grep sdb /proc/partitions

 8 16 120127488 sdb

 8 17 120125440 sdb1

 # partprobe /dev/sdb

 # grep sdb /proc/partitions

 8 16 120127488 sdb

 8 17 5242880 sdb1

 8 18 5242880 sdb2

 8 19 3145728 sdb3

 8 20 1 sdb4

 8 21 3145728 sdb5

 8 22 4194304 sdb6

7. While the partitions are now set for different types of content,
other commands are needed to structure the partitions into
filesystems or swap areas. Here's how to do that for the partitions
just created:

sdb1: To make this into a regular Linux ext4 filesystem, type
the following:

 # mkfs -t ext4 /dev/sdb1

sdb2: To format this as a swap area, type the following:

 # mkswap /dev/sdb2

sdb3: To make this into an ext2 filesystem (the default), type
the following:

 # mkfs /dev/sdb3

sdb5: To make this into a VFAT filesystem (the default), type
the following:

 # mkfs -t vfat /dev/sdb5

sdb6: To make this into a LVM physical volume, type the

following:

 # pvcreate /dev/sdb6

These partitions are now ready to be mounted, used as swap areas, or
added to an LVM volume group. See the next section, “Using Logical
Volume Manager Partitions,” to see how LVM physical volumes are
used to ultimately create LVM logical volumes from volume groups.
See the section “Mounting Filesystems” for descriptions of how to
mount filesystems and enable swap areas.

Using Logical Volume Manager Partitions
Basic disk partitioning in Linux has its shortcomings. What happens if
you run out of disk space? In the old days, a common solution was to
copy data to a bigger disk, restart the system with the new disk, and
hope that you didn't run out of space again anytime soon. This process
meant downtime and inefficiency.

Logical Volume Manager (LVM) offers lots of flexibility and efficiency
in dealing with constantly changing storage needs. With LVM, physical
disk partitions are added to pools of space called volume groups.
Logical volumes are assigned space from volume groups as needed.
This gives you these abilities:

Add more space to a logical volume from the volume group while
the volume is still in use.

Add more physical volumes to a volume group if the volume
group begins to run out of space. The physical volumes can be
from disks.

Move data from one physical volume to another so you can
remove smaller disks and replace them with larger ones while the
filesystems are still in use—again, without downtime.

With LVM, it is also easier to shrink filesystems to reclaim disk space,
although shrinking does require that you unmount the logical volume
(but no reboot is needed). LVM also supports advanced features, such
as mirroring and working in clusters.

Checking an existing LVM
Let's start by looking at an existing LVM example on a Red Hat
Enterprise Linux system. The following command displays the
partitions on my first hard disk:

fdisk -l /dev/sda | grep /dev/sda

Disk /dev/sda: 160.0 GB, 160000000000 bytes

/dev/sda1 * 2048 1026047 512000 83

Linux

/dev/sda2 * 1026048 312498175 155736064 8e

Linux LVM

On this RHEL system, the 160GB hard drive is divided into one
500MB Linux partition (sda1) and a second (Linux LVM) partition
that consumes the rest of the disk (sda2). Next, I use the pvdisplay
command to see if that partition is being used in an LVM group:

pvdisplay /dev/sda2

 --- Physical volume ---

 PV Name /dev/sda2

 VG Name vg_abc

 PV Size 148.52 GiB / not usable 2.00 MiB

 Allocatable yes (but full)

 PE Size 4.00 MiB

 Total PE 38021

 Free PE 0

 Allocated PE 38021

 PV UUID wlvuIv-UiI2-pNND-f39j-oH0X-9too-

AOII7R

You can see that the LVM physical volume represented by /dev/sda2
has 148.52GiB of space, all of which has been totally allocated to a
volume group named vg_abc. The smallest unit of storage that can be
used from this physical volume is 4.0MiB, which is referred to as a
Physical Extent (PE).

NOTE
Notice that LVM tools show disk space in MiB and GiB. One MB is
1,000,000 bytes (10∧6), while a MiB is 1,048,576 bytes (2∧20). A
MiB is a more accurate way to reflect how data are stored on a
computer. But marketing people tend to use MB because it makes
the hard disks, CDs, and DVDs they sell look like they have more
capacity than they do. Keep in mind that most tools in Linux
display storage data in MiB and GiB, although some can display
MB and GB as well.

Next, you want to see information about the volume group:

vgdisplay vg_abc

 --- Volume group ---

 VG Name vg_abc

 System ID

 Format lvm2

 Metadata Areas 1

 Metadata Sequence No 4

 VG Access read/write

 VG Status resizable

 MAX LV 0

 Cur LV 3

 Open LV 3

 Max PV 0

 Cur PV 1

 Act PV 1

 VG Size 148.52 GiB

 PE Size 4.00 MiB

 Total PE 38021

 Alloc PE / Size 38021 / 148.52 GiB

 Free PE / Size 0 / 0

 VG UUID c2SGHM-KU9H-wbXM-sgca-EtBr-UXAq-

UnnSTh

You can see that all of the 38,021 PEs have been allocated. Using
lvdisplay as follows, you can see where they have been allocated (I
have snipped some of the output):

lvdisplay vg_abc

 --- Logical volume ---

 LV Name /dev/vg_abc/lv_root

 VG Name vg_abc

 LV UUID 33VeDc-jd0l-hlCc-RMuB-tkcw-QvFi-

cKCZqa

 LV Write Access read/write

 LV Status available

 # open 1

 LV Size 50.00 GiB

 Current LE 12800

 Segments 1

 Allocation inherit

 Read ahead sectors auto

 - currently set to 256

 Block device 253:0

 --- Logical volume ---

 LV Name /dev/vg_abc/lv_home

 VG Name vg_abc

 …

 LV Size 92.64 GiB

 --- Logical volume ---

 LV Name /dev/vg_abc/lv_swap

 VG Name vg_abc

 …

 LV Size 5.88 GiB

There are three logical volumes drawing space from vg_abc. Each
logical volume is associated with a device name that includes the
volume group name and the logical volume name:
/dev/vg_abc/lv_root (50GB), /dev/vg_abc/lv_home (92.64GB), and
/dev/vg_abc/lv_swap (5.88GB). Other devices linked to these names
are located in the /dev/mapper directory: vg_abc‐lv_home, vg_abc‐
lv_root, and vg_abc‐lv_swap. Either set of names can be used to refer
to these logical volumes.

The root and home logical volumes are formatted as ext4 filesystems,
whereas the swap logical volume is formatted as swap space. Let's look
in the /etc/fstab file to see how these logical volumes are used:

grep vg_ /etc/fstab

/dev/mapper/vg_abc-lv_root / ext4 defaults 1 1

/dev/mapper/vg_abc-lv_home /home ext4 defaults 1 2

/dev/mapper/vg_abc-lv_swap swap swap defaults 0 0

Figure 12.1 illustrates how the different partitions, volume groups, and

logical volumes relate to the complete Linux filesystem. The sda1
device is formatted as a filesystem and mounted on the /boot
directory. The sda2 device provides space for the vg_abc volume group.
Then logical volumes lv_home and lv_root are mounted on the /home
and / directories, respectively.

FIGURE 12.1 LVM logical volumes can be mounted like regular
partitions on a Linux filesystem.

If you run out of space on any of the logical volumes, you can assign
more space from the volume group. If the volume group is out of
space, you can add another hard drive or network storage drive and
add space from that drive to the volume group so more is available.

Now that you know how LVM works, the next section shows you how
to create LVM logical volumes from scratch.

Creating LVM logical volumes
LVM logical volumes are used from the top down, but they are created
from the bottom up. As illustrated in Figure 12.1, first you create one
or more physical volumes (pv), use the physical volumes to create
volume groups (vg), and then create logical volumes from the volume
groups (lv).

Commands for working with each LVM component begin with the
letters pv, vg, and lv. For example, pvdisplay shows physical volumes,
vgdisplay shows volume groups, and lvdisplay shows logical volumes.

The following procedure takes you through the steps of creating LVM
volumes from scratch. To do this procedure, you could use the USB
flash drive and partitions that I described earlier in this chapter.

1. Obtain a disk with some spare space on it and create a disk
partition on it of the LVM type (8e). Then use the pvcreate
command to identify this partition as an LVM physical volume.
The process of doing this is described in the section “Creating a
multiple partition disk” using the /dev/sdb6 device in that
example.

2. To add that physical volume to a new volume group, use the
vgcreate command. The following command shows you how to
create a volume group called myvg0 using the /dev/sdb6 device:

 # vgcreate myvg0 /dev/sdc6

 Volume group "myvg0" successfully created

3. To see the new volume group, type the following:

 # vgdisplay myvg0

 --- Volume group ---

 VG Name myvg0

 …

 VG Size <4.00 GiB

 PE Size 4.00 MiB

 Total PE 1023

 Alloc PE / Size 0 / 0

 Free PE / Size 1023 / <4.00 MiB

4. All of the 1023 physical extents (PEs, 4.00 MiB each) are
available. Here's how to create a logical volume from some of the
space in that volume group and then check that the device for that
logical volume exists:

 # lvcreate -n music -L 1G myvg0

 Logical volume "music" created

 # ls /dev/mapper/myvg0*

 /dev/mapper/myvg0-music

5. As you can see, the procedure created a device named
/dev/mapper/myvg0‐music. That device can now be used to put a
filesystem on and mount, just as you did with regular partitions in
the first part of this chapter. For example:

 # mkfs -t ext4 /dev/mapper/myvg0-music

 # mkdir /mnt/mymusic

 # mount /dev/mapper/myvg0-music /mnt/mymusic

 # df -h /mnt/mymusic

 Filesystem Size Used Avail Use%

Mounted on

 /dev/mapper/myvg0-music 976M 2.6M 987M 1%

/mnt/mymusic

6. As with regular partitions, logical volumes can be mounted
permanently by adding an entry to the /etc/fstab file, such as

 /dev/mapper/myvg0-music /mnt/mymusic ext4

defaults 1 2

The next time you reboot, the logical volume is automatically mounted
on /mnt/mymusic. (Be sure to unmount the logical volume and remove
this line if you want to remove the USB flash drive from your
computer.)

Growing LVM logical volumes

If you run out of space on a logical volume, you can add space to it
without even unmounting it. To do that, you must have space available
in the volume group, grow the logical volume, and grow the filesystem
to fill it. Building on the procedure in the previous section, here's how
to grow a logical volume:

1. Note how much space is currently on the logical volume, and then
check that space is available in the logical volume's volume group:

 # vgdisplay myvg0

 …

 VG Size <4.00 MiB

 PE Size 4.00 MiB

 Total PE 1023

 Alloc PE / Size 256 / 1.00 GiB

 Free PE / Size 767 / <3.00 GiB

 # df -h /mnt/mymusic/

 Filesystem Size Used Avail Use%

Mounted on

 /dev/mapper/myvg0-music 976M 2.6M 987M 1%

/mnt/mymusic

2. Expand the logical volume using the lvextend command:

 # lvextend -L +1G /dev/mapper/myvg0-music

 Size of logical volume myvg0/music changed

 from 1.00GiB to 2.00 GiB (512 extents).

 Logical volume myvg0/music successfully

resized

3. Resize the filesystem to fit the new logical volume size:

 # resize2fs -p /dev/mapper/myvg0-music

4. Check to see that the filesystem is now resized to include the
additional disk space:

 # df -h /mnt/mymusic/

 Filesystem Size Used Avail Use%

Mounted on

 /dev/mapper/myvg0-music 2.0G 3.0M 1.9G 1%

/mnt/mymusic

You can see that the filesystem is now about 1G larger.

Mounting Filesystems
Now that you have had a chance to play with disk partitioning and
filesystems, I'm going to step back and talk about how filesystems are
set up to connect permanently to your Linux system.

Most of the hard disk partitions created when you install Linux are
mounted automatically for you when the system boots. When you
install Fedora, Ubuntu, Red Hat Enterprise Linux, and other Linux
systems, you have the option to let the installer automatically
configure your hard disk or create partitions yourself and indicate the
mount points for those partitions.

When you boot Linux, usually all of the Linux partitions on your hard
disk are listed in your /etc/fstab file and are mounted. For that
reason, the following sections describe what you might expect to find
in that file. It also describes how you can mount other partitions so
that they become part of your Linux filesystem.

The mount command is used not only to mount local storage devices
but also to mount other kinds of filesystems on your Linux system. For
example, mount can be used to mount directories (folders) over the
network from NFS or Samba servers. It can be used to mount
filesystems from a new hard drive or USB flash drive that is not
configured to automount. It can also mount filesystem image files
using loop devices.

NOTE
With the addition of automatic mounting features and changes in
how removable media are identified with the Linux 2.6 kernel
(using features such as Udev and Hardware Abstraction Layer),
you no longer need to mount removable media manually for many
Linux desktop systems. Understanding how to mount and
unmount filesystems manually on a Linux server, however, can be
a very useful skill if you want to mount remote filesystems or
temporarily mount partitions in particular locations.

Supported filesystems
To see filesystem types that are currently loaded in your kernel, type
cat /proc/filesystems. The list that follows shows a sample of
filesystem types that are currently supported in Linux, although they
may not be in use at the moment or even available on the Linux
distribution you are using.

befs: Filesystem used by the BeOS operating system.

btrfs: A copy on write filesystem that implements advanced
filesystem features. It offers fault tolerance and easy
administration. The btrfs file system has recently grown in
popularity for enterprise applications.

cifs: Common Internet Filesystem (CIFS), the virtual filesystem
used to access servers that comply with the SNIA CIFS
specification. CIFS is an attempt to refine and standardize the
SMB protocol used by Samba and Windows file sharing.

ext4: Successor to the popular ext3 filesystem. It includes many
improvements over ext3, such as support for volumes up to 1
exbibyte and file sizes up to 16 tebibytes. (This replaced ext3 as
the default filesystem used in Fedora and RHEL. It has since been
supplanted by xfs as the default for RHEL.)

ext3: Ext filesystems are the most common in most Linux

systems. Compared ext2, the ext3 filesystem, also called the third
extended filesystem, includes journaling features that, compared
to ext2, improve a filesystem's capability to recover from crashes.

ext2: The default filesystem type for earlier Linux systems.
Features are the same as ext3, except that ext2 doesn't include
journaling features.

ext: This is the first version of ext3. It is not used very often
anymore.

iso9660: Evolved from the High Sierra filesystem (the original
standard for CD ROMs). Extensions to the High Sierra standard
(called Rock Ridge extensions) allow iso9660 filesystems to
support long filenames and UNIX style information (such as file
permissions, ownership, and links). Data CD ROMs typically use
this filesystem type.

kafs: AFS client filesystem. Used in distributed computing
environments to share files with Linux, Windows, and Macintosh
clients.

minix: Minix filesystem type, used originally with the Minix
version of UNIX. It supports filenames of up to only 30
characters.

msdos: An MS DOS filesystem. You can use this type to mount
media that comes from old Microsoft operating systems.

vfat: Microsoft extended FAT (VFAT) filesystem.

exfat: Extended FAT (exFAT) file system that has been optimized
for SD cards, USB drives, and other flash memory.

umsdos: An MS DOS filesystem with extensions to allow features
that are similar to UNIX (including long filenames).

proc: Not a real filesystem, but rather a filesystem interface to
the Linux kernel. You probably won't do anything special to set up
a proc filesystem. However, the /proc mount point should be a
proc filesystem. Many utilities rely on /proc to gain access to
Linux kernel information.

reiserfs: ReiserFS journaled filesystem. ReiserFS was once a
common default filesystem type for several Linux distributions.
However, ext and xfs filesystems are by far more common
filesystem types used with Linux today.

swap: Used for swap partitions. Swap areas are used to hold data
temporarily when RAM is used up. Data is swapped to the swap
area and then returned to RAM when it is needed again.

squashfs: Compressed, read only filesystem type. Squashfs is
popular on live CDs, where there is limited space and a read only
medium (such as a CD or DVD).

nfs: Network Filesystem (NFS) type of filesystem. NFS is used to
mount filesystems on other Linux or UNIX computers.

hpfs: Filesystem is used to do read only mounts of an OS/2 HPFS
filesystem.

ncpfs: A filesystem used with Novell NetWare. NetWare
filesystems can be mounted over a network.

ntfs: Windows NT filesystem. Depending upon the distribution
you have, it may be supported as a read only filesystem (so that
you can mount and copy files from it).

ufs: Filesystem popular on Sun Microsystems's operating systems
(that is, Solaris and SunOS).

jfs: A 64 bit journaling filesystem by IBM that is relatively
lightweight for the many features it has.

xfs: A high performance filesystem originally developed by
Silicon Graphics that works extremely well with large files. This
filesystem is the default type for RHEL 7.

gfs2: A shared disk filesystem that allows multiple machines to
all use the same shared disk without going through a network
filesystem layer such as CIFS, NFS, and so on.

To see the list of filesystems that come with the kernel you are using,
type ls /lib/modules/kernelversion/kernel/fs/. The actual modules
are stored in subdirectories of that directory. Mounting a filesystem of

a supported type causes the filesystem module to be loaded, if it is not
already loaded.

Type man fs to see descriptions of Linux filesystems.

Enabling swap areas
A swap area is an area of the disk that is made available to Linux if the
system runs out of memory (RAM). If your RAM is full and you try to
start another application without a swap area, that application will fail.

With a swap area, Linux can temporarily swap out data from RAM to
the swap area and then get it back when needed. You take a
performance hit, but it is better than having processes fail.

To create a swap area from a partition or a file, use the mkswap
command. To enable that swap area temporarily, you can use the
swapon command. For example, here's how to check your available
swap space, create a swap file, enable the swap file, and then check
that the space is available on your system:

free -m

 total used free shared buffers cached

Mem: 1955 663 1291 0 42 283

-/+ buffers/cache: 337 1617

Swap: 819 0 819

dd if=/dev/zero of=/var/tmp/myswap bs=1M count=1024

mkswap /var/opt/myswap

swapon /var/opt/myswap

free -m

 total used free shared buffers cached

Mem: 1955 1720 235 0 42 1310

-/+ buffers/cache: 367 1588

Swap: 1843 0 1843

The free command shows the amount of swap before and after
creating, making, and enabling the swap area with the swapon
command. That amount of swap is available immediately and
temporarily to your system. To make that swap area permanent, you
need to add it to your /etc/fstab file. Here is an example:

/var/opt/myswap swap swap defaults 0 0

This entry indicates that the swap file named /var/opt/myswap should

be enabled at boot time. Because there is no mount point for swap
area, the second field is just set to swap, as is the partition type. To test
that the swap file works before rebooting, you can enable it
immediately (swapon ‐a) and check that the additional swap area
appears:

swapon -a

Disabling swap area
If at any point you want to disable a swap area, you can do so using the
swapoff command. You might do this, in particular, if the swap area is
no longer needed and you want to reclaim the space being consumed
by a swap file or remove a USB drive that is providing a swap
partition.

First, make sure that no space is being used on the swap device (using
the free command), and then use swapoff to turn off the swap area so
that you can reuse the space. Here is an example:

free -m

 total used free shared buffers

cached

Mem: 1955 1720 235 0 42

1310

-/+ buffers/cache: 367 1588

Swap: 1843 0 1843

swapoff /var/opt/myswap

free -m

Mem: 1955 1720 235 0 42

1310

-/+ buffers/cache: 367 1588

Swap: 819 0 819

Notice that the amount of available swap was reduced after running
the swapoff command.

Using the fstab file to define mountable file systems
The hard disk partitions on your local computer and the remote
filesystems that you use every day are probably set up to mount
automatically when you boot Linux. The /etc/fstab file contains
definitions for each partition, along with options describing how the

partition is mounted. Here's an example of an /etc/fstab file:

/etc/fstab

/dev/mapper/vg_abc-lv_root / ext4 defaults

1 1

UUID=78bdae46-9389-438d-bfee-06dd934fae28 /boot ext4

defaults 1 2

/dev/mapper/vg_abc-lv_home /home ext4 defaults

1 2

/dev/mapper/vg_abc-lv_swap swap swap defaults

0 0

Mount entries added later

/dev/sdb1 /win vfat ro

1 2

192.168.0.27:/nfsstuff /remote nfs users,_netdev

0 0

//192.168.0.28/myshare /share cifs guest,_netdev

0 0

special Linux filesystems

tmpfs /dev/shm tmpfs defaults

0 0

devpts /dev/pts devpts

gid=5,mode=620 0 0

sysfs /sys sysfs defaults

0 0

proc /proc proc defaults

0 0

The /etc/fstab file just shown is from a default Red Hat Enterprise
Linux 6 server install, with a few lines added.

For now, you can ignore the tmpfs, devpts, sysfs, and proc entries.
Those are special devices associated with shared memory, terminal
windows, device information, and kernel parameters, respectively.

In general, the first column of /etc/fstab shows the device or share
(what is mounted), while the second column shows the mount point
(where it is mounted). That is followed by the type of filesystem, any
mount options (or defaults), and two numbers (used to tell commands
such as dump and fsck what to do with the filesystem).

The first three entries represent the disk partitions assigned to the root
of the filesystem (/), the /boot directory, and the /home directory. All
three are ext4 filesystems. The fourth line is a swap device (used to
store data when RAM overflows). Notice that the device names for /,

/home, and swap all start with /dev/mapper. That's because they are LVM
logical volumes that are assigned space from a pool of space called an
LVM volume group (more on LVM in the section “Using Logical
Volume Manager Partitions” earlier in this chapter).

The /boot partition is on its own physical partition, /dev/sda1. Instead
of using /dev/sda1, however, a unique identifier (UUID) identifies the
device. Why use a UUID instead of /dev/sda1 to identify the device?
Suppose you plugged another disk into your computer and booted up.
Depending on how your computer iterates through connected devices
on boot, it is possible that the new disk might be identified as
/dev/sda, causing the system to look for the contents of /boot on the
first partition of that disk.

To see all of the UUIDs assigned to storage devices on your system,
type the blkid command, as follows:

blkid

/dev/sda1:

 UUID="78bdae46-9389-438d-bfee-06dd934fae28" TYPE="ext4"

/dev/sda2:

 UUID="wlvuIv-UiI2-pNND-f39j-oH0X-9too-AOII7R"

TYPE="LVM2_member"

/dev/mapper/vg_abc-lv_root:

 UUID="3e6f49a6-8fec-45e1-90a9-38431284b689" TYPE="ext4"

/dev/mapper/vg_abc-lv_swap:

 UUID="77662950-2cc2-4bd9-a860-34669535619d" TYPE="swap"

/dev/mapper/vg_abc-lv_home:

 UUID="7ffbcff3-36b9-4cbb-871d-091efb179790" TYPE="ext4"

/dev/sdb1:

 SEC_TYPE="msdos" UUID="75E0-96AA" TYPE="vfat"

Any of the device names can be replaced by the UUID designation in
the left column of an /etc/fstab entry.

I added the next three entries in /etc/fstab to illustrate some different
kinds of entries. I connected a hard drive from an old Microsoft
Windows system and had it mounted on the /win directory. I added
the ro option so it would mount read only.

The next two entries represent remote filesystems. On the /remote
directory, the /nfsstuff directory is mounted read/write (rw) from the
host at address 192.168.0.27 as an NFS share. On the /share directory,

the Windows share named myshare is mounted from the host at
192.168.0.28. In both cases, I added the _netdev option, which tells
Linux to wait for the network to come up before trying to mount the
shares. For more information on mounting CIFS and NFS shares, refer
to Chapters 19, “Configuring a Windows File Sharing (Samba) Server,”
and 20, “Configuring an NFS File Server,” respectively.

Coming from Windows
The section “Using the fstab file to define mountable file systems”
shows mounting a hard disk partition from an old VFAT filesystem
being used in Windows. Most Windows systems today use the
NTFS filesystem. Support for this system, however, is not delivered
with every Linux system. NTFS is available from Fedora in the ntfs
3g package.

To help you understand the contents of the /etc/fstab file, here is
what is in each field of that file:

Field 1: Name of the device representing the filesystem. This field
can include the LABEL or UUID option with which you can indicate a
volume label or universally unique identifier (UUID) instead of a
device name. The advantage to this approach is that because the
partition is identified by volume name, you can move a volume to
a different device name and not have to change the fstab file. (See
the description of the mkfs command in the section “Using the
mkfs Command to Create a Filesystem” later in this chapter for
information on creating and using labels.)

Field 2: Mount point in the filesystem. The filesystem contains
all data from the mount point down the directory tree structure
unless another filesystem is mounted at some point beneath it.

Field 3: Filesystem type. Valid filesystem types are described in
the section “Supported filesystems” earlier in this chapter
(although you can only use filesystem types for which drivers are
included for your kernel).

Field 4: Use defaults or a comma separated list of options (no
spaces) that you want to use when the entry is mounted. See the
mount command manual page (under the ‐o option) for
information on other supported options.

TIP
Typically, only the root user is allowed to mount a filesystem
using the mount command. However, to allow any user to
mount a filesystem (such as a filesystem on a CD), you could
add the user option to Field 4 of /etc/fstab.

Field 5: The number in this field indicates whether the filesystem
needs to be dumped (that is, have its data backed up). A 1 means
that the filesystem needs to be dumped, and a 0 means that it
doesn't. (This field is no longer particularly useful because most
Linux administrators use more sophisticated backup options than
the dump command. Most often, a 0 is used.)

Field 6: The number in this field indicates whether the indicated
filesystem should be checked with fsck when the time comes for it
to be checked: 1 means it needs to be checked first, 2 means to
check after all those indicated by 1 have already been checked,
and 0 means don't check it.

If you want to find out more about mount options as well as other
features of the /etc/fstab file, there are several man pages to which
you can refer, including man 5 nfs and man 8 mount.

Using the mount command to mount file systems
Linux systems automatically run mount ‐a (mount all filesystems from
the /etc/fstab file) each time you boot. For that reason, you generally
use the mount command only for special situations. In particular, the
average user or administrator uses mount in two ways:

To display the disks, partitions, and remote filesystems currently
mounted

To mount a filesystem temporarily

Any user can type mount (with no options) to see what filesystems are
currently mounted on the local Linux system. The following is an

example of the mount command. It shows a single hard disk partition
(/dev/sda1) containing the root (/) filesystem and proc and devpts
filesystem types mounted on /proc and /dev, respectively.

$ mount

/dev/sda3 on / type ext4 (rw)

/dev/sda2 on /boot type ext4 (rw)

/dev/sda1 on /mnt/win type vfat (rw)

/dev/proc on /proc type proc (rw)

/dev/sys on /sys type sysfs (rw)

/dev/devpts on /dev/pts type devpts (rw,gid=5,mode=620)

/dev/shm on /dev/shm type tmpfs (rw)

none on /proc/sys/fs/binfmt_misc type binfmt_misc (rw)

/dev/cdrom on /media/MyOwnDVD type iso9660 (ro,nosuid,nodev)

Traditionally, the most common devices to mount by hand are
removable media, such as DVDs or CDs. However, depending on the
type of desktop you are using, CDs and DVDs may be mounted for you
automatically when you insert them. (In some cases, applications are
launched as well when media is inserted. For example, a music player
or photo editor may be launched when your inserted USB medium has
music or digital images on it.)

Occasionally, however, you may find it useful to mount a filesystem
manually. For example, you want to look at the contents of an old hard
disk, so you install it as a second disk on your computer. If the
partitions on the disk did not automount, you could mount partitions
from that disk manually. For example, to mount a read only disk
partition sdb1 that has an older ext3 filesystem, you could type this:

mkdir /mnt/temp

mount -t ext3 -o ro /dev/sdb1 /mnt/tmp

Another reason to use the mount command is to remount a partition to
change its mount options. Suppose that you want to remount
/dev/sdb1 as read/write, but you do not want to unmount it (maybe
someone is using it). You could use the remount option as follows:

mount -t ext3 -o remount,rw /dev/sdb1

Mounting a disk image in loopback

Another valuable way to use the mount command has to do with disk
images. If you download an SD card or DVD ISO image file from the
Internet and you want to see what it contains, you can do so without
burning it to DVD or other medium. With the image on your hard disk,
create a mount point and use the ‐o loop option to mount it locally.
Here's an example:

mkdir /mnt/mydvdimage

mount -o loop whatever-i686-disc1.iso /mnt/mydvdimage

In this example, the /mnt/mydvdimage directory is created, and then the
disk image file (whatever‐i686‐disc1.iso) residing in the current
directory is mounted on it. You can now cd to that directory, view the
contents of it, and copy or use any of its contents. This is useful for
downloaded DVD images from which you want to install software
without having to burn the image to DVD. You could also share that
mount point over NFS, so you could install the software from another
computer. When you are finished, to unmount the image, type umount
/mnt/mydvdimage.

Other options to mount are available only for specific filesystem types.
See the mount manual page for those and other useful options.

Using the umount command
When you are finished using a temporary filesystem, or you want to
unmount a permanent filesystem temporarily, use the umount
command. This command detaches the filesystem from its mount
point in your Linux filesystem. To use umount, you can give it either a
directory name or a device name, as shown in this example:

umount /mnt/test

This unmounts the device from the mount point /mnt/test. You can
also unmount using this form:

umount /dev/sdb1

In general, it's better to use the directory name (/mnt/test) because
the umount command will fail if the device is mounted in more than one
location. (Device names all begin with /dev.)

If you get the message device is busy, the umount request has failed
because either an application has a file open on the device or you have
a shell open with a directory on the device as a current directory. Stop
the processes or change to a directory outside the device you are trying
to unmount for the umount request to succeed.

An alternative for unmounting a busy device is the ‐l option. With
umount ‐l (a lazy unmount), the unmount happens as soon as the
device is no longer busy. To unmount a remote NFS filesystem that's
no longer available (for example, the server went down), you can use
the umount ‐f option to forcibly unmount the NFS filesystem.

TIP
A really useful tool for discovering what's holding open a device
you want to unmount is the lsof command. Type lsof with the
name of the partition that you want to unmount (such as lsof
/mnt/test). The output shows you what commands are holding
files open on that partition. The fuser‐v /mnt/test command can
be used in the same way.

Using the mkfs Command to Create a
Filesystem
You can create a filesystem for any supported filesystem type on a disk
or partition that you choose. You do so with the mkfs command.
Although this is most useful for creating filesystems on hard disk
partitions, you can create filesystems on USB flash drives or rewritable
DVDs as well.

Before you create a new filesystem, make sure of the following:

You have partitioned the disk as you want (using the fdisk
command).

You get the device name correct, or you may end up overwriting
your hard disk by mistake. For example, the first partition on the
second SCSI or USB flash drive on your system is /dev/sdb1 and
the third disk is /dev/sdc1.

To unmount the partition if it's mounted before creating the
filesystem.

The following are two examples of using mkfs to create a filesystem on
two partitions on a USB flash drive located as the first and second
partitions on the third SCSI disk (/dev/sdc1 and /dev/sdc2). The first
creates an xfs partition, while the second creates an ext4 partition.

mkfs -t xfs /dev/sdc1

meta-data=/dev/sda3 isize=256 agcount=4,

agsize=256825 blks

 = sectsz=512 attr=2,

projid32bit=1

 = crc=0

data = bsize=4096 blocks=1027300,

imaxpct=25

 = sunit=0 swidth=0 blks

naming =version 2 bsize=4096 ascii-ci=0 ftype=0

log =internal log bsize=4096 blocks=2560,

version=2

 = sectsz=512 sunit=0 blks, lazy-

count=1

realtime =none extsz=4096 blocks=0,

rtextents=0

mkfs -t ext4 /dev/sdc2

mke2fs 1.44.6 (5-Mar-2019)

Creating filesystem with 524288 4k blocks and 131072 inodes

Filesystem UUID: 6379d82e-fa25-4160-8ffa-32bc78d410eee

Superblock backups stored on blocks:

 32768, 98304, 163840, 229376, 294912

Allocating group tables: done

Writing inode tables: done

Creating journal (16384 blocks): done

Writing superblocks and filesystem accounting information:

done

You can now mount either of these filesystems (for example, mkdir
/mnt/myusb ; mount /dev/sdc1 /mnt/myusb), change to /mnt/myusb as
your current directory (cd /mnt/myusb), and create files on it as you
please.

Managing Storage with Cockpit
Most of the features described in this chapter for working with disk
partitions and filesystems using command line tools can be
accomplished using the Cockpit web user interface. With Cockpit
running on your system, open the web UI (hostname:9090) and select
the Storage tab. Figure 12.2 shows an example of the Cockpit Storage
tab on a Fedora system.

FIGURE 12.2 View storage devices, filesystems, and activities from
the Cockpit Storage page.

The Storage tab provides a solid overview of your system's storage. It
charts read and write activity of your storage devices every minute. It
displays the local filesystems and storage (including RAID devices and
LVM volume groups) as well as remotely mounted NFS shares and
iSCSI targets. Each hard disk, DVD, and other physical storage device
is also displayed on the Storage tab.

Select a mounted filesystem, and you can see and change partitioning
for that filesystem. For example, by selecting the entry for a filesystem
that was automatically mounted on /run/media, you can see all of the
partitions for the device it is on (/dev/sdb1 and /dev/sdb2). Figure 12.3

shows that there is an ISO9660 filesystem (typical for bootable media)
and a smaller VFAT filesystem on the two partitions.

With the storage device information displayed, you could reformat the
entire storage device (Create Partition Table) or, assuming that space
is available on the device, add a new partition (Create Partition).
Figure 12.4 shows an example of the window that appears when you
select Create Partition Table.

FIGURE 12.3 View and change disk partitions for a select storage
device.

FIGURE 12.4 Creating a new partition table

If you decide that you want to format the disk or USB drive, change
the Erase setting to allow all of the data on the drive to be overwritten
and then choose the type of partitioning. Select Format to unmount
any mounted partitions from the drive and create a new partition
table. After that, you can add partitions to the storage device, choosing
the size, filesystem type, and whether or not to encrypt data. You can
even choose where in the operating system's filesystem to mount the
new partition. With just a few selections, you can quickly create the
disk layouts that you want in ways that are more intuitive than
methods for doing comparable steps from the command line.

Summary
Managing filesystems is a critical part of administering a Linux
system. Using commands such as fdisk, you can view and change disk
partitions. Filesystems can be added to partitions using the mkfs
command. Once created, filesystems can be mounted and unmounted
using the mount and umount commands, respectively.

Logical Volume Manager (LVM) offers a more powerful and flexible
way of managing disk partitions. With LVM, you create pools of
storage, called volume groups, which can allow you to grow and shrink
logical volumes as well as extend the size of your volume groups by
adding more physical volumes.

For a more intuitive way of working with storage devices, Cockpit
offers an intuitive, Web based interface for viewing and configuring
storage on your Linux system. Using the Web UI, you can see both
local and networked storage as well as reformat disks and modify disk
partitions.

With most of the basics needed to become a system administrator
covered at this point in the book, Chapter 13, “Understanding Server
Administration,” introduces concepts for extending those skills to
manage network servers. Topics in that chapter include information
on how to install, manage, and secure servers.

Exercises
Use these exercises to test your knowledge of creating disk partitions,
Logical Volume Manager, and working with filesystems. You need a
USB flash drive that is at least 1GB, which you can erase for these
exercises.

These tasks assume that you are running a Fedora or Red Hat
Enterprise Linux system (although some tasks work on other Linux
systems as well). If you are stuck, solutions to the tasks are shown in
Appendix B (although in Linux, there are often multiple ways to
complete a task).

1. Run a command as root to watch the system journal in a Terminal
as fresh data comes in and insert your USB flash drive. Determine
the device name of the USB flash drive.

2. Run a command to list the partition table for the USB flash drive.

3. Delete all the partitions on your USB flash drive, save the changes,
and make sure the changes were made both on the disk's partition
table and in the Linux kernel.

4. Add three partitions to the USB flash drive: 100MB Linux
partition, 200MB swap partition, and 500MB LVM partition.
Save the changes.

5. Put an ext4 filesystem on the Linux partition.

6. Create a mount point called /mnt/mypart and mount the Linux
partition on it.

7. Enable the swap partition and turn it on so that additional swap
space is immediately available.

8. Create a volume group called abc from the LVM partition, create a
200MB logical volume from that group called data, add a VFAT
partition, and then temporarily mount the logical volume on a
new directory named /mnt/test. Check that it was successfully
mounted.

9. Grow the logical volume from 200MB to 300MB.

10. Do what you need to do to remove the USB flash drive safely from
the computer: unmount the Linux partition, turn off the swap
partition, unmount the logical volume, and delete the volume
group from the USB flash drive.

Part IV
Becoming a Linux Server
Administrator

IN THIS PART
Chapter 13 Understanding Server Administration

Chapter 14 Administering Networking

Chapter 15 Starting and Stopping Services

Chapter 16 Configuring a Print Server

Chapter 17 Configuring a Web Server

Chapter 18 Configuring an FTP Server

Chapter 19 Configuring a Windows File Sharing (Samba) Server

Chapter 20 Configuring an NFS File Server

Chapter 21 Troubleshooting Linux

CHAPTER 13
Understanding Server Administration

IN THIS CHAPTER
Administering Linux servers

Communicating with servers over networks

Setting up logging locally and remotely

Monitoring server systems

Managing servers in the enterprise

Although some system administration tasks are needed even on a
desktop system (installing software, setting up printers, and so on),
many new tasks appear when you set up a Linux system to act as a
server. That's especially true if the server that you configure is made
public to anyone on the Internet, where you can be overloaded with
requests from good guys while needing to be constantly on guard
against attacks from bad guys.

Dozens of different kinds of servers are available for Linux systems.
Most servers serve up data to remote clients, but others serve the local
system (such as those that gather logging messages or kick off
maintenance tasks at set times using the cron facility). Many servers
are represented by processes that run continuously in the background
and respond to requests that come to them. These processes are
referred to as daemon processes.

As the name implies, servers exist to serve. The data that they serve
can include web pages, files, database information, email, and lots of
other types of content. As a server administrator, some of the
additional challenges to your system administration skills include the
following:

Remote access To use a desktop system, you typically sit at its
console. Server systems, by contrast, tend to be housed in racks in
climate-controlled environments under lock and key. More often
than not, after the physical computers are in place, most
administration of those machines is done using remote access
tools. Often, no graphical interface is available, so you must rely
on command-line tools or browser-based interfaces to do things
such as remote login, remote copying, and remote execution. The
most common of these tools are built on the Secure Shell (SSH)
facility.

Diligent security To be useful, a server must be able to accept
requests for content from remote users and systems. Unlike
desktop systems, which can simply close down all network ports
that allow incoming requests for access, a server must make itself
vulnerable by allowing some access to its ports. That's why as a
server administrator, it is important to open ports to services that
are needed and lock down ports that are not needed. You can
secure services using tools such as iptables and firewalld
(firewall tools) and Security Enhanced Linux (to limit the
resources a service can access from the local system).

Continuous monitoring Although you typically turn off your
laptop or desktop system when you are not using it, servers
usually stay on 24×7, 365 days a year. Because you don't want to
sit next to each server and continuously monitor it personally, you
can configure tools to monitor each server, gather log messages,
and even forward suspicious messages to an email account of your
choice. You can enable system activity reporters to gather data
around the clock on CPU usage, memory usage, network activity,
and disk access.

In this chapter, I lay out some of the basic tools and techniques that
you need to know to administer remote Linux servers. You learn to use
SSH tools to access your server securely, transfer data back and forth,
and even launch remote desktops or graphical applications and have
them appear on your local system. You learn to use remote logging and
system activity reports to monitor system activities continuously.

Starting with Server Administration
Whether you are installing a file server, web server, or any of the other
server facilities available with Linux systems, many of the steps
required for getting the server up and running are the same. Where
server setup diverges is in the areas of configuration and tuning.

In later chapters, I describe specific servers and how they differ. In
each of the server-related chapters that follow, you'll go through the
same basic steps for getting that server started and available to be used
by your clients.

Step 1: Install the server
Although most server software is not preinstalled on the typical Linux
system, any general-purpose Linux system offers the software
packages needed to supply every major type of server available.

Sometimes, multiple software packages associated with a particular
type of server are gathered together in package groups (sometimes
called package collections). At other times, you just need to install the
server packages you want individually. Here are some server package
categories in Fedora and some of the packages available in each
category:

System logging server The rsyslog service allows the local
system to gather log messages delivered from a variety of
components on the system. It can also act as a remote logging
server, gathering logging messages sent from other logging
servers. (The rsyslog service is described later in this chapter.) In
recent Ubuntu, Fedora, and RHEL systems, log messages are
gathered in the systemd journal, which can be picked up and
redirected by the rsyslog service or displayed locally by the
journalctl command.

Print server The Common UNIX Printing Service (cups
package) is used most often to provide print server features on
Linux systems. Packages that provide graphical administration of
CUPS (system-config-printer) and printer drivers (foomatic,

hpijs, and others) are also available when you install CUPS. (See
Chapter 16, “Configuring a Print Server.”)

Web server The Apache (httpd or apache2 package) web server is
the software used most often to serve web pages (HTTP content).
Related packages include modules to help serve particular types
of content (Perl, Python, PHP, and SSL connections). Likewise,
there are packages of related documentation (httpd-manual), tools
for monitoring web data (webalizer), and tools for providing web
proxy services (squid). (See Chapter 17, “Configuring a Web
Server.”)

FTP server The Very Secure FTP daemon (vsftpd package) is the
default FTP server used in Fedora and RHEL. Other FTP server
packages include proftpd and pure-ftpd. (See Chapter 18,
“Configuring an FTP Server.”)

Windows file server Samba (samba package) allows a Linux
system to act as a Windows file and print server. (See Chapter 19,
“Configuring a Windows File Sharing [Samba] Server.”)

NFS file server Network File System (NFS) is the standard
Linux and UNIX feature for providing shared directories to other
systems over a network. The nfs-utils package provides NFS
services and related commands. (See Chapter 20, “Configuring an
NFS File Server.”)

Mail server These types of packages enable you to configure
email servers, sometimes referred to as a Mail Transport Agent
(MTA) server. You have several choices of email servers, including
sendmail, postfix (default in Fedora and RHEL), and exim.
Related packages, such as dovecot, allow the mail server to deliver
email to clients.

Directory server Packages in this category provide remote and
local authentication services. These include Kerberos (krb5-
server), LDAP (openldap-servers), and NIS (ypserv).

DNS server The Berkeley Internet Name Domain service (bind)
provides the software needed to configure a server to resolve
hostnames into IP addresses.

Network Time Protocol server The ntpd or chronyd package
provides a service that you can enable to sync up your system
clock with clocks from public or private NTP servers.

SQL server The PostgreSQL (postgresql and postgresql-server
packages) service is an object-relational database management
system. Related packages provide PostgreSQL documentation and
related tools. The MySQL (mysql and mysql-server packages)
service is another popular open source SQL database server. A
community-developed branch of MySQL called MariaDB has
supplanted MySQL on many Linux distributions.

Step 2: Configure the server
Most server software packages are installed with a default
configuration that leans more toward security than immediate full use.
Here are some things to think about when you set out to configure a
server.

Using configuration files
Traditionally, Linux servers have been configured by editing plain-text
files in the /etc directory (or subdirectories). Often, there is a primary
configuration file; sometimes, there is a related configuration
directory in which files ending in .conf can be pulled into the main
configuration file.

The httpd package (Apache web server) is an example of a server
package that has a primary configuration file and a directory where
other configuration files can be dropped in and be included with the
service. The main configuration file in Fedora and RHEL is
/etc/httpd/conf/httpd.conf. The configuration directory is
/etc/httpd/conf.d/.

After installing httpd and related packages, you will see files in the
/etc/httpd/conf.d/ directory that were placed there by different
packages: mod_ssl, mod_perl, and so on. This is a way that add-on
packages to a service can have their configuration information enabled
in the httpd server, without the package trying to run a script to edit
the main httpd.conf file.

The one downside to plain-text configuration files is that you don't get
the kind of immediate error checking you get when you use graphical
administration tools. You either have to run a test command (if the
service includes one) or actually try to start the service to see if there is
any problem with your configuration file.

TIP
Instead of using vi to edit configuration files, use vim. Using the
vim command can help you catch configuration file errors as you
are editing.

The vim command knows about the formats of many configuration
files (passwd, httpd.conf, fstab, and others). If you make a mistake
and type an invalid term or option in one of those files, or break
the format somehow, the color of the text changes. For example, in
/etc/fstab, if you change the option defaults to default, the
word's color changes.

Checking the default configuration
Most server software packages in Fedora and RHEL are installed with
minimal configuration and lean more toward being secure than totally
useful out of the box. While installing a software package, some Linux
distributions ask you things such as the directory in which you want to
install it or the user account with which you want to manage it.

Because RPM packages are designed to be installed unattended, the
person installing the package has no choice on how it is installed. The
files are installed in set locations, specific user accounts are enabled to
manage it, and when you start the service, it might well offer limited
accessibility. You are expected to configure the software after the
package is installed to make the server fully functional.

Two examples of servers that are installed with limited functionality
are mail servers (sendmail or postfix packages) and DNS servers (bind
package). Both of these servers are installed with default
configurations and start up on reboot. However, both also only listen
for requests on your localhost. So, until you configure those servers,
people who are not logged in to your local server cannot send mail to
the mail server or use your computer as a public DNS server,
respectively.

Step 3: Start the server
Most services that you install in Linux are configured to start up when
the system boots and then run continuously, listening for requests,
until the system is shut down. There are two major facilities for
managing services: systemd (used now by RHEL, Ubuntu, and Fedora)
and SystemVinit scripts (used by Red Hat Enterprise Linux through
RHEL 6.x).

Regardless of which facility is used on your Linux system, it is your job
to do things such as set whether you want the service to come up when
the system boots and to start, stop, and reload the service as needed
(possibly to load new configuration files or temporarily stop access to
the service). Commands for doing these tasks are described in Chapter
15, “Starting and Stopping Services.”

Most, but not all, services are implemented as daemon processes. Here
are a few things that you should know about those processes:

User and group permissions Daemon processes often run as
users and groups other than root. For example, httpd runs as
apache and ntpd runs as the ntp user. The reason for this is that if
someone cracks these daemons, they would not have permissions
to access files beyond what the services can access.

Daemon configuration files Often, a service has a
configuration file for the daemon stored in the /etc/sysconfig
directory. This is different than the service configuration file in
that its job is often just to pass arguments to the server process
itself rather than configure the service. For example, options you
set in the /etc/sysconfig/rsyslogd file are passed to the rsyslogd
daemon when it starts up. You can tell the daemon, for example,
to output additional debugging information or accept remote
logging messages. See the man page for the service (for example,
man rsyslogd) to see what options are supported.

Port numbers Packets of data go to and from your system over
network interfaces through ports for each supported protocol
(usually UDP or TCP). Most standard services have specific port
numbers to which daemons listen and to which clients connect.

Unless you are trying to hide the location of a service, you
typically don't change the ports on which a daemon process
listens. When you go to secure a service, you must make sure that
the port to the service is open on the firewall (see Chapter 25,
“Securing Linux on a Network,” for information on iptables and
firewalld firewalls). Also, if you change a port on which the
service is listening, and SELinux is in enforcing mode, SELinux
may prevent the daemon from listening on that port (see Chapter
24, “Enhancing Linux Security with SELinux,” for more
information on SELinux).

NOTE
One reason for changing port numbers on a service is “security by
obscurity.” For example, the sshd service is a well-known target for
people trying to break into a system by guessing logins and
passwords on TCP port 22.

I have heard about people changing their Internet-facing sshd
service to listen on some other port number (perhaps some
unused, very high port number). Then they tell their friends or
colleagues to log in to their machine from SSH by pointing to this
other port. The idea is that port scanners looking to break into a
system might be less likely to scan the normally unused port.

Not all services run continuously as daemon processes. Some older
UNIX services ran on demand using the xinetd super server. Other
services just run once on startup and exit. Still others run only a set
number of times, being launched when the crond daemon sees that the
service was configured to run at the particular time.

In recent years, previous xinetd services in RHEL and Fedora, such as
telnet and tftp, have been converted to systemd services. A number of
services, including cockpit, use systemd sockets to achieve the same
results.

Step 4: Secure the server
Opening your system to allow remote users to access it over the
network is not a decision to be taken lightly. Crackers all over the
world run programs to scan for vulnerable servers that they can take
over for their data or their processing power. Luckily, there are
measures that you can put in place on Linux systems to protect your
servers and services from attacks and abuse.

Some common security techniques are described in the following
sections. These and other topics are covered in more depth in Part V,
“Learning Linux Security Techniques.”

Password protection
Good passwords and password policies are the first line of defense in
protecting a Linux system. If someone can log in to your server via ssh
as the root user with a password of foobar, expect to be cracked. A
good technique is to disallow direct login by root and require every
user to log in as a regular user and then use su or sudo to become root.

You can also use the Pluggable Authentication Module (PAM) facility to
adjust the number of times that someone can have failed login
attempts before blocking access to that person. PAM also includes
other features for locking down authentication to your Linux server.
For a description of PAM, see Chapter 23, “Understanding Advanced
Linux Security.”

Of course, you can bypass passwords altogether by requiring public
key authentication. To use that type of authentication, you must make
sure that any user you want to have access to your server has their
public key copied to the server (such as through ssh-copy-id). Then
they can use ssh, scp, or related commands to access that server
without typing their password. See the section “Using key-based
(passwordless) authentication” later in this chapter for further
information.

Firewalls
The iptables firewall service can track and respond to every packet
coming from and going to network interfaces on your computer. Using
iptables, you can drop or reject every packet making requests for
services on your system except for those few that you have enabled.
Further, you can tell iptables to allow service requests only from
certain IP addresses (good guys) or not allow requests from other
addresses (bad guys).

In recent RHEL and Fedora versions, the firewalld feature adds a
layer of functionality to Linux firewall rules. With firewalld, you can
not only insert firewall rules into the kernel, you can also organize
firewall rules by dividing them up into zones and changing firewall
rules on the fly to react to different events.

In each of the server chapters coming up, I describe what ports need to

be open to allow access to services. Descriptions of how iptables and
firewalld work are included in Chapter 25, “Securing Linux on a
Network.”

TCP Wrappers
TCP Wrappers, which uses /etc/hosts.allow and /etc/hosts.deny
files to allow and deny access in a variety of ways to selected services,
was used primarily to secure older UNIX services, and it is no longer
considered to be very secure. While the use of the TCP Wrapper
program (/usr/sbin/tcpd) is only common on systems that use xinetd,
the /etc/hosts.allow and /etc/hosts.deny files that the TCP Wrapper
program checked before granting access to network services are often
checked by daemons that are configured to do so. The configuration
option within the configuration files for these daemons is often labeled
as TCP Wrapper support.

SELinux
Fedora, Red Hat Enterprise Linux, and other Linux distributions come
with the Security Enhanced Linux (SELinux) feature included and in
Enforcing mode. Although the default targeted mode doesn't have
much impact on most applications that you run in Linux, it has a
major impact on most major services.

A major function of SELinux is to protect the contents of your Linux
system from the processes running on the system. In other words,
SELinux makes sure a web server, FTP server, Samba server, or DNS
server can access only a restricted set of files on the system (as defined
by file contexts) and allows only a restricted set of features (as defined
by Booleans and limited port access).

Details about how to use SELinux are contained in Chapter 24,
“Enhancing Linux Security with SELinux.”

Security settings in configuration files
Within the configuration files of most services are values that you can
set to secure the service further. For example, for file servers and web
servers, you can restrict access to certain files or data based on

username, hostname, IP address of the client, or other attributes.

Step 5: Monitor the server
Because you can't be there to monitor every service, every minute, you
need to put monitoring tools in place to watch your servers for you and
make it easy for you to find out when something needs attention.
Some of the tools that you can use to monitor your servers are
described in the sections that follow.

Configure logging
Using the rsyslog service (rsyslogd daemon), you can gather critical
information and error conditions into log files about many different
services. By default, in RHEL log messages from applications are
directed into log files in the /var/log directory. For added security and
convenience, log messages can also be directed to a centralized server,
providing a single location to view and manage logging for a group of
systems.

Several different software packages are available to work with rsyslog
and manage log messages. The logwatch feature scans your log files
each night and sends critical information gathered from those files to
an email account of your choice. The logrotate feature backs up log
files into compressed archives when the logs reach a certain size or
pass a set amount of time since the previous backup.

The features for configuring and managing system logging are
described in the section “Configuring System Logging” later in this
chapter.

Run system activity reports
The sar facility (which is enabled by the sysstat package) can be
configured to watch activities on your system such as memory usage,
CPU usage, disk latency, network activities, and other resource drains.
By default, the sar facility launches the sadc program every few
minutes, day and night, to gather data. Viewing that data later can
help you go back and figure out where and when demand is spiking on
your system. The sar facility is described in the section “Checking

System Resources with sar” later in this chapter.

Watch activity live with Cockpit
With Cockpit running on your system, you can watch system activity
in real time. Open your web browser to display the Cockpit console
(https://localhost:9090). In real time, you can watch percentage of
CPU use, memory and swap consumption, how much data is written to
and from disk (disk i/o), and network traffic as it is gathered and
displayed across the screen. Figure 13.1 shows an example of the
System area of the Cockpit console, displaying activity data.

FIGURE 13.1 Log in to Cockpit

Keep system software up to date
As security holes are discovered and patched, you must make sure that
the updated software packages containing those patches are installed
on your servers. Again, with mission-critical servers, the safest and
most efficient way is to use subscribed Red Hat Enterprise Linux
systems for your servers and then deploy security-related package
updates to your system as soon as they are released and tested.

To keep your personal server and desktop systems up to date, there
are various graphical tools to add software and to check for updates.
You can also use the yum command to check for and install all packages

that are available for your RHEL or Fedora systems (enter dnf update
or yum update).

Check the filesystem for signs of crackers
To check your filesystem for possible intrusion, you can run
commands such as rpm -V to check to see if any commands, document
files, or configuration files have been tampered with on your system.
For more information on rpm -V, refer to the description of rpm -V in
Chapter 10, “Getting and Managing Software.”

Now that you have an overview of how Linux server configuration is
done, the next sections of this chapter focus on the tools that you need
to access, secure, and maintain your Linux server systems.

Checking and Setting Servers
If you are tasked with managing a Linux server, the following sections
include a bunch of items that you can check. Keep in mind that
nowadays many servers in large data centers are deployed and
managed by larger platforms. So, know how the server is managed
before you make any changes to it. Your changes might be overwritten
automatically if you changed the defined state of that system.

Managing Remote Access with the Secure
Shell Service
The Secure Shell tools are a set of client and server applications that
allow you to do basic communications between client computers and
your Linux server. The tools include ssh, scp, sftp, and many others.
Because communication is encrypted between the server and the
clients, these tools are more secure than similar, older tools. For
example, instead of using older remote login commands such as
telnet or rlogin, you could use ssh. The ssh command can also replace
older remote execution commands, such as rsh. Remote copy
commands, such as rcp, can be replaced with secure commands such
as scp and rsync.

With Secure Shell tools, both the authentication process and all
communications that follow are encrypted. Communications from
telnet and the older “r” commands expose passwords and all data to
someone sniffing the network. Today, telnet and similar commands
should be used only for testing access to remote ports, providing
public services such as PXE booting, or doing other tasks that don't
expose your private data.

NOTE
For a deeper discussion of encryption techniques, refer to Chapter
23, “Understanding Advanced Linux Security.”

Most Linux systems include secure shell clients, and many include the
secure shell server as well. If you are using the Fedora or RHEL
distribution, for example, the client and server software packages that
contain the ssh tools are openssh, openssh-clients, and openssh-server
packages as follows:

yum list installed | grep openssh

…

openssh.x86_64 7.9p1-5.fc30 @anaconda

openssh-clients.x86_64 7.9p1-5.fc30 @anaconda

openssh-server.x86_64 7.9p1-5.fc30 @anaconda

On Ubuntu, only the openssh-clients package is installed. It includes
the functionality of the openssh package. If you need the server
installed, use the sudo apt-get install openssh-server command.

$ sudo dpkg --list | grep openssh

openssh-client/bionic-updates,bionic-security,now 1:7.6p1-

4ubuntu0.3 amd64 [installed]

 secure shell (SSH) client, for secure access to remote

machines

openssh-client-ssh1/bionic 1:7.5p1-10 amd64

 secure shell (SSH) client for legacy SSH1 protocol

openssh-sftp-server/bionic-updates,bionic-security,now

1:7.6p1-4ubuntu0.3 amd64 [installed]

 secure shell (SSH) sftp server module, for SFTP access from

remote machines

$ sudo apt-get install openssh-server

Starting the openssh-server service
Linux systems that come with the openssh-server package already
installed sometimes are not configured for it to start automatically.
Managing Linux services (see Chapter 15, “Starting and Stopping

Services”) can be very different depending on the different
distributions. Table 13.1 shows the commands to use in order to
ensure that the ssh server daemon, sshd, is up and running on a Linux
system.

TABLE 13.1 Commands to Determine sshd Status

Distribution Command to Determine sshd Status
RHEL 6 chkconfig --list sshd

Fedora and RHEL 7 or later systemctl status sshd.service

Ubuntu systemctl status ssh.service

If sshd is not currently running, you can start it by issuing one of the
commands listed in Table 13.2. These commands need root privileges
in order to work.

TABLE 13.2 Commands to Start sshd

Distribution Command to Start sshd
RHEL 6 service sshd start

Fedora and RHEL 7 or later systemctl start sshd.service

Ubuntu systemctl start ssh.service

The commands in Table 13.2 only start the ssh or sshd service. They do
not configure it to start automatically at boot. To make sure the server
service is set up to start automatically, you need to use one of the
commands in Table 13.3 using root privileges.

TABLE 13.3 Commands to Start sshd at Boot

Distribution Command to Start sshd at Boot
RHEL 6 chkconfig sshd on

Fedora and RHEL 7 or later systemctl enable sshd.service

Ubuntu systemctl enable ssh.service

When you install openssh-server on Ubuntu, the sshd daemon is
configured to start automatically at boot. Therefore, you may not need
to run the command in Table 13.3 for your Ubuntu server.

Modify your firewall settings to allow the openssh-client to access port
22 (firewalls are covered in Chapter 25, “Securing Linux on a
Network”). After the service is up and running and the firewall is
properly configured, you should be able to use ssh client commands to
access your system via the ssh server.

Any further configurations for what the sshd daemon is allowed to do
are handled in the /etc/ssh/sshd_config file. At a minimum, set the
PermitRootLogin setting to no. This stops anyone from remotely
logging in as root.

grep PermitRootLogin /etc/ssh/sshd_config

PermitRootLogin no

After you have changed the sshd_config file, restart the sshd service.
After that point, if you use ssh to log in to that system from a remote
client, you must do so as a regular user and then use su or sudo to
become the root user.

Using SSH client tools
Many tools for accessing remote Linux systems have been created to
make use of the SSH service. The most frequently used of those tools is
the ssh command, which can be used for remote login, remote
execution, and other tasks. Commands such as scp and rsync can copy
one or more files at a time between SSH client and server systems. The
sftp command provides an FTP-like interface for traversing a remote
filesystem and getting and putting files between the systems
interactively.

By default, all of the SSH-related tools authenticate using standard
Linux usernames and passwords, all done over encrypted connections.
However, SSH also supports key-based authentication, which can be
used to configure key-based and possibly passwordless authentication
between clients and SSH servers, as described in the section “Using
key-based (passwordless) authentication” later in this chapter.

Using ssh for remote login
Use the ssh command from another Linux computer to test that you

can log in to the Linux system running your sshd service. The ssh
command is one that you will use often to access a shell on the servers
you are configuring.

Try logging in to your Linux server from another Linux system using
the ssh command. (If you don't have another Linux system, you can
simulate this by typing localhost instead of the IP address and logging
in as a local user.) The following is an example of remotely logging in
to johndoe's account on 10.140.67.23:

$ ssh johndoe@10.140.67.23

The authenticity of host '10.140.67.23 (10.140.67.23)'

 can't be established.

RSA key fingerprint is

 a4:28:03:85:89:6d:08:fa:99:15:ed:fb:b0:67:55:89.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added '10.140.67.23' (RSA) to the

 list of known hosts.

johndoe@10.140.67.23's password: *********

If this is the very first time that you have logged in to that remote
system using the ssh command, the system asks you to confirm that
you want to connect. Type yes, and press Enter. When prompted,
enter the user's password.

When you type yes to continue, you accept the remote host's public
key. At that point, the remote host's public key is downloaded to the
client in the client's ~/.ssh/known_hosts file. Now data exchanged
between these two systems can be encrypted and decrypted using RSA
asymmetric encryption (see Chapter 23, “Understanding Advanced
Linux Security”). After you are logged in to the remote system, you can
begin typing shell commands. The connection functions like a normal
login. The only difference is that the data is encrypted as it travels over
the network.

When you are finished, type exit to end the remote connection. The
connection is closed, and you are returned to the command prompt on
your local system. (If the local shell doesn't return after you exit the
remote shell, typing ~. usually closes the connection.)

$ exit

logout

Connection to 10.140.67.23 closed

After you have remotely connected to a system, a file in your local
system subdirectory, ~.ssh/known_hosts, will exist. This file contains
the public key of the remote host along with its IP address. Your
server's public and private keys are stored in the /etc/ssh directory.

$ ls .ssh

known_hosts

$ cat .ssh/known_hosts

10.140.67.23 ssh-rsa

AAAAB3NzaC1yc2EAAAABIwAAAQEAoyfJK1YwZhNmpHE4yLPZAZ9ZNEdRE7I159f3I

yGiH21Ijfqs

NYFR10ZlBLlYyTQi06r/9O19GwCaJ753InQ8FWHW+OOYOG5pQmghhn

/x0LD2uUb6egOu6zim1NEC

JwZf5DWkKdy4euCUEMSqADh/WYeuOSoZ0pp2IAVCdh6

w/PIHMF1HVR069cvdv+OTL4vD0X8llSpw

0ozqRptz2UQgQBBbBjK1RakD7fY1TrWv

NQhYG/ugt gPaY4JDYeY6OBzcadpxZmf7EYUw0ucXGVQ1a

NP/erIDOQ9rA0YNzCRv

y2LYCm2/9adpAxc+UYi5UsxTw4ewSBjmsXYq//Ahaw4mjw==

TIP
Any later attempts by this user to contact the server at
10.140.67.23 are authenticated using this stored key. If the server
should change its key (which happens if the operating system is
reinstalled or if keys are rotated), attempts to ssh to that system
result in a refused connection and dire warnings that you may be
under attack. If the key has indeed changed, in order to be able to
ssh to that address again, just remove the host's key (the whole
line) from your known_hosts file and you can copy over the new key.

Using ssh for remote execution
Besides logging into a remote shell, the ssh command can be used to
execute a command on the remote system and have the output
returned to the local system. Here is an example:

$ ssh johndoe@10.140.67.23 hostname

johndoe@10.140.67.23's password: **********

host01.example.com

In the example just shown, the hostname command runs as the user
johndoe on the Linux system located at IP address 10.140.67.23. The
output of the command is the name of the remote host (in this case,
host01.example.com), which appears on the local screen.

If you run a remote execution command with ssh that includes options
or arguments, be sure to surround the whole remote command line in
quotes. Keep in mind that if you refer to files or directories in your
remote commands, relative paths are interpreted in relation to the
user's home directory, as shown here:

$ ssh johndoe@10.140.67.23 "cat myfile"

johndoe@10.140.67.23's password: **********

Contents of the myfile file located in johndoe's home

directory.

The ssh command just shown goes to the remote host located at
10.140.67.23 and runs the cat myfile command as the user johndoe.

This causes the contents of the myfile file from that system to be
displayed on the local screen.

Another type of remote execution that you can do with ssh is X11
forwarding. If X11 forwarding is enabled on the server (X11Forwarding
yes is set in the /etc/sshd/sshd_config file), you can run graphical
applications from the server securely over the SSH connection using
ssh -X. For a new server administrator, this means that if there are
graphical administration tools installed on a server, you can run those
tools without having to sit at the console, as in this example:

$ ssh -X johndoe@10.140.67.23 system-config-printer

johndoe@10.140.67.23's password: **********

After running this command, you are prompted for the root password.
After that, the Printers window appears, ready for you to configure a
printer. Just close the window when you are finished, and the local
prompt returns. You can do this for any graphical administration tool
or just regular X applications (such as the gedit graphical editor, so
that you don't have to use vi).

If you want to run several X commands and don't want to have to
reconnect each time, you can use X11 forwarding directly from a
remote shell as well. Put them in the background and you can have
several remote X applications running on your local desktop at once.
Here's an example:

$ ssh -X johndoe@10.140.67.23

johndoe@10.140.67.23's password: **********

$ system-config-printer &

$ gedit &

$ exit

After you have finished using the graphical applications, close them as
you would normally. Then type exit, as shown in the preceding code,
to leave the remote shell and return to your local shell.

Copying files between systems with scp and rsync
The scp command is similar to the old UNIX rcp command for copying
files to and from Linux systems, except that all communications are
encrypted. Files can be copied from the remote system to the local

system or local to remote. You can also copy files recursively through a
whole directory structure if you choose.

The following is an example of using the scp command to copy a file
called memo from the home directory of the user chris to the /tmp
directory on a remote computer as the user johndoe:

$ scp /home/chris/memo johndoe@10.140.67.23:/tmp

johndoe@10.140.67.23's password: ***************

memo 100%|****************| 153 0:00

You must enter the password for johndoe. After the password is
accepted, the file is copied to the remote system successfully.

You can do recursive copies with scp using the -r option. Instead of a
file, pass a directory name to the scp command and all files and
directories below that point in the filesystem are copied to the other
system.

$ scp johndoe@10.140.67.23:/usr/share/man/man1/ /tmp/

johndoe@10.140.67.23's password: ***************

volname.1.gz 100% 543 0.5KB/s 00:00

mtools.1.gz 100% 6788 6.6KB/s 00:00

roqet.1.gz 100% 2496 2.4KB/s 00:00

…

As long as the user johndoe has access to the files and directories on
the remote system and the local user can write to the target directory
(both are true in this case), the directory structure from
/usr/share/man/man1 down is copied to the local /tmp directory.

The scp command can be used to back up files and directories over a
network. However, if you compare scp to the rsync command, you see
that rsync (which also works over SSH connections) is a better backup
tool. Try running the scp command shown previously to copy the man1
directory (you can simulate the command using localhost instead of
the IP address if you only have one accessible Linux system). Now
enter the following on the system to which you copied the files:

$ ls -l /usr/share/man/man1/batch* /tmp/man1/batch*

-rw-r--r--.1 johndoe johndoe 2628 Apr 15 15:32

/tmp/man1/batch.1.gz

lrwxrwxrwx.1 root root 7 Feb 14 17:49

/usr/share/man/man1/batch.1.gz

 -> at.1.gz

Next, run the scp command again and list the files once more:

$ scp johndoe@10.140.67.23:/usr/share/man/man1/ /tmp/

johndoe@10.140.67.23's password: ***************

$ ls -l /usr/share/man/man1/batch* /tmp/man1/batch*

-rw-r--r--.1 johndoe johndoe 2628 Apr 15 15:40

/tmp/man1/batch.1.gz

lrwxrwxrwx.1 root root 7 Feb 14 17:49

/usr/share/man/man1/batch.1.gz

 -> at.1.gz

The output of those commands tells you a few things about how scp
works:

Attributes lost Permissions or date/time stamp attributes were
not retained when the files were copied. If you were using scp as a
backup tool, you would probably want to keep permissions and
time stamps on the files if you needed to restore the files later.

Symbolic links lost The batch.1.gz file is actually a symbolic
link to the at.1.gz file. Instead of copying the link, scp follows the
link and actually copies the file. Again, if you were to restore this
directory, batch.1.gz would be replaced by the actual at.1.gz file
instead of a link to it.

Copy repeated unnecessarily If you watched the second scp
output, you would notice that all files were copied again, even
though the exact files being copied were already on the target. The
updated modification date confirms this. By contrast, the rsync
command can determine that a file has already been copied and
not copy the file again.

The rsync command is a better network backup tool because it can
overcome some of the shortcomings of scp just listed. Try running an
rsync command to do the same action that scp just did, but with a few
added options:

$ rm -rf /tmp/man1/

$ rsync -avl johndoe@10.140.67.23:/usr/share/man/man1/ /tmp/

johndoe@10.140.67.23's password: ***************

sending incremental file list

man1/

man1/HEAD.1.gz

man1/Mail.1.gz -> mailx.1.gz

…

$ rsync -avl johndoe@10.140.67.23:/usr/share/man/man1/ /tmp/

johndoe@10.140.67.23's password: ***************

sending incremental file list

sent 42362 bytes received 13 bytes 9416.67 bytes/sec

total size is 7322223 speedup is 172.80

$ ls -l /usr/share/man/man1/batch* /tmp/man1/batch*

lrwxrwxrwx.1 johndoe johndoe 7 Feb 14 17:49

/tmp/man1/batch.1.gz

 -> at.1.gz

lrwxrwxrwx.1 root root 7 Feb 14 17:49

/usr/share/man/man1/batch.1.gz

 -> at.1.gz

After removing the /tmp/man1 directory, you run an rsync command to
copy all of the files to the /tmp/man1 directory, using -a (recursive
archive), -v (verbose), and -l (copy symbolic links). Then run the
command immediately again and notice that nothing is copied. The
rsync command knows that all of the files are there already, so it
doesn't copy them again. This can be a tremendous savings of network
bandwidth for directories with gigabytes of files where only a few
megabytes change.

Also notice from the output of ls -l that the symbolic links have been
preserved on the batch.1.gz file and so has the date/time stamp on the
file. If you need to restore those files later, you can put them back
exactly as they were.

This use of rsync is good for backups. But what if you wanted to mirror
two directories, making the contents of two directory structures
exactly the same on two machines? The following commands illustrate
how to create an exact mirror of the directory structure on both
machines using the directories shown with the previous rsync
commands.

First, on the remote system, copy a new file into the directory being
copied:

cp /etc/services /usr/share/man/man1

Next, on the local system, run rsync to copy across any new files (in
this case, just the directory and the new file, services):

$ rsync -avl johndoe@10.140.67.23:/usr/share/man/man1 /tmp

johndoe@10.140.67.23's password:

sending incremental file list

man1/

man1/services

After that, go back to the remote system and remove the new file:

$ sudo rm /usr/share/man/man1/services

Now, on the local system, run rsync again and notice that nothing
happens. At this point, the remote and local directories are different
because the local system has the services file and the remote doesn't.
That is correct behavior for a backup directory. (You want to have files
on the backup in case something was removed by mistake.) However,
if you want the remote and local directories to be mirrored, you would
have to add the --delete option. The result is that the services file is
deleted on the local system, making the remote and local directory
structures in sync.

$ rsync -avl /usr/share/man/man1 localhost:/tmp

johndoe@10.140.67.23's password: ***************

sending incremental file list

man1/

$ rsync -avl --delete

johndoe@10.140.67.23:/usr/share/man/man1 /tmp

johndoe@10.140.67.23's password: ***************

sending incremental file list

deleting man1/services

Interactive copying with sftp
If you don't know exactly what you want to copy to or from a remote
system, you can use the sftp command to create an interactive FTP-
style session over the SSH service. Using sftp, you can connect to a
remote system over SSH, change directories, list directory contents,
and then (given proper permission) get files from and put files on the
server. Keep in mind that, despite its name, sftp has nothing to do
with the FTP protocol and doesn't use FTP servers. It simply uses an

FTP style of interaction between a client and a sshd server.

The following example shows the user johndoe connecting to
jd.example.com:

$ sftp johndoe@jd.example.com

Connecting to jd.example.com

johndoe@jd.example.com's password: ***************

sftp>

At this point, you can begin an interactive FTP session. You can use
get and put commands on files as you would with any FTP client, but
with the comfort of knowing that you are working on an encrypted and
secure connection. Because the FTP protocol passes usernames,
passwords, and data in clear text, using sftp over SSH, if possible, is a
much better alternative for allowing your users to copy files
interactively from the system.

Using key-based (passwordless) authentication
If you are using SSH tools to connect to the same systems throughout
the day, you might find it inconvenient to be entering your password
over and over again. Instead of using password-based authentication,
SSH allows you to set up key-based authentication to use instead.
Here's how it works:

You create a public key and a private key.

You guard the private key but copy the public key across to the
user account on the remote host to which you want to do key-
based authentication.

With your key copied to the proper location, you use any SSH
tools to connect to the user account on the remote host, but
instead of asking you for a password, the remote SSH service
compares the public key and the private key and allows you access
if the two keys match.

When you create the keys, you are given the option to add a
passphrase to your private key. If you decide to add a passphrase, even
though you don't need to enter a password to authenticate to the
remote system, you still need to enter your passphrase to unlock your

http://jd.example.com

private key. If you don't add a passphrase, you can communicate using
your public/private key pairs in a way that is completely passwordless.
However, if someone should get ahold of your private key, they could
act as you in any communication that required that key.

The following procedure demonstrates how a local user named chris
can set up key-based authentication to a remote user named johndoe at
IP address 10.140.67.23. If you don't have two Linux systems, you can
simulate this by using two user accounts on your local system. I start
by logging in as the local user named chris and typing the following to
generate my local public/private key pair:

$ ssh-keygen

Generating public/private rsa key pair.

Enter file in which to save the key

(/home/chris/.ssh/id_rsa): ENTER

Enter passphrase (empty for no passphrase): ENTER

Enter same passphrase again: ENTER

Your identification has been saved in

/home/chris/.ssh/id_rsa.

Your public key has been saved in

/home/chris/.ssh/id_rsa.pub.

The key fingerprint is:

bf:06:f8:12:7f:f4:c3:0a:3a:01:7f:df:25:71:ec:1d

chris@abc.example.com

The key's randomart image is:

 …

I accepted the default RSA key (DSA keys are also allowed) and
pressed Enter twice to have a blank passphrase associated with the
key. As a result, my private key (id_rsa) and public key (id_rsa.pub)
are copied to the .ssh directory in my local home directory. The next
step is to copy that key over to a remote user so that I can use key-
based authentication each time I connect to that user account with ssh
tools:

 $ ssh-copy-id -i ~/.ssh/id_rsa.pub johndoe@10.140.67.23

johndoe@10.140.67.23's password:

When prompted, I entered johndoe's password. With that accepted, the
public key belonging to chris is copied to the authorized_keys file in
johndoe's .ssh directory on the remote system. Now, the next time

chris tries to connect to johndoe's account, the SSH connection is
authenticated using those keys. Because no passphrase is put on the
private key, no passphrase is required to unlock that key when it is
used.

Log into the machine with ssh johndoe@10.140.67.23, and check in the
$HOME/.ssh/authorized_keys to make sure that you haven't added extra
keys that you weren't expecting.

[chris]$ ssh johndoe@10.140.67.23

Last login: Sun Apr 17 10:12:22 2016 from 10.140.67.22

[johndoe]$

With the keys in place, chris could now use ssh, scp, rsync, or any
other SSH-enabled command to do key-based authentication. Using
these keys, for example, an rsync command could go into a cron script
and automatically back up johndoe's home directory every night.

Want to secure your remote system further? After you have the keys in
place on your remote system for everyone you want to allow to log in
to that system, you can set the sshd service on the remote system to
not allow password authentication by changing the
PasswordAuthentication setting in the /etc/ssh/sshd_config file to no,
so that it appears as follows:

PasswordAuthentication no

Then restart the sshd service (systemctl restart sshd). After that,
anyone with a valid key is still accepted. Anyone who tries to log in
without a key gets the following failure message and doesn't even get a
chance to enter a username and password:

Permission denied (publickey,gssapi-keyex,gssapi-with-mic).

Configuring System Logging
With the knowledge of how to access your remote server using SSH
tools, you can log in to the server and set up some of the services
needed to make sure that it's running smoothly. System logging is one
of the basic services configured for Linux to keep track of what is
happening on the system.

The rsyslog service (rsyslogd daemon) provides the features to gather
log messages from software running on the Linux system and direct
those messages to local log files, devices, or remote logging hosts.
Configuration of rsyslog is similar to the configuration of its
predecessor, syslog. However, rsyslog allows you to add modules to
manage and direct log messages more specifically.

In recent Red Hat Enterprise Linux and Fedora releases, the rsyslog
facility leverages messages that are gathered and stored in the systemd
journal. To display journal log messages directly from the systemd
journal, instead of viewing them from files in the /var/log directory,
use the journalctl command.

Enabling system logging with rsyslog
Most of the files in the /var/log directory are populated with log
messages directed to them from the rsyslog service. The rsyslogd
daemon is the system logging daemon. It accepts log messages from a
variety of other programs and writes them to the appropriate log files.
This is better than having every program write directly to its own log
file because it enables you to manage centrally how log files are
handled.

Configuring rsyslogd to record varying levels of detail in the log files is
possible. It can be told to ignore all but the most critical messages, or
it can record every detail.

The rsyslogd daemon can even accept messages from other computers
on your network. This remote logging feature is particularly handy
because it enables you to centralize the management and review of the
log files from many systems on your network. There is also a major

security benefit to this practice.

With remote logging, if a system on your network is broken into, the
cracker cannot delete or modify the log files because those files are
stored on a separate computer. It is important to remember, however,
that those log messages are not, by default, encrypted (though
encryption can be enabled). Anyone tapping into your local network
can eavesdrop on those messages as they pass from one machine to
another. Also, although crackers may not be able to change old log
entries, they can affect the system such that any new log messages
should not be trusted.

Running a dedicated loghost, a computer that serves no purpose other
than to record log messages from other computers on the network, is
not uncommon. Because this system runs no other services, it is
unlikely that it will be broken into. This makes it nearly impossible for
crackers to erase their tracks completely.

Understanding the rsyslog.conf file
The /etc/rsyslog.conf file is the primary configuration file for the
rsyslog service. In the /etc/rsyslog.conf file, a modules section lets
you include or not include specific features in your rsyslog service.
The following is an example of the modules section of
/etc/rsyslog.conf in RHEL 8:

module(load="imuxsock"

 # provides support for local system logging (e.g. via

logger command)

 SysSock.Use="off") # Turn off message reception via

local log socket;

 # local messages are retrieved through imjournal now.

module(load="imjournal"

 # provides access to the systemd journal

 StateFile="imjournal.state") # File to store the

position in the journal

#module(load="imklog")

 # reads kernel messages (the same are read from journald)

#module(load="immark")

 # provides --MARK-- message capability

Provides UDP syslog reception

for parameters see http://www.rsyslog.com/doc/imudp.html

#module(load="imudp") # needs to be done just once

#input(type="imudp" port="514")

Provides TCP syslog reception

for parameters see http://www.rsyslog.com/doc/imtcp.html

#module(load="imtcp") # needs to be done just once

#input(type="imtcp" port="514")

Entries beginning with module(load= load the modules that follow.
Modules that are currently disabled are preceded by a pound sign (#).
The imjournal module lets rsyslog access the systemd journal. The
imuxsock module is needed to accept messages from the local system.
(It should not be commented out—preceded by a pound sign—unless
you have a specific reason to do so.) The imklog module logs kernel
messages.

Modules not enabled by default include the immark module, which
allows --MARK-- messages to be logged (used to indicate that a service
is alive). The imudp and imtcp modules and related port number entries
are used to allow the rsyslog service to accept remote logging
messages and are discussed in more detail in the section “Setting up
and using a loghost with rsyslogd” later in this chapter.

Most of the work done in the /etc/rsyslog.conf configuration file
involves modifying the RULES section. The following is an example of
some of the rules in the RULES section of the /etc/rsyslog.conf file
(note that in Ubuntu, you need to look in the /etc/rsyslog.d directory
for this configuration information):

RULES

Log all kernel messages to the console.

Logging much else clutters up the screen.

#kern.* /dev/console

Log anything (except mail) of level info or higher.

Don't log private authentication messages!

*.info;mail.none;authpriv.none;cron.none

/var/log/messages

The authpriv file has restricted access.

authpriv.* /var/log/secure

Log all the mail messages in one place.

mail.* -

/var/log/maillog

Log cron stuff

cron.* /var/log/cron

Rules entries come in two columns. In the left column are designations
of what messages are matched; the right column shows where
matched messages go. Messages are matched based on facility (mail,
cron, kern, and so on) and priority (starting at debug, info, notice, and
up to crit, alert, and emerg), separated by a dot (.). So mail.info
matches all messages from the mail service that are info level and
above.

As for where the messages go, most messages are directed to files in
the /var/log directory. You can, however, direct messages to a device
(such as /dev/console) or a remote loghost (such as @
loghost.example.com). The at sign (@) indicates that the name that
follows is the name of the loghost.

By default, logging is done only to local files in the /var/log directory.
However, if you uncomment the kern.* entry, you can easily direct
kernel messages of all levels to your computer's console screen.

The first working entry in the preceding example shows that info level
messages from all services (*) are matched by that rule, with the
exception of messages from mail, authpriv, and cron services (which
are excluded with the word none). All of the matched messages are
directed to the /var/log/messages file.

The mail, authpriv (authentication messages), and cron (cron facility
messages) services each has its own log files, as listed in the columns
to their right. To understand the format of those and other log files,
the format of the /var/log/messages file is described next.

Understanding the messages log file
Because of the many programs and services that record information to
the messages log file, understanding the format of this file is important.
You can get a good early warning of problems developing on your
system by examining this file. Each line in the file is a single message
recorded by some program or service. Here is a snippet of an actual
messages log file:

http://loghost.example.com

Feb 25 11:04:32 toys network: Bringing up loopback:

succeeded

Feb 25 11:04:35 toys network: Bringing up interface eth0:

succeeded

Feb 25 13:01:14 toys vsftpd(pam_unix)[10565]: authentication

failure;

 logname= uid=0 euid=0 tty= ruser= rhost=10.0.0.5

user=chris

Feb 25 14:44:24 toys su(pam_unix)[11439]: session opened for

 user root by chris(uid=500)

The default message format in the /var/log/messages file is divided
into five main parts. This format is determined by the following entry
in the /etc/rsyslog.conf file:

module(load="builtin:omfile"

Template="RSYSLOG_TraditionalFileFormat")

When you view messages in files from the /var/log directory, from left
to right, message parts are as follows:

The date and time that the message was logged

The name of the computer from which the message came

The program or service name to which the message pertains

The process number (enclosed in square brackets) of the program
sending the message

The actual text message

Take another look at the preceding file snippet. In the first two lines,
you can see that the network was restarted. The next line shows that
the user named chris tried and failed to get to the FTP server on this
system from a computer at address 10.0.0.5. (He typed the wrong
password and authentication failed.) The last line shows chris using
the su command to become root user.

By occasionally reviewing the messages and secure files, you could
catch a cracking attempt before it is successful. If you see an excessive
number of connection attempts for a particular service, especially if
they are coming from systems on the Internet, you may be under
attack.

Setting up and using a loghost with rsyslogd
To redirect your computer's log files to another computer's rsyslogd,
you must make changes to both the local and remote rsyslog
configuration file, /etc/rsyslog.conf. Become root using the su –
command, and then open the /etc/rsyslog.conf file in a text editor
(such as vi).

On the client side
To send the messages to another computer (the loghost) instead of a
file, start by replacing the log file name with the @ character followed
by the name of the loghost. For example, to direct the output of
messages that are being sent to the messages, secure, and maillog log
files to a loghost as well, add the lines in bold to the messages file:

Log anything (except mail) of level info or higher.

Don't log private authentication messages!

*.info;mail.none;news.none;authpriv.none;cron.none

/var/log/messages

*.info;mail.none;news.none;authpriv.none;cron.none @loghost

The authpriv file has restricted access.

authpriv.* /var/log/secure

authpriv.* @loghost

Log all the mail messages in one place.

mail.* -/var/log/maillog

mail.* @loghost

The messages are now sent to the rsyslogd running on the computer
named loghost. The name loghost was not an arbitrary choice.
Creating such a hostname and making it an alias to the actual system
acting as the loghost is customary. That way, if you ever need to switch
the loghost duties to a different machine, you need to change only the
loghost alias; you do not need to re-edit the syslog.conf file on every
computer.

On the loghost side
The loghost that is set to accept the messages must listen for those
messages on standard ports (514 UDP, although it can be configured
to accept messages on 514 TCP as well). Here is how you would
configure the Linux loghost that is also running the rsyslog service:

Edit the /etc/rsyslog.conf file on the loghost system and
uncomment the lines that enable the rsyslogd daemon to listen
for remote log messages. Uncomment the first two lines to enable
incoming UDP log messages on port 514 (default); uncomment
the two lines after that to allow messages that use TCP protocol
(also port 514):

 module(load="imudp") # needs to be done just once

 input(type="imudp" port="514")

 module(load="imtcp") # needs to be done just once

 input(type="imtcp" port="514")

Open your firewall to allow new messages to be directed to your
loghost. (See Chapter 25, “Securing Linux on a Network,” for a
description of how to open specific ports to allow access to your
system.)

Restart the rsyslog service (service rsyslog restart or systemctl
restart rsyslog.service).

If the service is running, you should be able to see that the service
is listening on the ports that you enabled (UDP and/or TCP ports
514). Run the netstat command as follows to see that the
rsyslogd daemon is listening on IPv4 and IPv6 ports 514 for both
UDP and TCP services:

 # netstat -tupln | grep 514

 tcp 0 0 0.0.0.0:514 0.0.0.0:* LISTEN

25341/rsyslogd

 tcp 0 0 :::514 :::* LISTEN

25341/rsyslogd

 udp 0 0 0.0.0.0:514 0.0.0.0:*

25341/rsyslogd

 udp 0 0 :::514 :::*

25341/rsyslogd

Watching logs with logwatch
The logwatch service runs in most Linux systems that do system
logging with rsyslog. Because logs on busy systems can become very
large over time, it doesn't take long for there to be too many messages
for a system administrator to watch every message in every log. To

install the logwatch facility, enter the following:

yum install logwatch

What logwatch does is gather messages once each night that look like
they might represent a problem, put them in an email message, and
send it to any email address the administrator chooses. To enable
logwatch, all you have to do is install the logwatch package.

The logwatch service runs from a cron job (0logwatch) placed in
/etc/cron.daily. The /etc/logwatch/conf/logwatch.conf file holds
local settings. The default options used to gather log messages are set
in the /usr/share/logwatch/default.conf/logwatch.conf file.

Some of the default settings define the location of log files (/var/log),
location of the temporary directory (/var/cache/logwatch), and the
recipient of the daily logwatch email (the local root user). Unless you
expect to log in to the server to read logwatch messages, you probably
want to change the MailTo setting in the
/etc/logwatch/conf/logwatch.conf file:

MailTo = chris@example.com

Look in /usr/share/logwatch/default.conf/logwatch.conf for other
settings to change (such as detail level or the time range for each
report). Then make your additions to
/etc/logwatch/conf/logwatch.conf as mentioned.

When the service is enabled (which it is just by installing the logwatch
package), you will see a message each night in the root user's mailbox.
When you are logged in as root, you can use the old mail command to
view the root user's mailbox:

 # mail

 Heirloom Mail version 12.5 7/5/10. Type ? for help.

 "/var/spool/mail/root": 2 messages 2 new

 >N 1 logwatch@abc.ex Sun Feb 15 04:02 45/664 "Logwatch

for abc"

 2 logwatch@abc.ex Mon Feb 16 04:02 45/664 "Logwatch

for abc"

 & 1

 & x

mailto:chris@example.com

In mail, you should see email messages from logwatch run each day
(here at 4:02 a.m.). Type the number of the message that you want to
view and page through it with the spacebar or line by line by pressing
Enter. Type x to exit when you are finished.

The kind of information that you see includes kernel errors, installed
packages, authentication failures, and malfunctioning services. Disk
space usage is reported, so you can see if your storage is filling up. Just
by glancing through this logwatch message, you should get an idea
whether sustained attacks are under way or if some repeated failures
are taking place.

Checking System Resources with sar
The System Activity Reporter (sar) is one of the oldest system
monitoring facilities created for early UNIX systems—predating Linux
by a few decades. The sar command itself can display system activity
continuously, at set intervals (every second or two), and display it on
the screen. It can also display system activity data that was gathered
earlier.

The sar command is part of the sysstat package. When you install
sysstat and enable the sysstat service, your system immediately
begins gathering system activity data that can be reviewed later using
certain options to the sar command.

systemclt enable sysstat

systemctl start sysstat

To read the data in the /var/log/sa/sa?? files, you can use some of the
following sar commands:

sar -u | less

Linux 5.3.8-200.fc30.x86_64 (fedora30host) 11/28/2019

_x86_64_ (1 CPU)

23:27:46 LINUX RESTART (1 CPU)

11:30:05 PM CPU %user %nice %system %iowait

%steal %idle

11:40:06 PM all 0.90 0.00 1.81 1.44

0.28 95.57

Average: all 0.90 0.00 1.81 1.44

0.28 95.57

The -u option shows CPU usage. By default, the output starts at
midnight on the current day and then shows how much processing
time is being consumed by different parts of the system. The output
continues to show the activity every 10 minutes until the current time
is reached.

To see disk activity output, run the sar -d command. Again, output
comes in 10-minute intervals starting at midnight.

sar -d | less

Linux 5.3.8-200.fc30.x86_64 (fedora30host) 11/28/2019

_x86_64_ (1 CPU)

23:27:46 LINUX RESTART (1 CPU)

11:30:05 PM DEV tps rkB/s wkB/s areq-sz aqu-sz

await…

11:40:06 PM dev8-0 49.31 5663.94 50.38 115.89 0.03

1.00

11:40:06 PM dev253-0 48.99 5664.09 7.38 115.78 0.05

0.98

11:40:06 PM dev253-1 10.84 0.01 43.34 4.00 0.04

3.29

Average: dev8-0 49.31 5663.94 50.38 115.89 0.03

1.00

Average: dev253-0 48.99 5664.09 7.38 115.78 0.05

0.98

Average: dev253-1 10.84 0.01 43.34 4.00 0.04

3.29

If you want to run sar activity reports live, you can do that by adding
counts and time intervals to the command line, as shown here:

sar -n DEV 5 2

Linux 5.3.8-200.fc30.x86_64 (fedora30host) 11/28/2019

_x86_64_ (1 CPU)

11:19:36 PM IFACE rxpck/s txpck/s rxkB/s txkB/s rxcmp/s

txcmp/s…

11:19:41 PM lo 5.42 5.42 1.06 1.06 0.00

0.00…

11:19:41 PM ens3 0.00 0.00 0.00 0.00 0.00

0.00…

…

Average: IFACE rxpck/s txpck/s rxkB/s txkB/ rxcmp/s txcmp/s

rxmcst/s

Average: lo 7.21 7.21 1.42 1.42 0.00 0.00

0.00

Average: ens3 0.00 0.00 0.00 0.00 0.00 0.00

0.00

Average: wlan0 4.70 4.00 4.81 0.63 0.00 0.00

0.00

Average: pan0 0.00 0.00 0.00 0.00 0.00 0.00

0.00

Average: tun0 3.70 2.90 4.42 0.19 0.00 0.00

0.00

With the -n Dev example just shown, you can see how much activity
came across the different network interfaces on your system. You can
see how many packets were transmitted and received and how many
KB of data were transmitted and received. In that example, samplings
of data were taken every 5 seconds and repeated twice.

Refer to the sar, sadc, sa1, and sa2 man pages for more information on
how sar data can be gathered and displayed.

Checking System Space
Although logwatch can give you a daily snapshot of space consumption
on your system disks, the df and du commands can help you
immediately see how much disk space is available. The following
sections show examples of those commands.

Displaying system space with df
You can display the space available in your filesystems using the df
command. To see the amount of space available on all of the mounted
filesystems on your Linux computer, type df with no options:

$ df

Filesystem 1k-blocks Used Available Use% Mounted on

/dev/sda3 30645460 2958356 26130408 11% /

/dev/sda2 46668 8340 35919 19% /boot

…

This example output shows the space available on the hard disk
partition mounted on the / (root) directory (/dev/sda1) and /boot
partition (/dev/sda2). Disk space is shown in 1KB blocks. To produce
output in a more human-readable form, use the -h option:

$ df -h

Filesystem Size Used Avail Use% Mounted on

/dev/sda3 29G 2.9G 24G 11% /

/dev/sda2 46M 8.2M 25M 19% /boot

…

With the df -h option, output appears in a friendlier megabyte or
gigabyte listing. Other options with df enable you to do the following:

Print only filesystems of a particular type (-t type).

Exclude filesystems of a particular type (-x type). For example,
type df -x tmpfs -x devtmpfs to exclude temporary filesystem
types (limiting output to filesystems that represent real storage
areas).

Include filesystems that have no space, such as /proc and

/dev/pts (-a).

List only available and used inodes (-i).

Display disk space in certain block sizes (--block-size=#).

Checking disk usage with du
To find out how much space is being consumed by a particular
directory (and its subdirectories), use the du command. With no
options, du lists all directories below the current directory, along with
the space consumed by each directory. At the end, du produces total
disk space used within that directory structure.

The du command is a good way to check how much space is being used
by a particular user (du /home/jake) or in a particular filesystem
partition (du /var). By default, disk space is displayed in 1KB block
sizes. To make the output friendlier (in kilobytes, megabytes, and
gigabytes), use the -h option as follows:

$ du -h /home/jake

114k /home/jake/httpd/stuff

234k /home/jake/httpd

137k /home/jake/uucp/data

701k /home/jake/uucp

1.0M /home/jake

The output shows the disk space used in each directory under the
home directory of the user named jake (/home/jake). Disk space
consumed is shown in kilobytes (k) and megabytes (M). The total space
consumed by /home/jake is shown on the last line. Add the –s option to
see total disk space used for a directory and its subdirectories.

Finding disk consumption with find
The find command is a great way to find file consumption of your hard
disk using a variety of criteria. You can get a good idea of where disk
space can be recovered by finding files that are over a certain size or
were created by a particular person.

NOTE
You must be the root user to run this command effectively, unless
you are just checking your personal files. If you are not the root
user, there are many places in the filesystem for which you do not
have permission to check. Regular users can usually check their
own home directories but not those of others.

In the following example, the find command searches the root
filesystem (/) for any files owned by the user named jake (-user jake)
and prints the filenames. The output of the find command is
organized in a long listing in size order (ls -ldS). Finally, that output
is sent to the file /tmp/jake. When you view the file /tmp/jake (for
example, less /tmp/jake), you will find all of the files that are owned
by the user jake listed in size order. Here is the command line:

find / -xdev -user jake -print | xargs ls -ldS> /tmp/jake

TIP
The -xdev option prevents filesystems other than the selected
filesystem from being searched. This is a good way to cut out lots of
junk that may be output from the /proc filesystem. It can also keep
large, remotely mounted filesystems from being searched.

Here's another example, except that instead of looking for a user's
files, we're looking for files larger than 100 kilobytes (-size +100M):

find / -xdev -size +100M | xargs ls -ldS> /tmp/size

You can save yourself lots of disk space just by removing some of the
largest files that are no longer needed. In this example, you can see
that large files are sorted by size in the /tmp/size file.

Managing Servers in the Enterprise
Most of the server configuration covered in this book describes how to
install systems manually and work directly on host computers. Having
to set up each host individually would be far too inefficient for modern
data centers consisting of dozens, hundreds, or even thousands of
computers. To make the process of setting up Linux servers in a large
data center more efficient, some of the following are employed:

Automated deployments One way to install systems without
having to step through a manual install process is with PXE
booting. By setting up a PXE server and booting a computer on
that network from a PXE-enabled network interface card, you can
start a full install of that system simply by booting the system.
Once the install is done, the system can reboot to run from the
installed system.

Generic host systems By making your host systems as generic
as possible, individual installation, configuration, and upgrades
can be greatly simplified. This can be automated in layers, where
the base system is installed by PXE booting, configuration is done
through features such as cloud-int, and applications can bring
along their own dependencies when they run. On the application
level, this can be done by running an application from inside a
virtual machine or container. When the application is done
running, it can be discarded without leaving its dependent
software on the host.

Separation of management and worker systems Instead of
individually managing host systems, a separate platform can offer
a way to manage large sets of systems. To do this, a platform such
as OpenStack or OpenShift can have management nodes (in some
cases called control plane or master nodes) manage the machines
where the workload actually runs (sometimes called workers,
slaves, or just nodes). This separation of tasks by host type makes
it possible to have applications deployed on any available worker
that meets the needs of the application (such as available memory
or CPU).

Keep in mind that understanding how individual applications are
configured and services are run is still the foundation for these more
advanced ways of managing data center resources. Although in-depth
coverage of enterprise deployment and monitoring tools is outside the
scope of this book, refer to Part VI, “Engaging with Cloud Computing,”
for an introduction to how different Linux-based cloud platforms
manage these issues.

Summary
Although many different types of servers are available with Linux
systems, the basic procedure for installing and configuring a server is
essentially the same. The normal course of events is to install,
configure, start, secure, and monitor your servers. Basic tasks that
apply to all servers include using networking tools (particularly SSH
tools) to log in, copy files, or execute remote commands.

Because an administrator can't be logged in watching servers all the
time, tools for gathering data and reviewing the log data later are very
important when administering Linux servers. The rsyslog facility can
be used for local and remote logging. The sar facility gathers live data
or plays back data gathered earlier at 10-minute intervals. Cockpit lets
you watch CPU, memory, disk, and networking activity live from a web
user interface. To watch disk space, you can run df and du commands.

The skills described in this chapter are designed to help you build a
foundation to do enterprise-quality system administration in the
future. Although these skills are useful, to manage many Linux
systems at the same time, you need to extend your skills by using
automating deployment and monitoring tools, as described in the
cloud computing section of this book.

Although it is easy to set up networking to reach your servers in
simple, default cases, more complex network configuration requires a
knowledge of networking configuration files and related tools. The
next chapter describes how to set up and administer networking in
Linux.

Exercises
The exercises in this section cover some of the basic tools for
connecting to and watching over your Linux servers. As usual, you can
accomplish the tasks here in several ways. So, don't worry if you don't
go about the exercises in the same way as shown in the answers, as
long as you get the same results. If you are stuck, solutions to the tasks
are shown in Appendix B.

Some of the exercises assume that you have a second Linux system
available that you can log in to and try different commands. On that
second system, you need to make sure that the sshd service is running,
that the firewall is open, and that ssh is allowed for the user account
that you are trying to log in to (root is often blocked by sshd).

If you have only one Linux system, you can create an additional user
account and simply simulate communications with another system by
connecting to the name localhost instead, as shown in this example:

useradd joe

passwd joe

ssh joe@localhost

1. Using the ssh command, log in to another computer (or the local
computer) using any account to which you have access. Enter the
password when prompted.

2. Using remote execution with the ssh command, display the
contents of a remote /etc/system-release file and have its
contents displayed on the local system.

3. Use the ssh command to use X11 forwarding to display a gedit
window on your local system; then save a file in the remote user's
home directory.

4. Recursively copy all of the files from the /usr/share/selinux
directory on a remote system to the /tmp directory on your local
system in such a way that all of the modification times on the files
are updated to the time on the local system when they are copied.

5. Recursively copy all of the files from the /usr/share/logwatch
directory on a remote system to the /tmp directory on your local
system in such a way that all of the modification times on the files
from the remote system are maintained on the local system.

6. Create a public/private key pair to use for SSH communications
(no passphrase on the key), copy the public key file to a remote
user's account with ssh-copy-id, and use key-based
authentication to log in to that user account without having to
enter a password.

7. Create an entry in /etc/rsyslog.conf that stores all authentication
messages (authpriv) info level and higher into a file named
/var/log/myauth. From one terminal, watch the file as data comes
into it, and in another terminal, try to ssh into your local machine
as any valid user with a bad password.

8. Use the du command to determine the largest directory structures
under /usr/share, sort them from largest to smallest, and list the
top ten of those directories in terms of size.

9. Use the df command to show the space that is used and available
from all of the filesystems currently attached to the local system
but exclude any tmpfs or devtmpfs filesystems.

10. Find any files in the /usr directory that are more that 10MB in
size.

CHAPTER 14
Administering Networking

IN THIS CHAPTER
Automatically connecting Linux to a network

Using NetworkManager for simple network connectivity

Configuring networking from the command line

Working with network configuration files

Configuring routing, DHCP, DNS, and other networking
infrastructure features for the enterprise

Connecting a single desktop system or laptop to a network,
particularly one that connects to the Internet, has become so easy that
I have put off writing a full chapter on Linux networking until now. If
you are trying to connect your Fedora, RHEL, Ubuntu, or another
Linux desktop system to the Internet, here's what you can try given an
available wired or wireless network interface:

Wired network If your home or office has a wired Ethernet port
that provides a path to the Internet and your computer has an
Ethernet port, use an Ethernet cable to connect the two ports.
After you turn on your computer, boot up Linux and log in.
Clicking the NetworkManager icon on the desktop should show
you that you are connected to the Internet or allow you to connect
with a single click.

Wireless network For a wireless computer running Linux, log
in and click the NetworkManager icon on the desktop. From the
list of wireless networks that appear, select the one you want and,
when prompted, enter the required password. Each time you log
in from that computer from the same location, it automatically
connects to that wireless network.

If either of those types of network connections works for you, and you
are not otherwise curious about how networking works in Linux, that
may be all you need to know. However, what if your Linux system
doesn't automatically connect to the Internet? What if you want to
configure your desktop to talk to a private network at work (VPN)?
What if you want to lock down network settings on your server or
configure your Linux system to work as a router?

In this chapter, topics related to networking are divided into networks
for desktops, servers, and enterprise computing. The general approach
to configuring networking in these three types of Linux systems is as
follows:

Desktop/laptop networking On desktop or laptop systems,
NetworkManager runs by default in order to manage network
interfaces. With NetworkManager, you can automatically accept
the address and server information that you need to connect to
the Internet. However, you can also set address information
manually. You can configure things such as proxy servers or
virtual private network connections to allow your desktop to work
from behind an organization's firewall or to connect through a
firewall, respectively.

Server networking Although NetworkManager originally
worked best on desktop and laptop network configurations, it now
works extremely well on servers. Today, features that are useful
for configuring servers, such as Ethernet channel bonding and
configuring aliases, can be found in NetworkManager.

Enterprise networking Explaining how to configure
networking in a large enterprise can fill several volumes itself.
However, to give you a head start using Linux in an enterprise
environment, I discuss basic networking technologies, such as
DHCP and DNS servers, which make it possible for desktop
systems to connect to the Internet automatically and find systems
based on names and not just IP addresses.

Configuring Networking for Desktops
Whether you connect to the Internet from Linux, Windows, a
smartphone, or any other kind of network-enabled device, certain
things must be in place for that connection to work. The computer
must have a network interface (wired or wireless), an IP address, an
assigned DNS server, and a route to the Internet (identified by a
gateway device).

Before I discuss how to change your networking configuration in
Linux, let's look at the general activities that occur when Linux is set to
connect to the Internet automatically with NetworkManager:

Activate network interfaces NetworkManager looks to see
what network interfaces (wired or wireless) are set to start. By
default, external interfaces are usually set to start automatically
using DHCP, although static names and addresses can be set at
install time instead.

Request DHCP service The Linux system acts as a DHCP client
to send out a request for DHCP service on each enabled interface.
It uses the MAC address of the network interface to identify itself
in the request.

Get response from DHCP server A DHCP server, possibly
running on a wireless router, cable modem, or other device
providing a route to the Internet from your location, responds to
the DHCP request. It can provide lots of different types of
information to the DHCP client. That information probably
contains at least the following:

IP address The DHCP server typically has a range of Internet
Protocol (IP) addresses that it can hand out to any system on the
network that requests an address. In more secure environments,
or one in which you want to be sure that specific machines get
specific addresses, the DHCP server provides a specific IP address
to requests from specific MAC addresses. (MAC addresses are
made to be unique among all network interface cards and are
assigned by the manufacturer of each card.)

Subnet mask When the DHCP client is assigned an IP address,
the accompanying subnet mask tells that client which part of the
IP address identifies the subnetwork and which identifies the
host. For example, an IP address of 192.168.0.100 and subnet
mask of 255.255.255.0 tell the client that the network is 192.168.0
and the host part is 100.

Lease time When an IP address is dynamically allocated to the
DHCP client (Linux system), that client is assigned a lease time.
The client doesn't own that address but must lease it again when
the time expires and request it once again when the network
interface restarts. Usually, the DHCP server remembers the client
and assigns the same address when the system starts up again or
asks to renew the lease. The default lease time is typically 86,400
seconds (24 hours) for IPV4 addresses. The more plentiful IPV6
addresses are assigned for 2,592,000 seconds (30 days) by
default.

Domain name server Because computers like to think in
numbers (such as IP addresses like 192.168.0.100) and people
tend to think in names (such as the hostname www.example.com),
computers need a way to translate hostnames into IP addresses
and sometimes the opposite as well. The domain name system
(DNS) was designed to handle that problem by providing a
hierarchy of servers to do name-to-address mapping on the
Internet. The location of one or more DNS servers (usually two or
three) is usually assigned to the DHCP client from the DHCP host.

Default gateway Although the Internet has one unique
namespace, it is actually organized as a series of interconnected
subnetworks. In order for a network request to leave your local
network, it must know what node on your network provides a
route to addresses outside of your local network. The DHCP
server usually provides the “default gateway” IP address. By
having network interfaces on both your subnetwork and the next
network on the way to the ultimate destination of your
communication, a gateway can route your packets to their
destination.

http://www.example.com

Other information A DHCP server can be configured to
provide all kinds of information to help the DHCP client. For
example, it can provide the location of an NTP server (to sync
time between clients), font server (to get fonts for your X display),
IRC server (for online chats), or print server (to designate
available printers).

Update local network settings After the settings are received
from the DHCP server, they are implemented as appropriate on
the local Linux system. For example, the IP address is set on the
network interface, the DNS server entries are added to the local
/etc/resolv.conf file (by NetworkManager), and the lease time is
stored by the local system so it knows when to request that the
lease be renewed.

All of the steps just described typically happen without your having to
do anything but turn on your Linux system and log in. Now suppose
that you want to be able to verify your network interfaces or change
some of those settings. You can do that using the tools described in the
next sections.

Checking your network interfaces
There are both graphical and command-line tools for viewing
information about your network interfaces in Linux. From the
desktop, NetworkManager tools and the Cockpit web user interface
are good places to start.

Checking your network from NetworkManager
The easiest way to check the basic setting for a network interface is to
open the pull-down menu at the upper-right corner of your desktop
and select your active network interface. Figure 14.1 shows the Wi-Fi
settings for an active network on a Fedora GNOME 3 desktop.

FIGURE 14.1 Checking network interfaces with NetworkManager

As you can see in Figure 14.1, both IPv4 and IPv6 addresses are
assigned to the interface. The IP address 192.168.1.254 offers both a
DNS service and a route to external networks.

To see more about how your Linux system is configured, click one of
the tabs at the top of the window. For example, Figure 14.2 shows the
Security tab, where you can select the type of security connection to
the network and set the password needed to connect to that network.

FIGURE 14.2 Viewing network settings with NetworkManager

Checking your network from Cockpit
Provided you have enabled Cockpit, you can see and change
information about your network interfaces through your web browser.
On your local system, you open https://localhost:9090/network to go
directly to the Cockpit Networking page for your local system. Figure
14.3 shows an example of this.

From the Cockpit Networking page, you can see information about all
of your network interfaces at once. In this case, there are three
network interfaces: wlp2s0 (the active wireless interface), enp4s0 (an
inactive wired interface), and virbr0 (an inactive interface into the
network connected to any virtual machines running on the local
system).

At the top of the Cockpit Networking page, you can see data being sent
from and received on the local system. Select a network interface to
see a page displaying activities for that particular interface.

Select Firewall to see the list of services that are allowed into your
system. For example, Figure 14.4 shows that UDP ports are open for
three services (DHCPv6 client, Multicast DNS, and Samba Client).
DHCPv6 lets the system acquire an IPv6 address from the network.
Multicast DNS and Samba Client services can allow the autodetection
of printers, share file systems, and a variety of devices and shared
resources.

The only TCP service shown here as open is ssh. With the ssh service
(TCP port 22) open, the sshd service running on your local system is
available for remote users to log into your local system.

FIGURE 14.3 Viewing and changing network settings from Cockpit

FIGURE 14.4 View services that are accessible through the firewall
from Cockpit

The fact that those ports are open doesn't necessarily mean that the

services are running. However, if they are running, the computer's
firewall will allow access to them.

More advanced features available from the Cockpit Networking page
allow you to add bonds, teams, bridges, and VLANs to your local
network interfaces.

Checking your network from the command line
To get more detailed information about your network interfaces, try
running some commands. There are commands that can show you
information about your network interfaces, routes, hosts, and traffic
on the network.

Viewing network interfaces
To see information about each network interface on your local Linux
system, enter the following:

ip addr show

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue

 state UNKNOWN group default qlen 1000

 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

 inet 127.0.0.1/8 scope host lo

 valid_lft forever preferred_lft forever

 inet6 ::1/128 scope host

 valid_lft forever preferred_lft forever

2: enp4s0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500

 qdisc fq_codel state DOWN group default qlen 1000

 link/ether 30:85:a9:04:9b:f9 brd ff:ff:ff:ff:ff:ff

3: wlp2s0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500

 qdisc mq state UP group default qlen 1000

 link/ether e0:06:e6:83:ac:c7 brd ff:ff:ff:ff:ff:ff

 inet 192.168.1.83/24 brd 192.168.1.255 scope global

 dynamic noprefixroute wlp2s0

 valid_lft 78738sec preferred_lft 78738sec

 inet6 2600:1700:722:a10::489/128 scope global dynamic

noprefixroute

 valid_lft 5529sec preferred_lft 5229sec

 inet6 fe80::25ff:8129:751b:23e3/64 scope link

noprefixroute

 valid_lft forever preferred_lft forever

4: virbr0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500

 qdisc noqueue state DOWN group default qlen 1000

 link/ether 52:54:00:0c:69:0a brd ff:ff:ff:ff:ff:ff

 inet 192.168.122.1/24 brd 192.168.122.255 scope global

virbr0

 valid_lft forever preferred_lft forever

The ip addr show output displays information about your network
interfaces, in this case from a laptop running Fedora 30. The lo entry
in the first line of the output shows the loopback interface, which is
used to allow network commands run on the local system to connect to
the local system. The IP address for localhost is 127.0.0.1/8 (the /8 is
CIDR notation, indicating that 127.0 is the network number and 0.1 is
the host number). Add a -s option (ip -s addr show) to see statistics
of packet transmissions and errors associated with each interface.

In this case, the wired Ethernet interface (enp4s0) is down (no cable),
but the wireless interface is up (wlp2s0). The MAC address on the
wireless interface (wlp2s0) is e0:06:e6:83:ac:c7 and the Internet (IPv4)
address is 192.168.1.83. An IPv6 address is also enabled.

Older versions of Linux are used to assign more generic network
interface names, such as eth0 and wlan0. Now interfaces are named by
their locations on the computer's bus. For example, the first port on
the network card seated in the third PCI bus for a Fedora system is
named p3p1. The first embedded Ethernet port would be em1. Wireless
interfaces sometimes appear using the name of the wireless network
as the device name.

Another popular command for seeing network interface information is
the ifconfig command. By default, ifconfig shows similar
information to that of ip addr, but ifconfig also shows the number of
packets received (RX) and transmitted (TX) by default, as well as the
amount of data and any errors or dropped packets:

ifconfig wlp2s0

wlp2s0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500

 inet 192.168.1.83 netmask 255.255.255.0

 broadcast 192.168.1.255

 inet6 2600:1700:722:a10:b55a:fca6:790d:6aa6

 prefixlen 64 scopeid 0x0<global>

 inet6 fe80::25ff:8129:751b:23e3

 prefixlen 64 scopeid 0x20<link>

 inet6 2600:1700:722:a10::489

 prefixlen 128 scopeid 0x0<global>

 ether e0:06:e6:83:ac:c7 txqueuelen 1000 (Ethernet)

 RX packets 208402 bytes 250962570 (239.3 MiB)

 RX errors 0 dropped 4 overruns 0 frame 0

 TX packets 113589 bytes 13240384 (12.6 MiB)

 TX errors 0 dropped 0 overruns 0 carrier 0

collisions 0

Checking connectivity to remote systems

To make sure that you can reach systems that are available on the
network, you can use the ping command. As long as the computer
responds to ping requests (not all do), you can use ping to send
packets to that system in a way that asks them to respond. Here is an
example:

$ ping host1

PING host1 (192.168.1.15) 56(84) bytes of data.

64 bytes from host1 (192.168.1.15): icmp_seq=1 ttl=64

time=0.062 ms

64 bytes from host1 (192.168.1.15): icmp_seq=2 ttl=64

time=0.044 ms

^C

--- host1 ping statistics ---

2 packets transmitted, 2 received, 0% packet loss, time

1822ms

rtt min/avg/max/mdev = 0.044/0.053/0.062/0.009 ms

The ping command shown here continuously pings the host named
host1. After a few pings, press Ctrl+C to end the pings, and the last few
lines show you how many of the ping requests succeeded.

You could have used the IP address (192.168.1.15, in this case) to see
that you could reach the system. However, using the hostname gives
you the additional advantage of knowing that your name-to-IP-
address translation (being done by your DNS server or local hosts file)
is working properly as well. In this case, however, host1 appeared in
the local /etc/hosts file.

Checking routing information
Routing is the next thing that you can check with respect to your
network interfaces. The following snippets show you how to use the ip
and route commands to do that:

ip route show

default via 192.168.122.1 dev ens3 proto dhcp metric 20100

192.168.122.0/24 dev ens3 proto kernel scope link src

192.168.122.194 metric 100

The ip route show command example illustrates that the
192.168.122.1 address provides the route to the host from a RHEL 8
VM over the ens3 network interface. Communications to any address
in the 192.168.122.0/24 range from the VM (192.168.122.194) goes
over that interface. The route command can provide similar
information:

route

Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use

Iface

default homeportal 0.0.0.0 UG 600 0 0

wlp2s0

192.168.1.0 0.0.0.0 255.255.255.0 U 600 0 0

wlp2s0

192.168.122.0 0.0.0.0 255.255.255.0 U 0 0 0

virbr0

The output from the kernel routing table is from a Fedora system with
a single active external network interface. The wireless network
interface card is on PCI slot 2, port 1 (wlp2). Any packets destined for
the 192.168.1 network use the wlp2 NIC. Packets destined for any other
location are forwarded to the gateway system at 192.168.1.0. That
system represents my router to the Internet. Here's a more complex
routing table:

route

Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref

Use Iface

default gateway 0.0.0.0 UG 600 0

0 wlp3s0

10.0.0.0 vpn.example. 255.0.0.0 U 50 0

0 tun0

10.10.135.0 0.0.0.0 255.255.217.0 U 50 0

0 tun0

vpn.example. gateway 255.255.255.255 UGH 600 0

0 wlp3s0

172.17.0.0 0.0.0.0 255.255.0.0 U 0 0

0 docker0

192.168.1.0 * 255.255.255.0 U 600 0

0 wlp3s0

In the route example just shown, there is a wireless interface (wlp3s0)
as well as an interface representing a virtual private network (VPN)
tunnel. A VPN provides a way to have encrypted, private
communications between a client and a remote network over an
insecure network (such as the Internet). Here the tunnel goes from the
local system over the wlan0 interface to a host named vpn.example.com
(some of the name is truncated).

All communication to the 192.168.1.0/24 network still goes directly
over the wireless LAN. However, packets destined for the
10.10.135.0/24 and 10.0.0.0/8 networks are routed directly to
vpn.example.com for communication with hosts on the other side of the
VPN connection over the tunneled interface (tun0).

A special route is set up for communications to containers (docker0)
running on the local system on network 172.17.0.0. All other packets
go to the default route via the address 192.168.1.0. As for the flags
shown in the output, a U says the route is up, a G identifies the interface
as a gateway, and an H says the target is a host (as is the case with the
VPN connection).

So far, I have shown you the routes to leave the local system. If you
want to follow the entire route to a host from beginning to end, you
can use the traceroute command (dnf install traceroute). For
example, to trace the route a packet takes from your local system to
the google.com site, type the following traceroute command:

traceroute google.com

traceroute to google.com (74.125.235.136), 30 hops max, 60

byte pkts

…

 7 rrcs-70-62-95-197.midsouth.biz.rr.com (70.62.95.197) …

 8 ge-2-1-0.rlghncpop-rtr1.southeast.rr.com (24.93.73.62) …

 9 ae-3-0.cr0.dca10.tbone.rr.com (66.109.6.80) …

10 107.14.19.133 (107.14.19.133) 13.662 ms …

11 74.125.49.181 (74.125.49.181) 13.912 ms …

12 209.85.252.80 (209.85.252.80) 61.265 ms …

13 66.249.95.149 (66.249.95.149) 18.308 ms …

14 66.249.94.22 (66.249.94.22) 18.344 ms …

15 72.14.239.83 (72.14.239.83) 85.342 ms …

http://vpn.example.com
http://vpn.example.com
http://google.com

16 64.233.174.177 (64.233.174.177) 167.827 ms …

17 209.85.255.35 (209.85.255.35) 169.995 ms …

18 209.85.241.129 (209.85.241.129) 170.322 ms …

19 nrt19s11-in-f8.1e100.net (74.125.235.136) 169.360 ms …

I truncated some of the output to drop off some of the initial routes
and the amount of time (in milliseconds) that the packets were taking
to traverse each route. Using traceroute, you can see where the
bottlenecks are along the way if your network communication is
stalling.

Viewing the host and domain names
To see the hostname assigned to the local system, type hostname. To
just see the domain portion of that name, use the dnsdomainname
command:

hostname

spike.example.com

dnsdomainname

example.com

Configuring network interfaces
If you don't want to have your network interfaces assigned
automatically from a DHCP server (or if there is no DHCP server), you
can configure network interfaces manually. This can include assigning
IP addresses, the locations of DNS servers and gateway machines, and
routes. This basic information can be set up using NetworkManager.

Setting IP addresses manually
To change the network configuration for your wired network interface
through NetworkManager, do the following:

1. Select the Settings icon from the drop-down menu in the upper-
right corner of the desktop and select Network.

2. Assuming that you have a wired NIC that is not yet in use, select
the settings button (small gear icon) next to the interface that you
want to change.

3. Choose IPv4 and change the IPv4 Method setting from Automatic

(DHCP) to Manual.

4. Fill in the following information (only Address and Netmask are
required):

a. Address: The IP address that you want to assign to your
local network interface. For example, 192.168.100.100.

b. Netmask: The subnetwork mask that defines which part of
the IP address represents the network and which part
identifies the host. For example, a netmask of 255.255.255.0
would identify the network portion of the previous address as
192.168.100 and the host portion as 100.

c. Gateway: The IP address of the computer or device on the
network that acts as the default route. The default route will
route packets from the local network to any address that is
not available on the local network or via some other custom
route.

d. DNS servers: Fill in the IP addresses for the system
providing DNS service to your computer. If there is more
than one DNS server, add the others in a comma-separated
list of servers.

5. Click the Apply button. The new information is saved, and the
network is restarted using the new information. Figure 14.5 shows
an example of those network settings.

FIGURE 14.5 Changing network settings with NetworkManager

Setting IP address aliases
You can attach multiple IP addresses to a single network interface. In
the same NetworkManager screen, this is done by simply filling in a
subsequent Addresses box and adding the new IP address
information. Here are a few things you should know about adding
address aliases:

A netmask is required for each address, but a gateway is not
required.

The Apply button stays grayed out until you include valid
information in the fields.

The new address does not have to be on the same subnetwork as
the original address, although it is listening for traffic on the same
physical network.

After adding the address 192.168.100.103 to my wired interface,
running ip addr show enp4s0 displays the following indication of the
two IP addresses on the interface:

2: enp4s0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc

fq_codel state UP group default qlen 1000

 link/ether 30:85:a9:04:9b:f9 brd ff:ff:ff:ff:ff:ff

 inet 192.168.100.100/24 brd 192.168.100.255 scope

 global noprefixroute enp4s0

 valid_lft forever preferred_lft forever

 inet 192.168.100.103/24 brd 192.168.100.255 scope

 global secondary noprefixroute enp4s0

 valid_lft forever preferred_lft forever

For information on setting up aliases directly in configuration files,
refer to the section “Setting alias network interfaces” later in this
chapter.

Setting routes
When you request a connection to an IP address, your system looks
through your routing table to determine the path on which to connect
to that address. Information is sent in the form of packets. A packet is
routed in the following different ways, depending on its destination:

The local system is sent to the lo interface.

A system on your local network is directed through your NIC
directly to the intended recipient system's NIC.

Any other system is sent to the gateway (router) that directs the
packet on to its intended address on the Internet.

Of course, what I have just described here is one of the simplest cases.
You may, in fact, have multiple NICs with multiple interfaces to
different networks. You may also have multiple routers on your local
network that provide access to other private networks. For example,
suppose you have a router (or other system acting as a router) on your
local network; you can add a custom route to that router via
NetworkManager. Using the NetworkManager example shown
previously, scroll down the page to view the Routes section. Then add
the following information:

Address The network address of the subnetwork you route to.
For example, if the router (gateway) will provide you access to all
systems on the 192.168.200 network, add the address
192.168.200.0.

Netmask Add the netmask needed to identify the subnetwork.
For example, if the router provides access to the Class C address
192.168.200, you could use the netmask 255.255.255.0.

Gateway Add the IP address for the router (gateway) that
provides access to the new route. For example, if the router has an
IP address on your 192.168.1 network of 192.168.1.199, add that
address in this field.

Click Apply to apply the new routing information. You may have to
restart the interface for this to take effect (for example, ifup enp4s0).
Enter route -n to make sure the new routing information has been
applied.

route -n

Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref

Use Iface

0.0.0.0 192.168.100.1 0.0.0.0 UG 1024 0

0 p4p1

192.168.100.0 0.0.0.0 255.255.255.0 U 0 0

0 p4p1

192.168.200.0 192.168.1.199 255.255.255.0 UG 1 0

0 p4p1

In the example just shown, you can see that the default gateway is
192.168.100.1. However, any packets destined for the 192.168.200
network are routed through the gateway host at IP address
192.168.1.199. Presumably that host has a network interface that faces
the 192.168.200 network, and it is set up to allow other hosts to route
through it to that network.

See the section “Setting custom routes” later in this chapter for
information on how to set routes directly in configuration files.

Configuring a network proxy connection
If your desktop system is running behind a corporate firewall, you
might not have direct access to the Internet. Instead, you might have
to reach the Internet via a proxy server. Instead of allowing you full
access to the Internet, a proxy server lets you make requests only for

certain services outside of the local network. The proxy server then
passes those requests on to the Internet or another network.

Proxy servers typically provide access to web servers (http:// and
https://) and FTP servers (ftp://). However, a proxy server that
supports SOCKS can provide a proxy service for different protocols
outside of the local network. (SOCKS is a network protocol made to
allow client computers to access the Internet through a firewall.) You
can identify a proxy server in NetworkManager and have
communications for selected protocols go through that server (from
the Settings window, select Network and then select Network Proxy).

Instead of identifying a proxy server to your network interfaces (via
NetworkManager), you can configure your browser to use a proxy
server directly by changing your Firefox preferences to use a proxy
server. Here's how to define a proxy server from the Firefox window:

1. From Firefox, select Preferences. The Firefox Preferences window
appears.

2. From the Firefox Preferences window, scroll down to Network
Settings and select Settings.

3. From the Connection Settings window that appears, you can try to
autodetect the proxy settings or, if you set the proxy in
NetworkManager, you can choose to use system proxy settings.
You can also select Manual Proxy Configuration, fill in the
following information, and click OK.

a. HTTP Proxy: The IP address of the computer providing the
proxy service. This causes all requests for web pages (http://
protocol) to be forwarded to the proxy server.

b. Port: The port associated with the proxy service. By default,
the port number is 3128, but it can differ.

c. Use this proxy server for all protocols: Select this box
to use the same proxy server and port associated with the
HTTP proxy for all other service requests. This causes other
proxy settings to be grayed out. (Instead of selecting this box,
you can set those proxy services separately.)

d. No Proxy for: Add the hostname or IP address for any
system that you want to be able to contact with Firefox
directly without going through the proxy server. You don't
need to add localhost and the local IP address (127.0.0.1) in
this box, since those addresses are already set not to redirect.

Figure 14.6 shows an example of the Configure Proxy Access to the
Internet window filled in to configure a connection to a proxy server
located at IP address 192.168.1.1 for all protocols. After you click OK,
all requests from the Firefox browser to locations outside of the local
system are directed to the proxy server, which forwards those requests
on to the appropriate server.

FIGURE 14.6 Setting up Firefox to use a proxy server

Configuring Networking from the Command
Line
While NetworkManager does a great job of autodetecting wired
networks or presenting you with lists of wireless networks, sometimes
you need to abandon the NetworkManager GUI and commands or
Cockpit to configure the features that you need. These are some of the
networking features in RHEL and Fedora described in the coming
sections:

Basic configuration: See how to use nmtui to configure basic
networking with a menu-based interface from a shell. This tool
provides an intuitive interface for configuring networking on
servers that have no graphical interface for running GUI-based
tools.

Configuration files: Understand configuration files associated
with Linux networking and how to configure them directly.

Ethernet channel bonding: Set up Ethernet channel bonding
(multiple network cards listening on the same IP address).

Configure networking with nmtui
Many servers don't have graphical interfaces available. So, if you want
to configure networking, you must be able to do so from the shell. One
way to do that is to edit networking configuration files directly.
Another method is to use menu-based commands that let you press
arrow and Tab keys to navigate and forms you fill in to configure your
network interface.

The nmtui command (yum install NetworkManager-tui) provides a
menu-based interface that runs in the shell. As root, enter nmtui to see
a screen similar to the one presented in Figure 14.7.

FIGURE 14.7 Configuring networking with NetworkManager TUI

Use arrow keys and the Tab key to move around the interface. With
the item you want to select highlighted, press Enter to select it. The
interface is limited to modifying the following kinds of information:
Edit or Activate a connection (network interface cards) and Set system
hostname (hostname and DNS configuration).

Editing a NetworkManager TUI connection
From the NetworkManager TUI screen displayed, here is how to edit
an existing connection.

1. Edit a connection: With “Edit a connection” highlighted, press
Enter. A list of network devices (usually wired or wireless
Ethernet cards) is displayed, along with any wireless networks to
which you have connected in the past.

2. Network devices: Highlight one of the network devices (in my
case, I chose a wired Ethernet interface) and press Enter.

3. IPv4 Configuration: Move to the IPv4 Configuration show
button and press Enter. The Edit Connection window that appears
lets you change information relating to the selected network
device.

4. Change to Manual: You can leave the Profile Name and Device
fields as they are. By default, Automatic is enabled. Automatic is
what allows the network interface to come up automatically on
the network if a DHCP service is available. To enter address and
other information yourself, use the Tab key to highlight the
Automatic field and press the spacebar; then use the arrow keys to
highlight Manual and press Enter.

5. Addresses: Now fill in the address information (IP address and
netmask). For example, 192.168.0.150/24 (where 24 is the CIDR
equivalent for the 255.255.255.0 netmask).

6. Gateway: Type in the IP address for the computer or router that
is supplying the route to the Internet.

7. DNS servers: Type in the IP addresses of either one or two DNS
servers to tell the system where to go to translate hostnames you
request into IP addresses.

8. Search domains: The Search domains entries are used when
you request a host from an application without using a fully
qualified domain name. For example, if you type ping host1 with
an example.com search path, the command would try to send ping
packets to host1.example.com.

9. Routing: You can set custom routes by highlighting Edit in the
Routing field and pressing Enter. Fill in the Destination/Prefix
and Next Hop fields and select OK to save the new custom route.

10. Other selections: Of the other selections on the screen,
consider setting “Never use this network for default route” if the
network doesn't connect to wider networks and “Ignore
automatically obtained routes” if you don't want those features to
be set automatically from the network. Figure 14.8 shows the
screen after Manual has been selected and the address
information has been filled in.

http://example.com
http://host1.example.com

Tab to the OK button and press the spacebar. Then click Quit to exit.

Understanding networking configuration files
Whether you change your network setup using NetworkManager or
nmtui, most of the same configuration files are updated. In Fedora and
RHEL, network interfaces and custom routes are set in files in the
/etc/sysconfig/network-scripts directory.

Open the /usr/share/doc/initscripts/sysconfig.txt file for
descriptions of network-scripts configuration files (available from the
initscripts package).

FIGURE 14.8 Set static IP addresses by selecting Manual from the
Edit Connection screen.

One thing to be careful about is that NetworkManager believes that it
controls the files in the network-scripts directory. So keep in mind that
if you set manual addresses on an interface that NetworkManager has
configured for DHCP, it could overwrite changes that you made
manually to the file.

Network interface files

Configuration files for each wired, wireless, ISDN, dialup, or other
type of network interface are represented by files in the
/etc/sysconfig/network-scripts directory that begin with ifcfg-
interface. Note that interface is replaced by the name of the network
interface.

Given a network interface for a wired NIC as enp4s0, here's an example
of an ifcfg-enp4s0 file for that interface, configured to use DHCP:

DEVICE=enp4s0

TYPE=Ethernet

BOOTPROTO=dhcp

ONBOOT=yes

DEFROUTE=yes

UUID=f16259c2-f350-4d78-a539-604c3f95998c

IPV4_FAILURE_FATAL=no

IPV6INIT=yes

IPV6_AUTOCONF=yes

IPV6_DEFROUTE=yes

IPV6_FAILURE_FATAL=no

NAME="System enp4s0"

PEERDNS=yes

PEERROUTES=yes

IPV6_PEERDNS=yes

IPV6_PEERROUTES=yes

In this ifcfg-enp4s0 example, the first two lines set the device name
and the type of interface to Ethernet. The BOOTPROTO variable is set to
dhcp, which causes it to request address information from a DHCP
server. With ONBOOT=yes, the interface starts automatically at system
boot time. IPV6 settings say to initialize IPV6 and use the IPV6
settings that are presented, but the interface will continue to initialize
if there is no IPV6 network available. Other settings say to use peer
DNS automatically and route values that are detected.

Here's what a simple ifcfg-enp4s1 file might look like for a wired
Ethernet interface that uses static IP addresses:

DEVICE=enp4s1

HWADDR=00:1B:21:0A:E8:5E

TYPE=Ethernet

BOOTPROTO=none

ONBOOT=yes

USERCTL=no

IPADDR=192.168.0.140

NETMASK=255.255.255.0

GATEWAY=192.168.0.1

In this ifcfg-enp4s1 example, because this is setting the address and
other information statically, BOOTPROTO is set to none. Other differences
are needed to set the address information that is normally gathered
from a DHCP server. In this case, the IP address is set to
192.168.0.140 with a netmask of 255.255.255.0. The
GATEWAY=192.168.0.1 identifies the address of the router to the
Internet.

Here are a couple of other settings that might interest you:

PEERDNS: Setting PEERDNS=no prevents DHCP from overwriting the
/etc/resolv.conf file. This allows you to set which DNS servers
your system uses without fear of that information being erased by
data that is provided by the DHCP server.

DNS?: If an ifcfg file is being managed by NetworkManager, it sets
the address of DNS servers using DNS? entries. For example,
DNS1=192.168.0.2 causes that IP address to be written to
/etc/resolv.conf as the first DNS server being used on the
system. You can have multiple DNS? entries (DNS2=, DNS3=, and so
on).

In addition to configuring the primary network interfaces, you can also
create files in the /etc/sysconfig/network-scripts directory that can
be used to set aliases (multiple IP addresses for the same interface),
bonded interfaces (multiple NICs listening on the same address), and
custom routes. Those are described later in this chapter.

Other networking files
In addition to the network interface files, there are other network
configuration files that you can edit directly to configure Linux
networking. Here are some of those files.

/etc/sysconfig/network file
System-wide settings associated with your local networking can be
included in your /etc/sysconfig/network file. The system's hostname

was commonly set in this file up to RHEL 6, but other settings can be
added to this file as well. Here is an example of the contents of an
/etc/sysconfig/network file:

GATEWAY=192.168.0.1

In the previous example, the default GATEWAY is set to 192.168.0.1.
Different interfaces can use different GATEWAY addresses. For other
settings that can appear in the network files, check the sysconfig.txt
file in the /usr/share/doc/initscripts directory.

/etc/hostname file
In RHEL and Fedora releases, the system's hostname is stored in the
/etc/hostname file. For example, if the file included the hostname
host1.example.com, that hostname would be set each time the system
booted up. You can check how the current hostname is set at any time
by typing the hostname command.

/etc/hosts file
Before DNS was created, translating hostnames to IP addresses was
done by passing around a single hosts file. While there were only a few
dozen and then a few hundred hosts on the Internet, this approach
worked pretty well. But as the Internet grew, the single hosts file
became unscalable and DNS was invented.

The /etc/hosts file still exists on Linux systems. It can still be used to
map IP addresses to hostnames. The /etc/hosts file is a way to set up
names and addresses for a small local network or just create aliases in
order to make it easier to access the systems that you use all the time.

Here's an example of an /etc/hosts file:

127.0.0.1 localhost localhost.localdomain

::1 localhost localhost.localdomain

192.168.0.201 node1.example.com node1 joe

192.168.0.202 node2.example.com node2 sally

The first two lines (127.0.0.1 and ::1) set addresses for the local
system. The IPv4 address for the local host is 127.0.0.1; the IPv6
address for the local host is ::1. There are also entries for two IP

http://host1.example.com

addresses. You could reach the first IP address (192.168.0.201) by the
names node1.example.com, node1, or joe. For example, typing ping joe
results in packets being sent to 192.168.0.201.

/etc/resolv.conf file
DNS servers and search domains are set in the /etc/resolv.conf file.
If NetworkManager is enabled and running, you should not edit this
file directly. Using DNS?= entries from ifcfg-* files, NetworkManager
overwrites the /etc/resolv.conf file so that you would lose any entries
you add to that file. Here's an example of the /etc/resolv.conf file
that was modified by NetworkManager:

Generated by NetworkManager

nameserver 192.168.0.2

nameserver 192.168.0.3

Each nameserver entry identifies the IP address of a DNS server. The
order defines the order in which the DNS servers are checked. It's
normal to have two or three nameserver entries, in case the first is not
available. More than that, and it can take too long for an unresolvable
hostname to get checked for each server.

Another type of entry that you can add to this file is a search entry. A
search entry lets you indicate domains to be searched when a
hostname is requested by its base name instead of its entire fully
qualified domain name. You can have multiple search entries by
identifying one or more domain names after the search keyword, as in
this example:

search example.com example.org example.net

The search options are separated by spaces or tabs.

/etc/nsswitch.conf
Unlike in earlier releases, the /etc/nsswitch.conf file is managed by
the authselect command and should not be modified manually. To
make changes, edit the /etc/authselect/user-nsswitch.conf file and
run authselect apply-changes.

Settings in the /etc/nsswitch.conf file determine that hostname

http://node1.example.com

resolution is done by first searching the local /etc/hosts file (files) and
then DNS servers listed in the /etc/resolv.conf file (dns). The
myhostname value is used to ensure that an address is always returned
for the host. This is how the hosts entry in the /etc/resolv.conf file
appears in Red Hat Enterprise Linux:

hosts: files dns myhostname

You can add other locations, such as Network Information Service (nis
or nisplus) databases, for querying hostname-to-IP-address
resolution. You can also change the order in which the different
services are queried. You can check that hostname-to-IP-address
resolution is working properly using different commands.

If you want to check that your DNS servers are being queried properly,
you can use the host or dig commands, as in, for example:

$ host redhat.com

redhat.com has address 209.132.183.105

redhat.com mail is handled by 10 us-smtp-inbound-

1.mimecast.com.

redhat.com mail is handled by 10 us-smtp-inbound-

2.mimecast.com.

$ dig redhat.com

; <<>> DiG 9.11.11-RedHat-9.11.11-1.fc30 <<>> redhat.com

;; global options: +cmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 9948

;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0,

ADDITIONAL: 1

;; OPT PSEUDOSECTION:

; EDNS: version: 0, flags:; udp: 4096

;; QUESTION SECTION:

;redhat.com. IN A

…

;; ANSWER SECTION:

redhat.com. 3600 IN A 09.132.183.105

;; Query time: 49 msec

;; SERVER: 8.8.8.8#53(8.8.8.8)

;; WHEN: Sat Nov 23 19:16:14 EST 2019

By default, the host command produces simpler output for DNS
queries. It shows the IP address for redhat.com and the names of the
mail servers (MX records) that serve redhat.com. The dig command

http://redhat.com
http://redhat.com

shows information similar to what appears in the files that hold DNS
records. The QUESTION SECTION part of the output shows that the
address section asked for the address of redhat.com and the ANSWER
SECTION part showed the answer (209.132.183.105). You can also see
the address of the DNS server that was queried.

The host and dig commands are only used to query DNS servers. They
don't check the nsswitch.conf file to find other places to query, such as
the local hosts file. For that, you would have to use the getent
command:

getent hosts node1

192.168.0.201 node1

This getent example finds a host named node1 that was entered into
my local /etc/hosts file. The getent command can be used to query
any information setup in the nsswitch.conf file. For example, typing
getent passwd root shows the entry for the root user account in the
local file, but it can also query a remote LDAP database for user
information if you have configured that feature, as described in
Chapter 11, “Managing User Accounts.”

Setting alias network interfaces
Sometimes you might want your network interface card listening on
multiple IP addresses. For example, if you were setting up a web server
that was serving secure content (https) for multiple domains
(example.com, example.org, and so on), each domain would require a
separate IP address (associated with a separate certificate). In that
case, instead of adding multiple network interface cards to the
computer, you could simply create multiple aliases on a single NIC.

To create an alias network interface in RHEL 6 and earlier Fedora
releases, you just have to create another ifcfg- file. Following the
example of an eth0 interface on a RHEL system, you could create an
eth0:0 interface associated with the same network interface card. To
do this, create a file in the /etc/sysconfig/network-scripts directory
called ifcfg-eth0:0 that contains information such as the following:

DEVICE=eth0:0

http://redhat.com
http://example.com
http://example.org

ONPARENT=yes

IPADDR=192.168.0.141

NETMASK=255.255.255.0

The example code creates an alias for the network interface eth0 called
eth0:0. Instead of ONBOOT, the ONPARENT entry says to bring up this
interface if the parent (eth0) is started and listen on address
192.168.0.141. You can bring up that interface by typing ifup eth0:0.
You can then check that the interface came up using the ip command:

$ ip addr show eth0

2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc

 pfifo_fast state UP qlen 1000

 link/ether f0:de:f1:28:46:d9 brd ff:ff:ff:ff:ff:ffinet

 192.168.0.140/24 brd 192.168.0.255 scope global

 eth0inet 192.168.0.141/24 brd 192.168.0.255 scope global

secondary

 eth0:0inet6 fe80::f2de:f1ff:fe28:46d9/64 scope link

 valid_lft forever preferred_lft forever

You can see that the network interface card represented by eth0 is
listening on two addresses: 192.168.0.140 (eth0) and 192.168.0.141
(eth0:0). So, this system will respond to packets destined for either of
those two addresses. You could add more IP addresses to that
interface by creating more ifcfg-eth0:? files (ifcfg-eth0:1, ifcfg-
eth0:2, and so on).

In more recent RHEL and Fedora systems, you can create aliases
directly in the primary ifcfg file for an alias. For example, a primary
(192.168.0.187) and alias (192.168.99.1) address for a NIC interface
named p4p1 might be represented by the following address settings in
the ifcfg-p4p1 file:

IPADDR=192.168.0.187

PREFIX=24

IPADDR1=192.168.99.1

PREFIX1=24

Setting up Ethernet channel bonding
Ethernet channel bonding allows you to have more than one network
interface card on a computer associated with a single IP address.
There are several reasons you might want to do this:

High availability Multiple NICs on the same IP address can
ensure that if one subnet goes down or one NIC breaks, the
address can still be reached on a NIC connected to another
subnet.

Performance If there is too much network traffic to be handled
by one NIC, you can spread that traffic across multiple NICs.

In Red Hat Enterprise Linux and Fedora on a computer with multiple
NICs, you can set up Ethernet channel bonding by creating a few ifcfg
files and loading the necessary module. You can start with one
bonding file (for example, ifcfg-bond0) and then point multiple ifcfg-
eth? files at that bond interface. Then you can load the bond module.

Depending on the type of bonding that you want to do, you can set
your bonding interface to different modes. Using the BONDING_OPTS
variable, you define the mode and other bonding options (all of which
are passed to the bonding module). You can read about the bonding
module by entering modinfo bonding or by installing the kernel-docs
package and reading the bonding.txt file from the
/usr/share/doc/kernel-doc*/Documentation/networking/directory.

Here is an example of the file that defines a bonded interface. The file
in this example is /etc/sysconfig/network-scripts/ifcfg-bond0:

DEVICE=bond0

ONBOOT=yes

IPADDR=192.168.0.50

NETMASK=255.255.255.0

BOOTPROTO=none

BONDING_OPTS="mode=active-backup"

The bond0 interface in this example uses the IP address 192.168.0.50.
It starts up on boot. The BONDING_OPTS sets the bonding mode to active-
backup. This means that only one NIC is active at a time, and the next
NIC only takes over when the previous one fails (failover). No network
interface card is associated with the bond0 interface yet. For that, you
must create separate ifcfg file options. For example, create an
/etc/sysconfig/network-scripts/ifcfg-eth0 that looks like the
following (then create eth1, eth2, eth3, and so on for each NIC that you
want to use in the bonding interface):

DEVICE=eth0

MASTER=bond0

SLAVE=yes

BOOTPROTO=none

ONBOOT=yes

With the eth0 interface used as part of the bond0 interface, there is no
IP address assigned. That's because the eth0 interface uses the IP
address from the bond0 interface by defining itself as a slave
(SLAVE=yes) to bond0 (MASTER=bond0).

The last thing that you want to do is to make sure that the bond0
interface is set to use the bonding module. To do that, create an
/etc/modprobe.d/bonding.conf file that contains the following entry:

alias bond0 bonding

Because all of the interfaces are set to ONBOOT=yes, the bond0 interface
starts and all of the eth? interfaces are available as they are needed.

Setting custom routes
On a simple network configuration, communications that are destined
for the local network are directed to the appropriate interface on your
LAN, while communications for hosts outside of your LAN go to a
default gateway to be sent on to remote hosts. As an alternative, you
can set custom routes to provide alternative paths to specific networks.

To set a custom route in Fedora and RHEL, you create a configuration
file in the /etc/sysconfig/network-scripts directory. In that route,
you define the following:

GATEWAY? The IP address of the node on the local network that
provides the route to the subnetwork represented by the static
route.

ADDRESS? The IP address representing the network that can be
reached by the static route.

NETMASK? The netmask that determines which part of the ADDRESS?
represents the network and which represents the hosts that can be
reached on that network.

The name of each custom route file is route-interface. So, for
example, a custom route that can be reached through your eth0
interface would be named route-eth0. You could have multiple custom
routes in that file, with each route entry replacing the ? with the
interface number:

ADDRESS0=192.168.99.0

NETMASK0=255.255.255.0

GATEWAY0=192.168.0.5

In this example, any packet destined for a host on the 192.168.99
network would be sent through the local eth0 interface and directed to
the gateway node at 192.168.0.5. Presumably, that node would provide
a route to another network containing hosts in the 192.168.99 address
range. This route would take effect when the eth0 network interface
was restarted.

To check that the route is working after you restart the network
interface, you could type the following:

route

Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref

Use Iface

default 192.168.0.1 0.0.0.0 UG 0 0

0 eth0

192.168.0.0 * 255.255.255.0 U 1 0

0 eth0

192.168.99.0 192.168.0.5 255.255.255.0 UG 0 0

0 eth0

The output from the route -n command shows that the default route
(anything not destined for the local network 192.168.0 or the
192.168.99 network) is via the 192.168.0.1 address. Any packets
destined for the 192.168.99 network are directed through the address
192.168.0.5.

If you wanted to add more custom routes, you could add them to this
same route-eth0 file. The next set of information would be named
ADDRESS1, NETMASK1, GATEWAY1, and so on.

Configuring Networking in the Enterprise
So far, the network configuration described in this chapter has
centered on setting up single systems to connect to a network.
Features available in Linux can go well beyond that by providing
software that supports the actual network infrastructure needed by
host computers to communicate.

The following sections introduce you to a few of the network
infrastructure types of services available in Linux. Full
implementation of these features is beyond the scope of this book, but
know that if you find yourself needing to manage network
infrastructure features, the following sections will give you a sense of
how those features are implemented in Linux.

Configuring Linux as a router
If you have more than one network interface on a computer (typically
two or more NICs), you can configure Linux as a router. To make this
happen, all that is needed is a change to one kernel parameter that
allows packet forwarding. To turn on the ip_forward parameter
immediately and temporarily, enter the following as root:

cat /proc/sys/net/ipv4/ip_forward

0

echo 1> /proc/sys/net/ipv4/ip_forward

cat /proc/sys/net/ipv4/ip_forward

1

Packet forwarding (routing) is disabled by default, with the value of
ip_forward set to 0. By setting it to 1, packet forwarding is immediately
enabled. To make this change permanent, you must add that value to
the /etc/sysctl.conf file, so that it appears as follows:

net.ipv4.ip_forward = 1

With that file modified as shown, each time the system reboots, the
value for ip_forward is reset to 1. (Notice that net.ipv4.ip_forward
reflects the actual location of the ip_forward file, minus /proc/sys, and

with dots replacing slashes. You can change any kernel parameters set
in the /proc/sys directory structure in this way.)

When a Linux system is used as a router, it is often used as a firewall
between a private network and a public network, such as the Internet.
If that is the case, you might also want to use that same system as a
firewall that does network address translation (NAT) and provides
DHCP service, so the systems on the private network can route
through the Linux system using private IP addresses. (See Chapter 25,
“Securing Linux on a Network,” for information on working with
Linux firewall rules using the iptables facility.)

Configuring Linux as a DHCP server
Not only can a Linux system use a DHCP server to get its IP address
and other information, it can also be configured to act as a DHCP
server itself. In its most basic form, a DHCP server can hand out IP
addresses from a pool of addresses to any system that requests an IP
address. Usually, however, the DHCP server also distributes the
locations of DNS servers and the default gateway.

Configuring a DHCP server is not something that should be done
without some thought. Don't add a DHCP server on a network that is
not under your control and that already has a working DHCP server.
Many clients are set up to get address information from any DHCP
server that will hand it out.

DHCP service is provided by the dhcp-server package in Fedora and
RHEL. The service is named dhcpd. The primary configuration file is
/etc/dhcp/dhcpd.conf for IPv4 networks (there is a dhcpd6.conf file in
the same directory to provide DHCP service for IPv6 networks). By
default, the dhcpd daemon listens on UDP port 67, so remember to
keep that port open on your firewall.

To configure a DHCP server, you could copy the dhcpd.conf.example
file from the /usr/share/doc/dhcp-server directory and replace the
/etc/dhcp/dhcpd.conf file. Then modify it as you like. Before using that
file, however, you want to change the domain-name options to reflect
your domain and IP address ranges to suit those you are using. The
comments in the file will help you do this.

When you install some virtualization and cloud services on a Linux
system, a DHCP server is set up by default for you within that system.
For example, when you install KVM and start the libvirtd service in
RHEL or Fedora, it automatically configures a default private network
in the 192.168.122.0/24 address range. When you launch virtual
machines, they are given IP addresses in that range. When you install
and start the Docker service on those Linux distributions, it likewise
sets up a private network and hands out IP addresses to Docker
containers launched on that system.

Configuring Linux as a DNS server
In Linux, most professional Domain Name System (DNS) servers are
implemented using the Berkeley Internet Name Domain (BIND)
service. This is implemented in Fedora and RHEL by installing the
bind, bind-utils, and bind-libs packages. For added security, some
people install the bind-chroot package.

By default, bind is configured by editing the /etc/named.conf file.
Hostname-to-IP-address mapping is done in zone files located in the
/var/named directory. If you install the bind-chroot package, bind
configuration files are moved under the /var/named/chroot directory,
which attempts to replicate the files from /etc and /var that are
needed to configure bind so that the named daemon (which provides
the service) is confined to the /etc/named/chroot directory structure.

If you are interested in trying out bind, I recommend that you first try
it out by configuring DNS for a small home network behind a firewall
as a way to make it easier for the people in your household to
communicate with each other. You can lock down the IP addresses of
the machines in your home by attaching MAC addresses of each
computer's network interface card to specific IP addresses on a DHCP
server and then mapping those names to addresses in a DNS server.

CAUTION
Before you create a public DNS server, keep in mind that it is very
important to secure your DNS server properly. A cracked public
DNS server can be used to redirect traffic to any server the bad
guys choose. So, if you are using that server, you are in danger of
being presented with sites that are not the sites you think they are.

Configuring Linux as a proxy server
A proxy server provides a means of restricting network traffic from a
private network to a public one, such as the Internet. Such servers
provide an excellent way to lock down a computer lab at a school or
restrict websites that employees can visit from work.

By physically setting up Linux as a router but configuring it as a proxy
server, all of the systems on your home or business network can be
configured to access the Internet using only certain protocols and only
after you filter the traffic.

Using the Squid Proxy Server, which comes with most Linux systems
(squid package in Fedora and RHEL), you can enable the system to
accept requests to web servers (HTTP and HTTPS), file servers (FTP),
and other protocols. You can restrict which systems can use your
proxy server (by hostname or IP address) and even limit which sites
they can visit (by specific address, range of addresses, hostname, or
domain names).

Configuring a squid proxy server can be as simple as installing the
squid package, editing the /etc/squid/squid.conf file, and starting the
squid service. The file comes with a recommended minimal
configuration. However, you might want to define the hosts (based on
IP address or name) that you want to allow to use the service. There
are blacklists available with squid that allow you to deny access to
whole sets of sites that might be inappropriate for children to visit.

Summary
Most network connections from a Linux desktop or laptop system can
be made with little or no user intervention. If you use
NetworkManager over a wired or wireless Ethernet connection,
address and server information needed to start up can be
automatically obtained from a DHCP server.

With NetworkManager's graphical interface, you can do some network
configuration, if you like. You can set static IP addresses and select the
name server and gateway computers to use. To do more manual and
complex network configuration, consider working more directly with
network configuration files.

Network configuration files in Linux can be used to set up more
advanced features such as Ethernet channel bonding.

Beyond the basics of network connectivity in Linux, features are
available that enable you to provide network infrastructure types of
services. This chapter introduced services and features such as
routing, DHCP, and DNS that you need to know when working with
more advanced networking features in Linux.

With your networking configured, you can now begin configuring
services to run over your networks. Chapter 15, “Starting and Stopping
Services,” describes the tools that you need to enable, disable, start,
stop, and check the status of the services that are configured for your
Linux system.

Exercises
The exercises in this section help you to examine and change the
network interfaces on your Linux system as well as understand how to
configure more advanced networking features. Start these exercises on
a Linux system that has an active network connection but that is not in
the middle of some critical network activity.

I recommend that you do these exercises directly from your computer
console (in other words, don't ssh into the computer to do them).
Some of the commands that you run may interrupt your network
connectivity, and some of the configuration you do, if you make a
mistake, can result in your computer being temporarily unavailable
from the network.

There are often multiple ways to complete the tasks described in these
exercises. If you are stuck, refer to the task solutions that are provided
in Appendix B.

1. Use the desktop to check that NetworkManager has successfully
started your network interface (wired or wireless) to the network.
If it has not, then try to start your network interface.

2. Run a command to check the active network interfaces available
on your computer.

3. Try to contact google.com from the command line in a way that
ensures that DNS is working properly.

4. Run a command to check the routes being used to communicate
outside of your local network.

5. Trace the route being taken to connect to google.com.

6. View the network activity of your Linux system from the Cockpit
web user interface.

7. Create a host entry that allows you to communicate with your
local host system using the name myownhost.

8. Determine the addresses of the DNS name servers that are being

http://google.com
http://google.com

used to resolve hostnames to IP addresses on your system, then
check which is queried from your system to find the IP address for
google.com.

9. Create a custom route that directs traffic destined for the
192.168.99.0/255.255.255.0 network to some IP address on your
local network, such as 192.168.0.5 (first ensuring that the
192.168.99 network is not being used at your location).

10. Check to see if your system has been configured to allow IPv4
packets to be routed between network interfaces on your system.

http://google.com

CHAPTER 15
Starting and Stopping Services

IN THIS CHAPTER
Understanding the various Linux init services

Auditing Linux daemon-controlled services

Stopping and starting services

Changing the Linux server's default runlevel

Removing services

The primary job of a Linux server system is to offer services to local or
remote users. A server can provide access to web pages, files, database
information, streaming music, or other types of content. Name servers
can provide access to lists of host computer or usernames. Hundreds
of these and other types of services can be configured on your Linux
systems.

Ongoing services offered by a Linux system, such as access to a printer
service or login service, are typically implemented by what is referred
to as a daemon process. Most Linux systems have a method of
managing each daemon process as a service using one of several
popular initialization systems (also referred to as init systems).
Advantages of using init systems include the ability to do the
following:

Identify runlevels: Put together sets of services in what are
referred to as runlevels or targets.

Establish dependencies: Set service dependencies so, for example,
a service that requires network interfaces won't start until all
network startup services have started successfully.

Set the default runlevel: Select which runlevel or target starts up

when the system boots (a default runlevel).

Manage services: Run commands that tell individual services to
start, stop, pause, restart, or even reload configuration files.

Several different init systems are in use with Linux systems today. The
one you use depends on the Linux distribution and release that you are
using. In this chapter, I cover the following init systems that have been
used in Fedora, Red Hat Enterprise Linux, Ubuntu, and many other
Linux distributions:

SysVinit: This traditional init system was created for UNIX
System V systems in the early 1980s. It offers an easy-to-
understand method of starting and stopping services based on
runlevel. Most UNIX and Linux systems up until a few years ago
used SysVinit.

Systemd: The latest versions of Fedora and RHEL use the systemd
init system. It is the most complex of the init systems, but it also
offers much more flexibility. Systemd offers not only features for
starting and working with services, but also lets you manage
sockets, devices, mount points, swap areas, and other unit types.

NOTE
If you are using an older version of Ubuntu, you probably used
Upstart as your initialization system. Beginning with Ubuntu 15.04
(released April 28, 2015), Upstart was replaced by the systemd
initialization daemon. Thus, Upstart will not be described in this
book.

This chapter describes the SysVinit and systemd init systems. In the
process of using the init system that matches your Linux distribution,
you learn how the boot process works to start services, how you can
start and stop services individually, and how you enable and disable
services.

Understanding the Initialization Daemon (init
or systemd)
In order to understand service management, you need to understand
the initialization daemon. The initialization daemon can be thought of
as the “mother of all processes.” This daemon is the first process to be
started by the kernel on the Linux server. For Linux distributions that
use SysVinit, the init daemon is literally named init. For systemd, the
init daemon is named systemd.

The Linux kernel has a process ID (PID) of 0. Thus, the initialization
process (init or systemd) daemon has a parent process ID (PPID) of 0,
and a PID of 1. Once started, init is responsible for spawning
(launching) processes configured to be started at the server's boot
time, such as the login shell (getty or mingetty process). It is also
responsible for managing services.

The Linux init daemon was based on the UNIX System V init
daemon. Thus, it is called the SysVinit daemon. However, it was not
the only classic init daemon. The init daemon is not part of the Linux
kernel. Therefore, it can come in different flavors, and Linux
distributions can choose which flavor to use. Another classic init
daemon was based on Berkeley UNIX, also called BSD. Therefore, the
two original Linux init daemons were BSD init and SysVinit.

The classic init daemons worked without problems for many years.
However, these daemons were created to work within a static
environment. As new hardware, such as USB devices, came along, the
classic init daemons had trouble dealing with these and other hot-
plug devices. Computer hardware had changed from static to event
based. New init daemons were needed to deal with these fluid
environments.

In addition, as new services came along, the classic init daemons had
to deal with starting more and more services. Thus, the entire system
initialization process was less efficient and ultimately slower.

The modern initialization daemons have tried to solve the problems of

inefficient system boots and non-static environments. The most
popular of the new initialization daemons is systemd. Ubuntu, RHEL,
and Fedora distributions have made the move to the systemd daemon
while maintaining backward compatibility to the classic SysVinit,
Upstart, or BSD init daemons.

The systemd daemon, available from
http://docs.fedoraproject.org/en-US/quick-docs/understanding-and-

administering-systemd, was written primarily by Lennart Poettering, a
Red Hat developer. It is currently used by all of the latest versions of
Fedora, RHEL, OpenSUSE, and Ubuntu.

In order to manage your services properly, you need to know which
initialization daemon your server has. Figuring that out can be a little
tricky. The initialization process running on a SysVinit or Upstart is
named init. For the first systemd systems, it was also called init but is
now named systemd. Running ps -e can immediately tell you if yours
is a systemd system:

ps -e | head

 PID TTY TIME CMD

 1 ? 00:04:36 systemd

 2 ? 00:00:03 kthreadd

 3 ? 00:00:15 ksoftirqd/0

If PID 1 is the init daemon for your system, try looking on the init
Wikipedia page (http://wikipedia.org/wiki/Init) under “Other
implementations.” This will help you understand if your init daemon
is SysVinit, Upstart, or some other initialization system.

Understanding the classic init daemons
The classic init daemons, SysVinit and BSD init, are worth
understanding, even if your Linux server has a different init daemon.
Not only is backward compatibility to the classics often used in the
newer init daemons, but many are based upon them.

The classic SysVinit and BSD init daemons operate in a very similar
fashion. Although in the beginning they may have been rather
different, over time very few significant differences remained. For
example, the older BSD init daemon would obtain configuration

http://docs.fedoraproject.org/en-US/quick-docs/understanding-and-administering-systemd
http://wikipedia.org/wiki/Init

information from the /etc/ttytab file. Now, like the SysVinit daemon,
the BSD init daemon's configuration information is taken at boot
time from the /etc/inittab file. The following is a classic SysVinit
/etc/inittab file:

cat /etc/inittab

inittab This file describes how the INIT process should

set up

Default runlevel. The runlevels used by RHS are:

0 - halt (Do NOT set initdefault to this)

1 - Single user mode

2 - Multiuser, no NFS (Same as 3, if you do not have

networking)

3 - Full multiuser mode

4 - unused

5 - X11

6 - reboot (Do NOT set initdefault to this)

#

id:5:initdefault:

System initialization.

si::sysinit:/etc/rc.d/rc.sysinit

l0:0:wait:/etc/rc.d/rc 0

l1:1:wait:/etc/rc.d/rc 1

l2:2:wait:/etc/rc.d/rc 2

l3:3:wait:/etc/rc.d/rc 3

l4:4:wait:/etc/rc.d/rc 4

l5:5:wait:/etc/rc.d/rc 5

l6:6:wait:/etc/rc.d/rc 6

Trap CTRL-ALT-DELETE

ca::ctrlaltdel:/sbin/shutdown -t3 -r now

pf::powerfail:/sbin/shutdown -f -h +2

"Power Failure; System Shutting Down"

If power was restored before the shutdown kicked in,

cancel it.

pr:12345:powerokwait:/sbin/shutdown -c

"Power Restored; Shutdown Cancelled"

Run gettys in standard runlevels

1:2345:respawn:/sbin/mingetty tty1

2:2345:respawn:/sbin/mingetty tty2

3:2345:respawn:/sbin/mingetty tty3

4:2345:respawn:/sbin/mingetty tty4

5:2345:respawn:/sbin/mingetty tty5

6:2345:respawn:/sbin/mingetty tty6

Run xdm in runlevel 5

x:5:respawn:/etc/X11/prefdm -nodaemon

TABLE 15.1 Standard Linux Runlevels

Runlevel
#

Name Description

0 Halt All services are shut down, and the server is
stopped.

1 or S Single
User
Mode

The root account is automatically logged in to
the server. Other users cannot log in to the
server. Only the command-line interface is
available. Network services are not started.

2 Multiuser
Mode

Users can log in to the server, but only the
command-line interface is available. On some
systems, network interfaces and services are
started; on others they are not. Originally, this
runlevel was used to start dumb terminal
devices so that users could log in (but no
network services were started).

3 Extended
Multiuser
Mode

Users can log in to the server, but only the
command-line interface is available. Network
interfaces and services are started. This is a
common runlevel for servers.

4 User
Defined

Users can customize this runlevel.

5 Graphical
Mode

Users can log in to the server. Command-line
and graphical interfaces are available. Network
services are started. This is a common runlevel
for desktop systems.

6 Reboot The server is rebooted.

The /etc/inittab file tells the init daemon which runlevel is the

default runlevel. A runlevel is a categorization number that
determines what services are started and what services are stopped. In
the preceding example, a default runlevel of 5 is set with the line
id:5:initdefault:. Table 15.1 shows the standard seven Linux
runlevels.

Linux distributions can differ slightly on the definition of each runlevel
as well as which runlevels are offered.

CAUTION
CautionThe only runlevels that should be used in the /etc/inittab
file are 2 through 5. The other runlevels could cause problems. For
example, if you put runlevel 6 in the /etc/inittab file as the
default, when the server reboots, it would go into a loop and
continue to reboot over and over again.

The runlevels are not only used as a default runlevel in the
/etc/inittab file. They can also be called directly using the init
daemon itself. Thus, if you want to halt your server immediately, you
type init 0 at the command line:

init 0

…

System going down for system halt NOW!

The init command accepts any of the runlevel numbers in Table 15.1,
allowing you to switch your server quickly from one runlevel category
to another. For example, if you need to perform troubleshooting that
requires the graphical interface to be down, you can type init 3 at the
command line:

init 3

INIT: Sending processes the TERM signal

starting irqbalance: [OK]

Starting setroubleshootd:

Starting fuse: Fuse filesystem already available.

…

Starting console mouse services: [OK]

To see your Linux server's current runlevel, simply type in the
command runlevel. The first item displayed is the server's previous
runlevel, which in the following example is 5. The second item
displayed shows the server's current runlevel, which in this example is
3.

$ runlevel

5 3

In addition to the init command, you can use the telinit command,
which is functionally the same. In the example that follows, the
telinit command is used to reboot the server by taking it to runlevel
6:

telinit 6

INIT: Sending processes the TERM signal

Shutting down smartd: [OK]

Shutting down Avahi daemon: [OK]

Stopping dhcdbd: [OK]

Stopping HAL daemon: [OK]

…

Starting killall:

Sending all processes the TERM signal… [OK]

Sending all processes the KILL signal… [OK]

…

Unmounting filesystems [OK]

Please stand by while rebooting the system

…

On a freshly booted Linux server, the current runlevel number should
be the same as the default runlevel number in the /etc/inittab file.
However, notice that the previous runlevel in the example that follows
is N. The N stands for “Nonexistent” and indicates that the server was
freshly booted to the current runlevel.

$ runlevel

N 5

How does the server know which services to stop and which ones to
start when a particular runlevel is chosen? When a runlevel is chosen,
the scripts located in the /etc/rc.d/rc#.d directory (where # is the
chosen runlevel) are run. These scripts are run whether the runlevel is
chosen via a server boot and the /etc/inittab initdefault setting or
the init or telinit command is used. For example, if runlevel 5 is
chosen, then all of the scripts in the /etc/rc.d/rc5.d directory are run;
your list will be different, depending on what services you have
installed and enabled.

ls /etc/rc.d/rc5.d

K01smolt K88wpa_supplicant

S22messagebus

K02avahi-dnsconfd K89dund S25bluetooth

K02NetworkManager K89netplugd S25fuse

K02NetworkManagerDispatcher K89pand S25netfs

K05saslauthd K89rdisc S25pcscd

K10dc:server K91capi S26hidd

K10psacct S00microcode_ctl S26udev-post

K12dc:client S04readahead_early S28autofs

K15gpm S05kudzu S50hplip

K15httpd S06cpuspeed S55cups

K20nfs S08ip6tables S55sshd

K24irda S08iptables S80sendmail

K25squid S09isdn

S90ConsoleKit

K30spamassassin S10network S90crond

K35vncserver S11auditd S90xfs

K50netconsole S12restorecond S95anacron

K50tux S12syslog S95atd

K69rpcsvcgssd S13irqbalance

S96readahead_later

K73winbind S13mcstrans S97dhcdbd

K73ypbind S13rpcbind S97yum-

updatesd

K74nscd S13setroubleshoot S98avahi-

daemon

K74ntpd S14nfslock S98haldaemon

K84btseed S15mdmonitor S99firstboot

K84bttrack S18rpcidmapd S99local

K87multipathd S19rpcgssd S99smartd

Notice that some of the scripts within the /etc/rc.d/rc5.d directory
start with a K and some start with an S. The K refers to a script that will
kill (stop) a process. The S refers to a script that will start a process.
Also, each K and S script has a number before the name of the service
or daemon that they control. This allows the services to be stopped or
started in a particular controlled order. You would not want your
Linux server's network services to be started before the network itself
was started.

An /etc/rc.d/rc#.d directory exists for all the standard Linux
runlevels. Each one contains scripts to start and stop services for its
particular runlevel.

ls -d /etc/rc.d/rc?.d

/etc/rc.d/rc0.d /etc/rc.d/rc2.d /etc/rc.d/rc4.d

/etc/rc.d/rc6.d

/etc/rc.d/rc1.d /etc/rc.d/rc3.d /etc/rc.d/rc5.d

Actually, the files in the /etc/rc.d/rc#.d directories are not scripts but
instead symbolic links to scripts in the /etc/rc.d/init.d directory.
Thus, there is no need to have multiple copies of particular scripts.

ls -l /etc/rc.d/rc5.d/K15httpd

lrwxrwxrwx 1 root root 15 Oct 10 08:15

 /etc/rc.d/rc5.d/K15httpd -> ../init.d/httpd

ls /etc/rc.d/init.d

anacron functions multipathd

rpcidmapd

atd fuse netconsole

rpcsvcgssd

auditd gpm netfs

saslauthd

autofs haldaemon netplugd

sendmail

avahi-daemon halt network

setroubleshoot

avahi-dnsconfd hidd NetworkManager

single

bluetooth hplip NetworkManagerDispatcher

smartd

btseed hsqldb nfs

smolt

bttrack httpd nfslock

spamassassin

capi ip6tables nscd

squid

ConsoleKit iptables ntpd sshd

cpuspeed irda pand

syslog

crond irqbalance pcscd tux

cups isdn psacct

udev-post

cups-config-daemon killall rdisc

vncserver

dc:client kudzu readahead_early

winbind

dc:server mcstrans readahead_later

wpa_supplicant

dhcdbd mdmonitor restorecond xfs

dund messagebus rpcbind

ypbind

firstboot microcode rpcgssd yum-

updatesd

Notice that each service has a single script in /etc/rc.d/init.d. There

aren't separate scripts for stopping and starting a service. These scripts
will stop or start a service depending upon what parameter is passed
to them by the init daemon.

Each script in /etc/rc.d/init.d takes care of all that is needed for
starting or stopping a particular service on the server. The following is
a partial example of the httpd script on a Linux system that uses the
SysVinit daemon. It contains a case statement for handling the
parameter ($1) that was passed to it, such as start, stop, status, and
so on.

cat /etc/rc.d/init.d/httpd

#!/bin/bash

#

httpd Startup script for the Apache HTTP Server

#

chkconfig: - 85 15

description: Apache is a World Wide Web server.

It is used to serve \

HTML files and CGI.

processname: httpd

config: /etc/httpd/conf/httpd.conf

config: /etc/sysconfig/httpd

pidfile: /var/run/httpd.pid

Source function library.

. /etc/rc.d/init.d/functions

…

See how we were called.

case "$1" in

 start)

 start

 ;;

 stop)

 stop

 ;;

 status)

 status $httpd

 RETVAL=$?

 ;;

…

esac

exit $RETVAL

After the runlevel scripts linked from the appropriate /etc/rc.d/rc#.d
directory are executed, the SysVinit daemon's process spawning is
complete. The final step the init process takes at this point is to do
anything else indicated in the /etc/inittab file (such as spawn
mingetty processes for virtual consoles and start the desktop interface,
if you are in runlevel 5).

Understanding systemd initialization
The systemd initialization daemon is the newer replacement for the
SysVinit and the Upstart init daemons. This modern initialization
daemon was introduced in Fedora 15 and RHEL 7, and it is still in use
today. It is backward compatible with both SysVinit and Upstart.
System initialization time is reduced by systemd because it can start
services in a parallel manner.

Learning systemd basics
With the SysVinit daemon, services are stopped and started based
upon runlevels. The systemd service is concerned with runlevels, but it
implements them in a different way with what are called target units.
Although the main job of systemd is to start and stop services, it can
manage other types of things referred to as units. A unit is a group
consisting of a name, type, and configuration file, and it is focused on a
particular service or action. There are 12 systemd unit types:

automount

device

mount

path

service

snapshot

socket

 target

timer

swap

slice

scope

The two primary systemd units with which you need to be concerned
for dealing with services are service units and target units. A service
unit is for managing daemons on your Linux server. A target unit is
simply a group of other units.

The example that follows shows several systemd service units and
target units. The service units have familiar daemon names, such as
cups and sshd. Note that each service unit name ends with .service.
The target units shown have names like sysinit. (sysinit is used for
starting up services at system initialization.) The target unit names
end with .target.

systemctl list-units | grep .service

…

cups.service loaded active running CUPS Printing

Service

dbus.service loaded active running D-Bus Message

Bus

…

NetworkManager.service loaded active running Network Manager

prefdm.service loaded active running Display Manager

remount-rootfs.service loaded active exited Remount Root FS

rsyslog.service loaded active running System Logging

…

sshd.service loaded active running OpenSSH server

daemon

systemd-logind.service loaded active running Login Service

…

systemctl list-units | grep .target

basic.target loaded active active Basic System

cryptsetup.target loaded active active Encrypted

Volumes

getty.target loaded active active Login Prompts

graphical.target loaded active active Graphical

Interface

local-fs-pre.target loaded active active Local File

Systems (Pre)

local-fs.target loaded active active Local File

Systems

multi-user.target loaded active active Multi-User

network.target loaded active active Network

remote-fs.target loaded active active Remote File

Systems

sockets.target loaded active active Sockets

sound.target loaded active active Sound Card

swap.target loaded active active Swap

sysinit.target loaded active active System

Initialization

syslog.target loaded active active Syslog

The Linux system unit configuration files are located in the
/lib/systemd/system and /etc/systemd/system directories. You could
use the ls command to look through those directories, but the
preferred method is to use an option on the systemctl command as
follows:

systemctl list-unit-files --type=service

UNIT FILE STATE

…

cups.service enabled

…

dbus.service static

…

NetworkManager.service enabled

…

poweroff.service static

…

sshd.service enabled

sssd.service disabled

…

276 unit files listed.

The unit configuration files shown in the preceding code are all
associated with a service unit. Configuration files for target units can
be displayed via the following method:

systemctl list-unit-files --type=target

UNIT FILE STATE

anaconda.target static

basic.target static

bluetooth.target static

cryptsetup.target static

ctrl-alt-del.target disabled

default.target enabled

…

shutdown.target static

sigpwr.target static

smartcard.target static

sockets.target static

sound.target static

swap.target static

sysinit.target static

syslog.target static

time-sync.target static

umount.target static

43 unit files listed.

Notice that both of the configuration units’ file examples display units
with a status of static, enabled, or disabled. The enabled status means
that the unit is currently enabled. The disabled status means that the
unit is currently disabled. The next status, static, is slightly confusing.
It stands for “statically enabled,” and it means that the unit is enabled
by default and cannot be disabled, even by root.

The service unit configuration files contain lots of information, such as
what other services must be started, when this service can be started,
which environmental file to use, and so on. The following example
shows the sshd daemon's unit configuration file:

cat /lib/systemd/system/sshd.service

[Unit]

Description=OpenSSH server daemon

Documentation=man:sshd(8) man:sshd_config(5)

After=network.target sshd-keygen.target

[Service]

Type=notify

EnvironmentFile=-/etc/crypto-policies/back-

ends/opensshserver.config

EnvironmentFile=-/etc/sysconfig/sshd

ExecStart=/usr/sbin/sshd -D $OPTIONS $CRYPTO_POLICY

ExecReload=/bin/kill -HUP $MAINPID

KillMode=process

Restart=on-failure

RestartSec=42s

[Install]

WantedBy=multi-user.target

[Install]

WantedBy=multi-user.target

This basic service unit configuration file has the following options:

Description: A free-form description (comment line) of the
service.

Documentation: Lists man pages for the sshd daemon and
configuration file.

After: Configures ordering. In other words, it lists which units
should be activated before this service is started.

Environment File: The service's configuration files.

ExecStart: The command used to start this service.

ExecReload: The command used to reload this service.

WantedBy: The target unit to which this service belongs.

Notice that the target unit, multi-user.target, is used in the sshd
service unit configuration file. The sshd service unit is wanted by the
multi-user.target. In other words, when the multi-user.target unit is
activated, the sshd service unit is started.

You can view the various units that a target unit will activate by using
the following command:

systemctl show --property "Wants" multi-user.target

Wants=irqbalance.service firewalld.service plymouth-

quit.service

systemd-update-utmp-runlevel.service systemd-ask-password-

wall.path…

(END) q

Unfortunately, the systemctl command does not format the output for
this well. It literally runs off the right edge of the screen so you cannot
see the full results. Also, you must enter q to return to the command
prompt. To fix this problem, pipe the output through some formatting
commands to produce a nice, alphabetically sorted display, as shown
in the example that follows:

systemctl show --property "Wants" multi-user.target \

 | fmt -10 | sed 's/Wants=//g' | sort

atd.service

auditd.service

avahi-daemon.service

chronyd.service

crond.service

…

This display shows all of the services and other units that will be
activated (started), including sshd, when the multi-user.target unit is
activated. Remember that a target unit is simply a grouping of other
units, as shown in the preceding example. Also notice that the units in
this group are not all service units. There are path units and other
target units as well.

A target unit has both Wants and requirements, called Requires. A
Wants means that all of the units listed are triggered to activate
(start). If they fail or cannot be started, no problem—the target unit
continues on its merry way. The preceding example is a display of
Wants only.

A Requires is much more stringent than a Wants and potentially
catastrophic. A Requires means that all of the units listed are triggered
to activate (start). If they fail or cannot be started, the entire unit
(group of units) is deactivated.

You can view the various units a target unit Requires (must activate or
the unit will fail), using the command in the example that follows.
Notice that the Requires output is much shorter than the Wants for
the multi-user.target. Thus, no special formatting of the output is
needed.

systemctl show --property "Requires" multi-user.target

Requires=basic.target

The target units also have configuration files, as do the service units.
The following example shows the contents of the multi-user.target
configuration file.

cat /lib/systemd/system/multi-user.target

This file is part of systemd.

#

…

[Unit]

Description=Multi-User

Documentation=man:systemd.special(7)

Requires=basic.target

Conflicts=rescue.service rescue.target

After=basic.target rescue.service rescue.target

AllowIsolate=yes

This basic target unit configuration file has the following options:

Description: This is just a free-form description of the target.

Documentation: Lists the appropriate systemd man page.

Requires: If this multi-user.target gets activated, the listed target
unit is also activated. If the listed target unit is deactivated or
fails, then multi-user.target is deactivated. If there are no After
and Before options, then both multi-user.target and the listed
target unit activate simultaneously.

Conflicts: This setting avoids conflicts in services. Starting multi-
user.target stops the listed targets and services, and vice versa.

After: This setting configures ordering. In other words, it
determines which units should be activated before starting this
service.

AllowIsolate: This option is a Boolean setting of yes or no. If this
option is set to yes, then this target unit, multi-user.target, is
activated along with its dependencies and all others are
deactivated.

To get more information on these configuration files and their options,
enter man systemd.service, man systemd.target, and man systemd.unit
at the command line.

For the Linux server using systemd, the boot process is easier to follow
now that you understand systemd target units. At boot, systemd
activates the default.target unit. This unit is aliased either to multi-
user.target or graphical.target. Thus, depending upon the alias set,
the services targeted by the target unit are started.

If you need more help understanding the systemd daemon, you can
enter man -k systemd at the command line to get a listing of the
various systemd utilities’ documentation in the man pages.

Learning systemd's backward compatibility to SysVinit
The systemd daemon has maintained backward compatibility to the
SysVinit daemon. This allows Linux distributions time to migrate
slowly to systemd.

While runlevels are not truly part of systemd, the systemd
infrastructure has been created to provide compatibility with the
concept of runlevels. There are seven target unit configuration files
specifically created for backward compatibility to SysVinit:

runlevel0.target

runlevel1.target

runlevel2.target

runlevel3.target

runlevel4.target

 runlevel5.target

runlevel6.target

As you probably have already figured out, there is a target unit
configuration file for each of the seven classic SysVinit runlevels.
These target unit configuration files are symbolically linked to target
unit configuration files that most closely match the idea of the original
runlevel. In the example that follows, the symbolic links are shown for
runlevel target units. Notice that the runlevel target units for runlevel
2, 3, and 4 are all symbolically linked to multi-user.target. The multi-
user.target unit is similar to the legacy extended multi-user mode.

ls -l /lib/systemd/system/runlevel*.target

lrwxrwxrwx. 1 root root 15 Apr 9 04:25

/lib/systemd/system/runlevel0.target

 -> poweroff.target

lrwxrwxrwx. 1 root root 13 Apr 9 04:25

/lib/systemd/system/runlevel1.target

 -> rescue.target

lrwxrwxrwx. 1 root root 17 Apr 9 04:25

/lib/systemd/system/runlevel2.target

 -> multi-user.target

lrwxrwxrwx. 1 root root 17 Apr 9 04:25

/lib/systemd/system/runlevel3.target

 -> multi-user.target

lrwxrwxrwx. 1 root root 17 Apr 9 04:25

/lib/systemd/system/runlevel4.target

 -> multi-user.target

lrwxrwxrwx. 1 root root 16 Apr 9 04:25

/lib/systemd/system/runlevel5.target

 -> graphical.target

lrwxrwxrwx. 1 root root 13 Apr 9 04:25

/lib/systemd/system/runlevel6.target

 -> reboot.target

The /etc/inittab file still exists, but it contains only comments stating
that this configuration file is not used, and it gives some basic systemd
information. The /etc/inittab file no longer has any true functional
use. This is an example of an /etc/inittab file on a Linux server that
uses systemd.

cat /etc/inittab

inittab is no longer used.

#

ADDING CONFIGURATION HERE WILL HAVE NO EFFECT ON YOUR

SYSTEM.

#

Ctrl-Alt-Delete is handled by

/etc/systemd/system/ctrl-alt-del.target

#

systemd uses 'targets' instead of runlevels.

By default, there are two main targets:

#

multi-user.target: analogous to runlevel 3

graphical.target: analogous to runlevel 5

#

To view current default target, run:

systemctl get-default

#

To set a default target, run:

systemctl set-default TARGET.target

The /etc/inittab explains that if you want something similar to a
classic 3 or 5 runlevel as your default runlevel, you need run systemctl
default.target to set the runlevel target to the one you want. To check
what default.target is currently symbolically linked to (or in legacy
terms, to check the default runlevel), use the command shown here.
You can see that on this Linux server, the default is to start up at

legacy runlevel 3.

ls -l /etc/systemd/system/default.target

lrwxrwxrwx. 1 root root 36 Mar 13 17:27

 /etc/systemd/system/default.target ->

 /lib/systemd/system/runlevel3.target

The capability to switch runlevels using the init or telinit command
is still available. When issued, either of the commands is translated
into a systemd target unit activation request. Therefore, typing init 3
at the command line really issues the command systemctl isolate
multi-user.target. Also, you can still use the runlevel command to
determine the current legacy runlevel, but it is strongly discouraged.

The classic SysVinit /etc/inittab handled spawning the getty or
mingetty processes. The systemd init handles this via the getty.target
unit. The getty.target is activated by the multi-user.target unit. You
can see how these two target units are linked by the following
command:

systemctl show --property "WantedBy" getty.target

WantedBy=multi-user.target

Now that you have a basic understanding of classic and modern init
daemons, it's time to do some practical server administrator actions
that involve the initialization daemon.

Checking the Status of Services
As a Linux administrator, you need to check the status of the services
being offered on your server. For security reasons, you should disable
and remove any unused system services discovered through the
process. Most important for troubleshooting purposes, you need to be
able to know quickly what should and should not be running on your
Linux server.

Of course, knowing which initialization service is being used by your
Linux server is the first piece of information to obtain. How to
determine this was covered in the section “Understanding the
Initialization Daemon” earlier in this chapter. The following sections
are organized into subsections on the various initialization daemons.

Checking services for SysVinit systems
To see all of the services that are being offered by a Linux server using
the classic SysVinit daemon, use the chkconfig command. The
example that follows shows the services available on a classic SysVinit
Linux server. Note that each runlevel (0–6) is shown for each service
with a status of on or off. The status denotes whether a particular
service is started (on) or not (off) for that runlevel.

chkconfig --list

ConsoleKit 0:off 1:off 2:off 3:on 4:on 5:on

6:off

NetworkManager 0:off 1:off 2:off 3:off 4:off 5:off

6:off

…

crond 0:off 1:off 2:on 3:on 4:on 5:on

6:off

cups 0:off 1:off 2:on 3:on 4:on 5:on

6:off

…

sshd 0:off 1:off 2:on 3:on 4:on 5:on

6:off

syslog 0:off 1:off 2:on 3:on 4:on 5:on

6:off

tux 0:off 1:off 2:off 3:off 4:off 5:off

6:off

udev-post 0:off 1:off 2:off 3:on 4:on 5:on

6:off

vncserver 0:off 1:off 2:off 3:off 4:off 5:off

6:off

winbind 0:off 1:off 2:off 3:off 4:off 5:off

6:off

wpa_supplicant 0:off 1:off 2:off 3:off 4:off 5:off

6:off

xfs 0:off 1:off 2:on 3:on 4:on 5:on

6:off

ypbind 0:off 1:off 2:off 3:off 4:off 5:off

6:off

yum-updatesd 0:off 1:off 2:off 3:on 4:on 5:on

6:off

Some services in the example are never started, such as vncserver.
Other services, such as the cups daemon, are started on runlevels 2
through 5.

Using the chkconfig command, you cannot tell if a service is currently
running. To do that, you need to use the service command. To help
isolate only those services that are currently running, the service
command is piped into the grep command and then sorted, as follows:

service --status-all | grep running… | sort

anacron (pid 2162) is running…

atd (pid 2172) is running…

auditd (pid 1653) is running…

automount (pid 1952) is running…

console-kit-daemon (pid 2046) is running…

crond (pid 2118) is running…

cupsd (pid 1988) is running…

…

sshd (pid 2002) is running…

syslogd (pid 1681) is running…

xfs (pid 2151) is running…

yum-updatesd (pid 2205) is running…

You can also use both the chkconfig and the service commands to
view an individual service's settings. Using both commands in the
example that follows, you can view the cups daemon's settings.

chkconfig --list cups

cups 0:off 1:off 2:on 3:on 4:on 5:on

6:off

#

service cups status

cupsd (pid 1988) is running…

You can see that the cupsd daemon is set to start on every runlevel but
0, 1, and 6, and from the service command, you can see that it is
currently running. Also, the process ID (PID) number is given for the
daemon.

To see all of the services that are being offered by a Linux server using
systemd, use the following command:

systemctl list-unit-files --type=service | grep -v

disabled

UNIT FILE STATE

abrt-ccpp.service enabled

abrt-oops.service enabled

abrt-vmcore.service enabled

abrtd.service enabled

alsa-restore.service static

alsa-store.service static

anaconda-shell@.service static

arp-ethers.service enabled

atd.service enabled

auditd.service enabled

avahi-daemon.service enabled

bluetooth.service enabled

console-kit-log-system-restart.service static

console-kit-log-system-start.service static

console-kit-log-system-stop.service static

crond.service enabled

cups.service enabled

…

sshd-keygen.service enabled

sshd.service enabled

system-setup-keyboard.service enabled

…

134 unit files listed.

Remember that the three status possibilities for a systemd service are
enabled, disabled, or static. There's no need to include disabled to see
which services are set to be active, which is effectively accomplished by
using the -v option on the grep command, as shown in the preceding
example. The state of static is essentially enabled and thus should be
included.

To see if a particular service is running, use the following command:

systemctl status cups.service

cups.service - CUPS Scheduler

 Loaded: loaded (/lib/systemd/system/cups.service; enabled)

 Active: active (running) since Wed 2019-09-18 17:32:27

EDT; 3 days ago

 Docs: man:cupsd(8)

 Main PID: 874 (cupsd)

 Status: "Scheduler is running…"

 Tasks: 1 (limit: 12232)

 Memory: 3.1M

 CGroup: /system.slice/cups.service

 └─874 /usr/sbin/cupsd -l

The systemctl command can be used to show the status of one or more
services. In the preceding example, the printing service was chosen.
Notice that the name of the service is cups.service. A great deal of
helpful information about the service is given here, such as the fact
that it is enabled and active, its start time, and its process ID (PID) as
well.

Now that you can check the status of services and determine some
information about them, you need to know how to accomplish
starting, stopping, and reloading the services on your Linux server.

Stopping and Starting Services
The tasks of starting, stopping, and restarting services typically refer
to immediate needs—in other words, managing services without a
server reboot. For example, if you want to stop a service temporarily,
then you are in the right place. However, if you want to stop a service
and not allow it to be restarted at server reboot, then you actually need
to disable the service, which is covered in the section “Enabling
Persistent Services” later in this chapter.

Stopping and starting SysVinit services
The primary command for stopping and starting SysVinit services is
the service command. With the service command, the name of the
service that you want to control comes second in the command line.
The last option is what you want to do to the service: stop, start,
restart, and so on. The following example shows how to stop the cups
service. Notice that an OK is given, which lets you know that cupsd has
been successfully stopped:

service cups status

cupsd (pid 5857) is running…

service cups stop

Stopping cups: [OK]

service cups status

cupsd is stopped

To start a service, you simply use a start option instead of a stop
option on the end of the service command, as follows:

service cups start

Starting cups: [OK]

service cups status

cupsd (pid 6860) is running…

To restart a SysVinit service, the restart option is used. This option
stops the service and then immediately starts it again:

service cups restart

Stopping cups: [OK]

Starting cups: [OK]

service cups status

cupsd (pid 7955) is running…

When a service is already stopped, a restart generates a FAILED
status on the attempt to stop it. However, as shown in the example
that follows, the service is successfully started when a restart is
attempted:

service cups stop

Stopping cups: [OK]

service cups restart

Stopping cups: [FAILED]

Starting cups: [OK]

service cups status

cupsd (pid 8236) is running…

Reloading a service is different from restarting a service. When you
reload a service, the service itself is not stopped. Only the service's
configuration files are loaded again. The following example shows how
to reload the cups daemon:

service cups status

cupsd (pid 8236) is running…

service cups reload

Reloading cups: [OK]

service cups status

cupsd (pid 8236) is running…

If a SysVinit service is stopped when you attempt to reload it, you get a
FAILED status. This is shown in the following example:

service cups status

cupsd is stopped

service cups reload

Reloading cups: [FAILED]

Stopping and starting systemd services

For the systemd daemon, the systemctl command works for stopping,
starting, reloading, and restarting services. The options to the
systemctl command should look familiar.

Stopping a service with systemd
In the example that follows, the status of the cups daemon is checked

and then stopped using the systemctl stop cups.service command:

systemctl status cups.service

cups.service - CUPS Printing Service

 Loaded: loaded (/lib/systemd/system/cups.service;

enabled)

 Active: active (running) since Mon, 20 Apr 2020 12:36:3…

 Main PID: 1315 (cupsd)

 CGroup: name=systemd:/system/cups.service

 1315 /usr/sbin/cupsd -f

systemctl stop cups.service

systemctl status cups.service

cups.service - CUPS Printing Service

 Loaded: loaded (/lib/systemd/system/cups.service;

enabled)

 Active: inactive (dead) since Tue, 21 Apr 2020 04:43:4…

 Process: 1315 ExecStart=/usr/sbin/cupsd -f

 (code=exited, status=0/SUCCESS)

 CGroup: name=systemd:/system/cups.service

Notice that when the status is taken, after stopping the cups daemon,
the service is inactive (dead) but still considered enabled. This means
that the cups daemon is still started upon server boot.

Starting a service with systemd
Starting the cups daemon is just as easy as stopping it. The example
that follows demonstrates this ease:

systemctl start cups.service

systemctl status cups.service

cups.service - CUPS Printing Service

 Loaded: loaded (/lib/systemd/system/cups.service;

enabled)

 Active: active (running) since Tue, 21 Apr 2020 04:43:5…

 Main PID: 17003 (cupsd)

 CGroup: name=systemd:/system/cups.service

 └ 17003 /usr/sbin/cupsd -f

After the cups daemon is started, using systemctl with the status
option shows the service is active (running). Also, its process ID (PID)
number, 17003, is shown.

Restarting a service with systemd

Restarting a service means that a service is stopped and then started
again. If the service was not currently running, restarting it simply
starts the service.

systemctl restart cups.service

systemctl status cups.service

cups.service - CUPS Printing Service

 Loaded: loaded (/lib/systemd/system/cups.service;

enabled)

 Active: active (running) since Tue, 21 Apr 2020 04:45:2…

 Main PID: 17015 (cupsd)

 CGroup: name=systemd:/system/cups.service

 └ 17015 /usr/sbin/cupsd -f

You can also perform a conditional restart of a service using systemctl.
A conditional restart only restarts a service if it is currently running.
Any service in an inactive state is not started.

systemctl status cups.service

cups.service - CUPS Printing Service

 Loaded: loaded (/lib/systemd/system/cups.service; enabled)

 Active: inactive (dead) since Tue, 21 Apr 2020 06:03:32…

 Process: 17108 ExecStart=/usr/sbin/cupsd -f

 (code=exited, status=0/SUCCESS)

 CGroup: name=systemd:/system/cups.service

systemctl condrestart cups.service

systemctl status cups.service

cups.service - CUPS Printing Service

 Loaded: loaded (/lib/systemd/system/cups.service; enabled)

 Active: inactive (dead) since Tue, 21 Apr 2020 06:03:32…

 Process: 17108 ExecStart=/usr/sbin/cupsd -f

 (code=exited, status=0/SUCCESS)

 CGroup: name=systemd:/system/cups.service

Notice in the example that the cups daemon was in an inactive state.
When the conditional restart was issued, no error messages were
generated! The cups daemon was not started because conditional
restarts affect active services. Thus, it is always a good practice to
check the status of a service after stopping, starting, conditionally
restarting, and so on.

Reloading a service with systemd
Reloading a service is different from restarting a service. When you

reload a service, the service itself is not stopped. Only the service's
configuration files are loaded again. Note that not all services are
implemented to use the reload feature.

systemctl status sshd.service

sshd.service - OpenSSH server daemon

 Loaded: loaded (/usr/lib/systemd/system/sshd.service;

enabled)

 Active: active (running) since Wed 2019-09-18 17:32:27

EDT; 3 days ago

 Main PID: 1675 (sshd)

 CGroup: /system.slice/sshd.service

 └─1675 /usr/sbin/sshd -D

systemctl reload sshd.service

systemctl status sshd.service

sshd.service - OpenSSH server daemon

 Loaded: loaded (/lib/systemd/system/sshd.service;

enabled)

 Active: active (running) since Wed 2019-09-18 17:32:27

EDT; 3 days ago

 Process: 21770 ExecReload=/bin/kill -HUP $MAINPID

(code=exited, status=0/SUCCESS)

 (code=exited, status=0/SUCCESSd)

 Main PID: 1675 (sshd)

 CGroup: /system.slice/sshd.service

 └─1675 /usr/sbin/sshd -D …

Doing a reload of a service, instead of a restart prevents any pending
service operations from being aborted. A reload is a better method for
a busy Linux server.

Now that you know how to stop and start services for troubleshooting
and emergency purposes, you can learn how to enable and disable
services.

Enabling Persistent Services
You use stop and start for immediate needs, not for services that need
to be persistent. A persistent service is one that is started at server
boot time or at a particular runlevel. Services that need to be set as
persistent are typically new services that the Linux server is offering.

Configuring persistent services for SysVinit
One of the nice features of the classic SysVinit daemon is that making
a particular service persistent or removing its persistence is very easy
to do. Consider the following example:

chkconfig --list cups

cups 0:off 1:off 2:off 3:off 4:off 5:off 6:off

On this Linux server, the cups service is not started at any runlevel, as
shown with the chkconfig command. You can also check and see if any
start (S) symbol links are set up in each of the seven runlevel
directories, /etc/rc.d/rc?.d. Remember that SysVinit keeps symbolic
links here for starting and stopping various services at certain
runlevels. Each directory represents a particular runlevel; for example,
rc5.d is for runlevel 5. Notice that only files starting with a K are listed,
so there are links for killing off the cups daemon. None are listed with
S, which is consistent with chkconfig because the cups daemon does
not start at any runlevel on this server.

ls /etc/rc.d/rc?.d/*cups

/etc/rc.d/rc0.d/K10cups /etc/rc.d/rc3.d/K10cups

/etc/rc.d/rc1.d/K10cups /etc/rc.d/rc4.d/K10cups

/etc/rc.d/rc2.d/K10cups /etc/rc.d/rc5.d/K10cups

/etc/rc.d/rc6.d/K10cups

To make a service persistent at a particular runlevel, the chkconfig
command is used again. Instead of the --list option, the --level
option is used, as shown in the following code:

chkconfig --level 3 cups on

chkconfig --list cups

cups 0:off 1:off 2:off 3:on 4:off 5:off 6:off

ls /etc/rc.d/rc3.d/S*cups

/etc/rc.d/rc3.d/S56cups

The service's persistence at runlevel 3 is verified by using both the
chkconfig --list command and looking at the rc3.d directory for any
files starting with the letter S.

To make a service persistent on more than one runlevel, you can do
the following:

chkconfig --level 2345 cups on

chkconfig --list cups

cups 0:off 1:off 2:on 3:on 4:on 5:on 6:off

ls /etc/rc.d/rc?.d/S*cups

/etc/rc.d/rc2.d/S56cups /etc/rc.d/rc4.d/S56cups

/etc/rc.d/rc3.d/S56cups /etc/rc.d/rc5.d/S56cups

Disabling a service is just as easy as enabling one with SysVinit. You
just need to change the on in the chkconfig command to off. The
following example demonstrates using the chkconfig command to
disable the cups service at runlevel 5:

chkconfig --level 5 cups off

chkconfig --list cups

cups 0:off 1:off 2:on 3:on 4:on 5:off 6:off

ls /etc/rc.d/rc5.d/S*cups

ls: cannot access /etc/rc.d/rc5.d/S*cups: No such file or

directory

As expected, there is now no symbolic link, starting with the letter S,
for the cups service in the /etc/rc.d/rc5.d directory.

For the systemd daemon, again the systemctl command is used. With
it, you can disable and enable services on the Linux server.

Enabling a service with systemd
Using the enable option on the systemctl command sets a service to
always start at boot (be persistent). The following shows exactly how
to accomplish this:

systemctl status cups.service

cups.service - CUPS Printing Service

 Loaded: loaded (/lib/systemd/system/cups.service;

disabled)

 Active: inactive (dead) since Tue, 21 Apr 2020 06:42:38 …

 Main PID: 17172 (code=exited, status=0/SUCCESS)

 CGroup: name=systemd:/system/cups.service

systemctl enable cups.service

Created symlink

/etc/systemd/system/printer.target.wants/cups.service

 → /usr/lib/systemd/system/cups.service.

Created symlink

/etc/systemd/system/sockets.target.wants/cups.socket

 → /usr/lib/systemd/system/cups.socket.

Created symlink /etc/systemd/system/multi-

user.target.wants/cups.path

 → /usr/lib/systemd/system/cups.path.

systemctl status cups.service

cups.service - CUPS Printing Service

 Loaded: loaded (/lib/systemd/system/cups.service;

enabled)

 Active: inactive (dead) since Tue, 21 Apr 2020 06:42:38…

 Main PID: 17172 (code=exited, status=0/SUCCESS)

 CGroup: name=systemd:/system/cups.service

Notice that the status of cups.service changes from disabled to
enabled after using the enable option on systemctl. Also, notice that
the enable option simply creates a few symbolic links. You may be
tempted to create these links yourself. However, the preferred method
is to use the systemctl command to accomplish this.

Disabling a service with systemd
You can use the disable option on the systemctl command to keep a
service from starting at boot. However, it does not immediately stop
the service. You need to use the stop option discussed in the section
“Stopping a service with systemd.” The following example shows how
to disable a currently enabled service:

systemctl disable cups.service

rm '/etc/systemd/system/printer.target.wants/cups.service'

rm '/etc/systemd/system/sockets.target.wants/cups.socket'

rm '/etc/systemd/system/multi-user.target.wants/cups.path'

systemctl status cups.service

cups.service - CUPS Printing Service

 Loaded: loaded (/lib/systemd/system/cups.service;

disabled)

 Active: active (running) since Tue, 21 Apr 2020 06:06:41…

 Main PID: 17172 (cupsd)

 CGroup: name=systemd:/system/cups.service

 17172 /usr/sbin/cupsd -f

The disable option simply removes a few files via the preferred
method of the systemctl command. Notice also in the preceding
example that although the cups service is now disabled, the cups
daemon is still active (running) and needs to be stopped manually.
With systemd, some services cannot be disabled. These services are
static services. Consider the following service, dbus.service:

systemctl status dbus.service

dbus.service - D-Bus System Message Bus

 Loaded: loaded (/lib/systemd/system/dbus.service; static)

 Active: active (running) since Mon, 20 Apr 2020 12:35:…

 Main PID: 707 (dbus-daemon)

…

systemctl disable dbus.service

systemctl status dbus.service

dbus.service - D-Bus System Message Bus

 Loaded: loaded (/lib/systemd/system/dbus.service; static)

 Active: active (running) since Mon, 20 Apr 2020 12:35:…

 Main PID: 707 (dbus-daemon)

…

When the systemctl disable command is issued on dbus.service, it is
simply ignored. Remember that static means that the service is
enabled by default and cannot be disabled, even by root. Sometimes,
disabling a service is not enough to make sure that it does not run. For
example, you might want network.service to replace
NetworkManager.service for starting network interfaces on your
system. Disabling NetworkManager would keep the service from
starting on its own. However, if some other service listed
NetworkManager as a dependency, that service would try to start
NetworkManager when it started.

To disable a service in a way that prevents it from ever running on
your system, you can use the mask option. For example, to set the
NetworkManager service so that it never runs, type the following:

systemctl mask NetworkManager.service

ln -s '/dev/null'

'/etc/systemd/system/NetworkManager.service'

As the output shows, the NetworkManager.service file in /etc is linked
to /dev/null. So even if someone tried to run that service, nothing
would happen. To be able to use the service again, you could type
systemctl unmask NetworkManager.service.

Now that you understand how to enable individual services to be
persistent (and how to disable or mask individual services), you need
to look at service groups as a whole. Next, I cover how to start groups
of services at boot time.

Configuring a Default Runlevel or Target Unit
Whereas a persistent service is one that is started at server boot time, a
persistent (default) runlevel or target unit is a group of services that
are started at boot time. Both classic SysVinit and Upstart define these
groups of services as runlevels, while systemd calls them target units.

Configuring the SysVinit default runlevel
You set the persistent runlevel for a Linux server using SysVinit in the
/etc/inittab file. A portion of this file is shown here:

cat /etc/inittab

#

inittab This file describes how the INIT process

should

set up the system in a certain run-level.

…

id:5:initdefault:

…

The initdefault line in the example shows that the current default
runlevel is runlevel 5. To change this, simply edit the /etc/inittab file
using your favorite editor and change the 5 to one of the following
runlevels: 2, 3, or 4. Do not use the runlevels 0 or 6 in this file! This
would cause your server either to halt or reboot when it is started up.

For systemd, the term target units refers to groups of services to be
started. The following shows the various target units that you can
configure to be persistent and their equivalent backward-compatible,
runlevel-specific target units:.

multi-user.target =

runlevel2.target

runlevel3.target

runlevel4.target

graphical.target = runlevel5.target

The persistent target unit is set via a symbolic link to the

default.target unit file. Consider the following:

ls -l /etc/systemd/system/default.target

lrwxrwxrwx. 1 root root 36 Mar 13 17:27

 /etc/systemd/system/default.target ->

 /lib/systemd/system/runlevel5.target

ls -l /lib/systemd/system/runlevel5.target

lrwxrwxrwx. 1 root root 16 Mar 27 15:39

 /lib/systemd/system/runlevel5.target ->

 graphical.target

The example shows that the current persistent target unit on this
server is runlevel5.target because default.target is a symbolic link
to the runlevel5.target unit file. However, notice that
runlevel5.target is also a symbolic link and it points to
graphical.target. Thus, this server's current persistent target unit is
graphical.target.

To set a different target unit to be persistent, you simply need to
change the symbolic link for default.target. To be consistent, stick
with the runlevel target units if they are used on your server.

The following systemctl example changes the server's persistent target
unit from graphical.target to multi-user.target:

systemctl get-default

graphical.target

#

 systemctl set-default runlevel3.target

 Removed /etc/systemd/system/default.target.

 Created symlink /etc/systemd/system/default.target →

/usr/lib/systemd/system/multi-user.target.

systemctl get-default

 multi-user.target

When the server is rebooted, the multi-user.target is the persistent
target unit. Any services in the multi-user.target unit are started
(activated) at that time.

Adding New or Customized Services
Occasionally, you need to add a new service to your Linux server. Also,
you may have to customize a particular service. When these needs
arise, you must follow specific steps for your Linux server's
initialization daemon to either take over the management of the
service or recognize the customization of it.

Adding new services to SysVinit
When adding a new or customized service to a Linux SysVinit server,
you must complete three steps in order to have the service managed by
SysVinit:.

1. Create a new or customized service script file.

2. Move the new or customized service script to the proper location
for SysVinit management.

3. Set appropriate permission on the script.

4. Add the service to a specific runlevel.

Step 1: Create a new or customized service script file
If you are customizing a service script, simply make a copy of the
original unit file from /etc/rc.d/init.d and add any desired
customizations.

If you are creating a new script, you need to make sure you handle all
of the various options that you want the service command to accept
for your service, such as start, stop, restart, and so on.

For a new script, especially if you have never created a service script
before, it would be wise to make a copy of a current service script from
/etc/rc.d/init.d and modify it to meet your new service's needs.
Consider the following partial example of the cupsd service's script:

cat /etc/rc.d/init.d/cups

#!/bin/sh

#

…

chkconfig: 2345 25 10

…

start () {

 echo -n $"Starting $prog: "

 # start daemon

 daemon $DAEMON

 RETVAL=$?

 echo

 [$RETVAL = 0] && touch /var/lock/subsys/cups

 return $RETVAL

}

stop () {

 # stop daemon

 echo -n $"Stopping $prog: "

 killproc $DAEMON

 RETVAL=$?

 echo [$RETVAL = 0] && rm -f /var/lock/subsys/cups

}

restart() {

 stop

 start

}

case $1 in

…

The cups service script starts out by creating functions for each of the
start, stop, and restart options. If you feel uncomfortable with shell
script writing, review Chapter 7, “Writing Simple Shell Scripts,” to
improve your skills.

One line you should be sure to check and possibly modify in your new
script is the chkconfig line that is commented out; for example:

chkconfig: 2345 25 10

When you add the service script in a later step, the chkconfig
command reads that line to set runlevels at which the service starts (2,
3, 4, and 5), its run order when the script is set to start (25), and its kill
order when it is set to stop (10).

Check the boot order in the default runlevel before adding your own

script, as shown in this example:

ls /etc/rc5.d

…

/etc/rc5.d/S22messagebus

/etc/rc5.d/S23NetworkManager

/etc/rc5.d/S24nfslock

/etc/rc5.d/S24openct

/etc/rc5.d/S24rpcgssd

/etc/rc5.d/S25blk-availability

/etc/rc5.d/S25cups

/etc/rc5.d/S25netfs

/etc/rc5.d/S26acpid

/etc/rc5.d/S26haldaemon

/etc/rc5.d/S26hypervkvpd

/etc/rc5.d/S26udev-post

…

In this case, the chkconfig line in the S25My_New_Service script will
cause the script to be added after S25cups and before S25netfs in the
boot order. You can change the chkconfig line in the service script if
you want the service to start earlier (use a smaller number) or later
(use a larger number) in the list of service scripts.

Step 2: Add the service script to /etc/rc.d/init.d
After you have modified or created and tested your service's script file,
you can move it to the proper location, /etc/rc.d/init.d:

cp My_New_Service /etc/rc.d/init.d

ls /etc/rc.d/init.d/My_New_Service

/etc/rc.d/init.d/My_New_Service

Step 3: Set appropriate permission on the script
The script should be executable:

chmod 755 /etc/rc.d/init.d/My_New_Service

Step 4: Add the service to runlevel directories
This final step sets up the service script to start and stop at different
runlevels and checks that the service script works.

1. To add the script based on the chkconfig line in the service script,
type the following:

 # chkconfig --add My_New_Service

 # ls /etc/rc?.d/*My_New_Service

 /etc/rc0.d/K10My_New_Service

/etc/rc4.d/S25My_New_Service

 /etc/rc1.d/K10My_New_Service

/etc/rc5.d/S25My_New_Service

 /etc/rc2.d/S25My_New_Service

/etc/rc6.d/K10My_New_Service

 /etc/rc3.d/S25My_New_Service

Based on the previous example (chkconfig: 2345 25 10),
symbolic links to the script set the service to start in the position
25 (S25) for runlevels 2, 3, 4, and 5. Also, links are set to stop (or
not start) at runlevels 0, 1, and 6.

2. After you have made the symbolic link(s), test that your new or
modified service works as expected before performing a server
reboot.

 # service My_New_Service start

 Starting My_New_Service: [OK]

 # service My_New_Service stop

After everything is in place, your new or modified service starts at
every runlevel that you have selected on your system. Also, you can
start or stop it manually using the service command.

Adding new services to systemd
When adding a new or customized service to a Linux systemd server,
you have to complete three steps in order to have the service managed
by systemd:

1. Create a new or customized service configuration unit file for the
new or customized service.

2. Move the new or customized service configuration unit file to the
proper location for systemd management.

3. Add the service to a specific target unit's Wants to have the new or
customized service start automatically with other services.

Step 1: Create a new or customized service configuration unit file
If you are customizing a service configuration unit file, simply make a
copy of the original unit file from /lib/systemd/system and add any
desired customizations.

For new files, obviously, you are creating a service unit configuration
file from scratch. Consider the following basic service unit file
template. At bare minimum, you need Description and ExecStart
options for a service unit configuration file:

cat My_New_Service.service

[Unit]

Description=My New Service

[Service]

ExecStart=/usr/bin/My_New_Service

For additional help on customizing or creating a new configuration
unit file and the various needed options, you can use the man pages.
At the command line, type man systemd.service to find out more about
the various service unit file options.

Step 2: Move the service configuration unit file
Before you move the new or customized service configuration unit file,
you need to be aware that there are two potential locations to store
service configuration unit files. The one you choose determines
whether the customizations take effect and if they remain persistent
through software upgrades.

You can place your system service configuration unit file in one of the
following two locations:

/etc/systemd/system

This location is used to store customized local service
configuration unit files.

Files in this location are not overwritten by software
installations or upgrades. Files here are used by the system
even if there is a file of the same name in the
/lib/systemd/system directory.

/lib/systemd/system

This location is used to store system service configuration unit
files.

Files in this location are overwritten by software installations
and upgrades.

Files here are used by the system only if there is no file of the same
name in the /etc/systemd/system directory.

Thus, the best place to store your new or customized service
configuration unit file is in /etc/systemd/system.

TIP
When you create a new or customized service, in order for the
change to take effect without a server reboot, you need to issue a
special command. At the command line, type systemctl daemon-
reload.

Step 3: Add the service to the Wants directory
This final step is optional. It needs to be done only if you want your
new service to start with a particular systemd target unit. For a service
to be activated (started) by a particular target unit, it must be in that
target unit's Wants directory.

First, add the line WantedBy=desired.target to the bottom of your
service configuration unit file. The following example shows that the
desired target unit for this new service is multi-user.target:

cat /etc/systemd/system/My_New_Service.service

[Unit]

Description=My New Fake Service

[Service]

ExecStart=/usr/bin/My_New_Service

[Install]

WantedBy=multi-user.target

To add a new service unit to a target unit, you need to create a
symbolic link. The following example shows the files located in the
multi-user.target unit's Wants directory. Previously, in the section
“Understanding systemd initialization,” the systemctl command was
used to list Wants, and it is still the preferred method. Notice that in
this directory, the files are symbolic links pointing to service unit
configuration files in the /lib/systemd/system directory.

ls /etc/systemd/system/multi-user.target.wants

abrt-ccpp.service cups.path remote-fs.target

abrtd.service fcoe.service rsyslog.service

abrt-oops.service irqbalance.service sendmail.service

abrt-vmcore.service lldpad.service sm-client.service

atd.service mcelog.service sshd-

keygen.service

auditd.service mdmonitor.service sshd.service

…

ls -l /etc/systemd/system/multi-user.target.wants

total 0

lrwxrwxrwx. 1 root root 37 Nov 2 22:29 abrt-ccpp.service ->

 /lib/systemd/system/abrt-ccpp.service

lrwxrwxrwx. 1 root root 33 Nov 2 22:29 abrtd.service ->

 /lib/systemd/system/abrtd.service

…

lrwxrwxrwx. 1 root root 32 Apr 26 20:05 sshd.service ->

 /lib/systemd/system/sshd.service

The following illustrates the process of adding a symbolic link file for
My_New_Service:

ln -s /etc/systemd/system/My_New_Service.service

 /etc/systemd/system/multi-

user.target.wants/My_New_Service.service

A symbolic link is created in the multi-user.target.wants directory.
Now the new service, My_New_Service, is activated (started) when the
multi-user.target unit is activated.

TIP
If you want to change the systemd target unit for a service, you need
to change the symbol link to point to a new target Wants directory
location. Use the ln -sf command to force any current symbolic
link to be broken and the new designated symbolic link to be
enforced.

Together, the three steps get your new or customized service added to
a Linux systemd server. Remember that at this point, a new service is
not running until a server reboot. To start the new service before a
reboot, review the commands in the section “Stopping and Starting
Services.”

Summary
How you start and stop services is dependent upon what initialization
daemon is used by your Linux server: SysVinit, Upstart, or Systemd.
Before you do any service management, be sure to use the examples in
this chapter to help you determine your Linux server's initialization
daemon.

The concepts of starting and stopping services go along with other
service management concepts, such as making a service persistent,
starting certain services at server boot time, reloading a service, and
restarting a service. Understanding these concepts is very helpful as
you learn about configuring and managing a Linux print server in the
next chapter.

Exercises
Refer to the material in this chapter to complete the tasks that follow.
If you are stuck, solutions to the tasks are shown in Appendix B
(although in Linux, there are often multiple ways to complete a task).
Try each of the exercises before referring to the answers. These tasks
assume that you are running a Fedora or Red Hat Enterprise Linux
system (although some tasks work on other Linux systems as well).

1. Determine which initialization daemon your server is currently
using.

2. What command can you use to check the status of the sshd
daemon, depending on the initialization daemon in use on your
Linux server?

3. Determine your server's previous and current runlevel.

4. How can you change the default runlevel or target unit on your
Linux server?

5. For each initialization daemon, what commands list services
running (or active) on your server?

6. List the running (or active) services on your Linux server.

7. For each initialization daemon, what commands show a particular
service's current status?

8. Show the status of the cups daemon on your Linux server.

9. Attempt to restart the cups daemon on your Linux server.

10. Attempt to reload the cups daemon on your Linux server.

CHAPTER 16
Configuring a Print Server

IN THIS CHAPTER
Understanding printing in Linux

Setting up printers

Using printing commands

Managing document printing

Sharing printers

You can configure your Linux system to use printers that are
connected directly to it (via a USB port) or that are available for
printing over the network. Likewise, any printer that you configure on
your local system can be shared with users on other Linux, Windows,
or Mac systems by opening up your printer as a print server.

You configure a printer as a native Linux printer in Fedora, RHEL,
Ubuntu, and other Linux systems with the Common UNIX Printing
System (CUPS). To configure a printer to work as a Microsoft
Windows style of print server, you can use the Samba service in Linux.

This chapter focuses on CUPS. In particular, it shows you the
graphical front end to CUPS, called the Print Settings window, which
comes with Fedora, Red Hat Enterprise Linux, and other Linux
distributions. Using Print Settings, you can also configure your
printers as print servers so that people can print to your printer from
their own computers.

If you don't have a desktop, or you want to print from within a shell
script, this chapter shows you how to use printing commands. From
the command line, print commands such as lp are available for
carrying out printing. Commands also exist for querying print queues

(lpq), manipulating print queues (cupsenable, cupsdisable, and
cupsreject), and removing print queues (lprm).

Common UNIX Printing System
CUPS has become the standard for printing from Linux and other
UNIX-like operating systems. It was designed to meet today's needs
for standardized printer definitions and sharing on Internet Protocol–
based networks (as most computer networks are today). Nearly every
Linux distribution today comes with CUPS as its printing service. Here
are some of the service's features:

IPP CUPS is based on the Internet Printing Protocol
(http://www.pwg.org/ipp), a standard that was created to simplify
how printers can be shared over IP networks. In the IPP model,
printer servers and clients who want to print can exchange
information about the model and features of a printer using the
HTTP (that is, web content) protocol. A server can also broadcast
the availability of a printer so that a printing client can easily find
a list of locally available printers without configuration.

Drivers CUPS also standardized how printer drivers are created.
The idea was to have a common format that could be used by
printer manufacturers so that a driver could work across all
different types of UNIX systems. That way, a manufacturer had to
create the driver only once to work for Linux, Mac OS X, and a
variety of UNIX derivatives.

Printer classes You can use printer classes to create multiple
print server entries that point to the same printer or one print
server entry that points to multiple printers. In the first case,
multiple entries can each allow different options (such as pointing
to a particular paper tray or printing with certain character sizes
or margins). In the second case, you can have a pool of printers so
that printing is distributed. In this instance, a malfunctioning
printer, or a printer that is dealing with very large documents,
won't bring all printing to a halt. CUPS also supports implicit
classes, which are print classes that form by merging identical
network printers automatically.

Printer browsing With printer browsing, client computers can

http://www.pwg.org/ipp

see any CUPS printers on your local network with browsing
enabled. As a result, clients can simply select the printers that
they want to use from the printer names broadcast on the
network, without needing to know in advance what the printers
are named and where they are connected. You can turn off the
feature to prevent others on the local network from seeing a
printer.

UNIX print commands To integrate into Linux and other
UNIX environments, CUPS offers versions of standard commands
for printing and managing printers that have been traditionally
offered with UNIX systems.

Instead of using the Print Settings window, you can configure CUPS
printing in other ways as well:

Configuring CUPS from a browser The CUPS project itself
offers a web-based interface for adding and managing printers.
With the cupsd service running, type localhost:631 from a web
browser on the computer running the CUPS service to manage
printing. (See the section “Using web-based CUPS
administration” later in this chapter.)

Configuring CUPS manually You also can configure CUPS
manually (that is, edit the configuration files and start the cupsd
daemon from the command line). Configuration files for CUPS
are contained in the /etc/cups directory. In particular, you might
be interested in the cupsd.conf file, which identifies permissions,
authentication, and other information for the printer daemon,
and printers.conf, which identifies addresses and options for
configured printers. Use the classes.conf file to define local
printer classes.

Printing Directly from Windows to CUPS
You can print to CUPS from non-UNIX systems as well. For
example, you can use a PostScript printer driver to print directly
from a Windows system to your CUPS server. You can use CUPS
without modification by configuring the Windows computer with a
PostScript driver that uses
http://printservername:631/printers/targetPrinter as its
printing port.

You may also be able to use the native Windows printer drivers for
the printer instead of the PostScript driver. If the native Windows
driver does not work right out of the box on your CUPS print
queue, you can create a Raw Print Queue under CUPS and use that
instead. The Raw Print Queue directly passes through the data
from the Windows native print driver to the printer.

To use CUPS, you must have the cups package installed in Fedora or
RHEL. Most desktop Linux distributions include CUPS during the
initial system install. If it is not installed in a Fedora or RHEL install,
install it by typing the following:

yum install cups cups-client

http://printservername:631/printers/targetPrinter

Setting Up Printers
Although using the printer administration tools specifically built for
your distribution is usually best, many Linux systems simply rely on
the tools that come with the CUPS software package.

The following sections explore how to use CUPS web-based
administration tools that come with every Linux distribution. Then it
examines the Print Settings tool system-config-printer, which is
available with Fedora systems to enable you to set up printers. In some
cases, no configuration is necessary, because connected printers can
be automatically detected and configured. To install the Print Settings
tool in Fedora, as root, enter the following dnf (or yum) command:

yum install system-config-printer

Adding a printer automatically
CUPS printers can be configured to broadcast their availability on the
network automatically so that a client system can detect and use them
without configuration. Connect a USB printer to your computer, and
the printer can be automatically detected and made available. In fact,
if you attach a local printer in Fedora and the print driver is not yet
installed, you are prompted to install the software packages needed to
use the printer.

The first time that you go to print a document or view your Print
Settings tool, the printers are ready to use. Further configuration can
be done using the web-based CUPS administration tool or the Print
Settings window.

Using web-based CUPS administration
CUPS offers its own web-based administrative tool for adding,
deleting, and modifying printer configurations on your computer. The
CUPS print service (using the cupsd daemon) listens on port 631 to
provide access to the CUPS web-based administrative interface and
share printers.

If CUPS is already running on your computer, you can immediately
use CUPS web-based administration from your web browser. To see
whether CUPS is running and to start setting up your printers, open a
web browser on the local computer and type this into its location box:
http://localhost:631/.

A prompt for a valid login name and password may appear when you
request functions that require it. If so, type the root login name and
the root user's password and click OK. A screen similar to the one
shown in Figure 16.1 appears.

FIGURE 16.1 CUPS provides a web-based administration tool.

Allow remote printing administration
By default, web-based CUPS administration is available only from the
local host. To access web-based CUPS administration from another
computer, from the main CUPS page:

1. Select the Administration tab.

2. Select the check box next to Allow remote administration.

3. Select the Change Settings button.

Then open your computer's firewall to allow connections to TCP port
631 to allow access to the service. After that, from any browser that has
access to your local network, you can access the CUPS Administration

http://localhost:631/

page by going to port 631 on the CUPS server (for example,
http://host.example.com:631).

You may need to restart CUPS for the change to take effect: systemctl
restart cups.service. If you are not already running the browser as
the root user, you must also enter the root username and password.

Add a printer not automatically detected
To configure a printer that is not automatically detected, you can add a
printer from the Administration screen. With the Administration
screen displayed, you can add a printer as follows:

1. Click the Add Printer button. The Add New Printer screen
appears.

2. Select the device to which the printer is connected. The printer
can be connected locally to a parallel, SCSI, serial, or USB port
directly on the computer. Alternatively, you can select a network
connection type for Apple printers (AppSocket or HP JetDirect),
Internet Printing Protocol (http, https, ipps, or ipp), or a
Windows printer (using Samba or SMB).

3. If prompted for more information, you may need to describe the
connection to the printer further. For example, you might be
asked for the network address for an IPP or Samba printer.

4. Type a name, location, and description for the printer; select if
you want to share this printer and click Continue.

5. Select the make of the print driver. If you don't see the
manufacturer of your printer listed, choose PostScript for a
PostScript printer or HP for a PCL printer. For the manufacturer
you choose, you can select a specific model.

6. Set options. If you are asked to set options for your printer, you
may do so. Then select Set Printer Options to continue.

7. Your printer should be available. If the printer is added
successfully, click the name of your printer to have the new
printer page appear; from the printer page, you can select
Maintenance or Administration to print a test page or modify the

http://host.example.com:631

printer configuration.

With the basic printer configuration done, you can now do further
work with your printers. Here are a few examples of what you can do:

List print jobs Click Show All Jobs to see what print jobs are
currently active from any of the printers configured for this
server. Click Show Completed Jobs to see information about jobs
that are already printed.

Create a printer class Click the Administration tab, choose
Add Class, and identify a name, description, and location for a
printer class. From the list of Printers (Members) configured on
your server, select the ones to go into this class.

Cancel or move a print job If you print a 100-page job by
mistake, or if the printer is spewing out junk, the Cancel feature
can be very handy. Likewise, if you sent a print job to the wrong
printer, the Move Job selection can be useful. From the
Administration tab, click Manage Jobs; then click Show Active
Jobs to see what print jobs are currently in the queue for the
printer. Select the Cancel Job button next to the print job that you
want to cancel or select Move Job to move the print job to a
different printer.

View printers You can click the Printers tab from the top of any
of the CUPS web-based administration pages to view the printers
that you have configured. For each printer that appears, you can
select Maintenance or Administrative tasks. Under Maintenance,
click Pause Printer (to stop the printer from printing but still
accept print jobs for the queue), Reject Jobs (to not accept any
further print jobs for the moment), Move All Jobs (to move them
to another printer), Cancel All Jobs (to delete all print jobs), or
Print Test Page (to print a page). Figure 16.2 shows the
information on the Printers tab for a specific printer.

FIGURE 16.2 You can do administration tasks from the Printers tab.

Using the Print Settings window
If you are using Fedora, you can use the Print Settings window to set
up your printers. In fact, I recommend that you use it instead of CUPS
web administration because the resulting printer configuration files
are tailored to work with the way the CUPS service is started on those
systems in Fedora. After the package is installed (dnf install system-
config-printer), to install a printer from your GNOME desktop, start
the Print Settings window by typing Print Settings from the Activity
screen, or as root user by typing system-config-printer. This tool
enables you to add and delete printers and edit printer properties. It
also enables you to send test pages to those printers to make sure that
they are working properly.

The key here is that you are configuring printers that are managed by
your print daemon (cupsd for the CUPS service). After a printer is
configured, users on your local system can use it. You can refer to the
section “Configuring Print Servers” to learn how to make the server
available to users from other computers on your network.

The printers that you set up can be connected directly to your
computer (as on a USB port) or to another computer on the network
(for example, from another UNIX system or Windows system).

Configuring local printers with the Print Settings window
Add a local printer (in other words, a printer connected directly to
your computer) with the Printers window using the procedure that
follows.

Adding a local printer
To add a local printer from a GNOME desktop in the latest version of
Fedora, follow these steps:

1. Type the following to open the Print Settings window:

 # system-config-printer &

The Printing window appears.

2. Click Add. (If asked, click the Adjust Firewall button to allow
access to the printer port 631.) A New Printer window appears.

3. If the printer that you want to configure is detected,
simply select it and click Forward. If it is not detected,
choose the device to which the printer is connected (LPT #1 and
Serial Port #1 are the first parallel and serial ports, respectively)
and click Forward. (Type /usr/sbin/lpinfo -v | less in a shell to
see printer connection types.) You are asked to identify the
printer's driver.

4. To use an installed driver for your printer, choose Select
Printer From Database, and then choose the
manufacturer of your printer. As an alternative, you could
select Provide PPD File and supply your own PPD file (for
example, if you have a printer that is not supported in Linux and
you have a driver that was supplied with the printer). (PPD stands
for PostScript Printer Description.) Select Forward to see a list of
printer models from which you can choose.

4. TIP
If your printer doesn't appear on the list but supports PCL
(HP's Printer Control Language), try selecting one of the HP
printers (such as HP LaserJet). If your printer supports
PostScript, select PostScript printer from the list. Selecting
Raw Print Queue enables you to send documents that are
already formatted for a particular printer type to a specific
printer.

5. With your printer model selected, click the driver that
you want to use with it and then click Forward to
continue.

6. Add the following information, and click Forward:

a. Printer Name: Add the name that you want to give to
identify the printer. The name must begin with a letter, but
after the initial letter, it can contain a combination of letters,
numbers, dashes (-), and underscores (_). For example, an
HP printer on a computer named maple could be named hp-
maple.

b. Description: Add a few words describing the printer, such
as its features (for example, an HP LaserJet 2100M with PCL
and PS support).

c. Location: Add some words that describe the printer's
location (for example, “In Room 205 under the coffee
maker”).

7. When the printer is added, click No or Yes if you're
prompted to print a test page. The new printer entry appears
in the Print Settings window. Double-click the printer to see the
Properties window for that printer, as shown in Figure 16.3.

FIGURE 16.3 The Printer Properties window after adding a
printer

8. If you want the printer to be your default printer, right-
click the printer and select Set As Default. As you add other
printers, you can change the default printer by selecting the one
you want and selecting Set As Default again.

9. Make sure that the printing is working. Open a Terminal
window and use the lp command to print a file (such as lp
/etc/hosts). (If you want to share this printer with other
computers on your network, refer to the section “Configuring
Print Servers” later in this chapter.)

Editing a local printer
After double-clicking the printer that you want to configure, choose
from the following menu options to change its configuration:

Settings: The Description, Location, Device URI, and Make and

Model information you created earlier are displayed in this dialog
box.

Policies: Click Policies to set the following items:

State: Select check boxes to indicate whether the printer will
print jobs that are in the queue (Enabled), accept new jobs for
printing (Accepting Jobs), and be available to be shared with
other computers that can communicate with your computer
(Shared). You also must select Server Settings and click the
“Share Published printers connected to this system” check box
before the printer will accept print jobs from other computers.

Policies: In case of error, the stop-printer selection causes all
printing to that printer to stop. You can also select to have the
job discarded (abort-job) or retried (retry-job) in the event of
an error condition.

Banner: There are no starting or ending banner pages by
default for the printer. Choose starting or ending banner pages
that include text such as Classified, Confidential, Secret, and
so on.

Access Control: If your printer is a shared printer, you can
select this window to create a list that either allows users access to
the printer (with all others denied) or denies users access to the
printer (with all others allowed).

Printer Options: Click Printer Options to set defaults for
options related to the printer driver. The available options are
different for different printers. Many of these options can be
overridden when someone prints a document. Here are examples
of a few of the options that you might (or might not) have
available:

Watermark: Several Watermark settings are available to
enable you to add and change watermarks on your printed
pages. By default, Watermark and Overlay are off (None). By
selecting Watermark (behind the text) or Overlay (over the
text), you can set the other Watermark settings to determine
how watermarks and overlays are done. Watermarks can go on

every page (All) or only the first page (First Only). Select
Watermark Text to choose what words are used for the
watermark or overlay (Draft, Copy, Confidential, Final, and so
on). You can then select the font type, size, style, and intensity
of the watermark or overlay.

Resolution Enhancement: You can use the printer's
current settings or choose to turn resolution enhancement on
or off.

Page Size: The default is US letter size, but you can also ask
the printer to print legal size, envelopes, ISO A4 standard, or
several other page sizes.

Media Source: Choose which tray to print from. Select Tray
1 to insert pages manually.

Levels of Gray: Choose to use the printer's current levels of
gray or have enhanced or standard gray levels turned on.

Resolution: Select the default printing resolution (such as
300, 600, or 1,200 dots per inch). Higher resolutions result in
better quality but take longer to print.

EconoMode: Either use the printer's current setting or
choose a mode where you save toner or one where you have
the highest possible quality.

Job Options: Click Job Options to set common default options
that will be used for this printer if the application printing the job
doesn't already set them. These include Common Options
(number of copies, orientation, scale to fit, and pages per side),
Image Options (scaling, saturation, hue, and gamma), and Text
Options (characters/inch, lines/inch, and margin settings).

Ink/Toner Levels: Click Ink/Toner Levels to see information on
how much ink or toner your printer has left. (Not all printers
report these values.)

Click Apply when you are satisfied with the changes you made to
the local printer.

Configuring remote printers
To use a printer that is available on your network, you must identify
that printer to your Linux system. Supported remote printer
connections include Networked CUPS (IPP) printers, Networked
UNIX (LPD) printers, Networked Windows (Samba) printers, and
JetDirect printers. (Of course, both CUPS and UNIX print servers can
be run from Linux systems as well as other UNIX systems.)

In each case, you need a network connection from your Linux system
to the servers to which those printers are connected. To use a remote
printer requires that someone set up that printer on the remote server
computer. See the section “Configuring Print Servers” later in this
chapter for information on how to do that on your Linux server.

Use the Print Settings window (system-config-printer) to configure
each of the remote printer types. This is how it is done:

1. From the GNOME 3 Activities screen, type Print Settings
and press Enter.

2. Click Add. The New Printer window appears.

3. Depending on the type of ports that you have on your
computer, select one of the following:

a. LPT #1: Use this for a printer connected to your parallel
port.

b. Serial Port #1: Use this for a printer connected to your
serial port.

c. Network Printer: Under this heading, you can search for
network printers (by hostname or IP address) or type in the
URI for several different printer types:

i. Find Network Printer: Instead of entering a printer
URI, you can provide a hostname or IP address for the
system that has the printer to which you want to print.
Any printers found on that host appear on the window,
ready for you to add.

ii. AppleSocket/HP JetDirect: Use this for a JetDirect

printer.

iii. Internet Printing Protocol (IPP): Use this for a
CUPS or other IPP printer. Most Linux and Mac OS X
printers fall into this category.

iv. Internet Printing Protocol (HTTPS): Use this for a
CUPS or other IPP printer being shared over a secure
connection (valid certificates required).

v. LPD/LPR Host or Printer: Use this for a UNIX
printer.

vi. Windows Printer via SAMBA: Use this for a
Windows system printer.

Continue with the steps in whichever of the following sections is
appropriate.

Adding a remote CUPS printer
If you chose to add a CUPS (IPP) printer that is accessible over your
local network from the Print Settings window, you must add the
following information to the window that appears:

Host This is the hostname of the computer to which the printer is
attached (or otherwise accessible). This can be an IP address or
TCP/IP hostname for the computer. The TCP/IP name is
accessible from your /etc/hosts file or through a DNS name
server.

Queue This is the printer name on the remote CUPS print server.
CUPS supports printer instances, which allows each printer to
have several sets of options. If the remote CUPS printer is
configured this way, you can choose a particular path to a printer,
such as hp/300dpi or hp/1200dpi. A slash character separates the
print queue name from the printer instance.

Complete the rest of the procedure as you would for a local printer (see
the section “Adding a local printer” earlier in this chapter).

Adding a remote UNIX (LDP/LPR) printer

If you chose to add a UNIX printer (LPD/LPR) from the Print Settings
window, you must add the following information to the window that
appears:

Host This is the hostname of the computer to which the printer is
attached (or otherwise accessible). This is the IP address or
hostname for the computer (the hostname is accessible from your
/etc/hosts file or through a DNS name server). Select the Probe
button to search for the host.

Queue This is the printer name on the remote UNIX computer.

Complete the rest of the procedure as you would for a local printer (see
the section “Adding a local printer” earlier in this chapter).

TIP
If the print job you send to test the printer is rejected, the print
server computer may not have allowed you access to the printer.
Ask the remote computer's administrator to add your hostname to
the /etc/lpd.perms file. (Enter lpstat -d printer to see the status
of your print job.)

Adding a Windows (SMB) printer
Enabling your computer to access an SMB printer (the Windows
printing service) involves adding an entry for the printer in the Select
Connection window.

When you choose to add a Windows printer to the Print Settings
window (Windows Printer via Samba), select Browse to see a list of
computers on your network that have been detected as offering SMB
services (file and/or printing service). You can configure the printer
from this window as follows:

1. Type the URI of the printer, excluding the leading smb://.
For example, you might type /host1/myprinter or
/mygroup/host1/myprinter.

2. Select either “Prompt user if authentication is required”
or “Set authentication details now.’

3. If you chose “Set authentication details now,” fill in the
username and password needed to access the SMB
printer; then click Verify to check that you can
authenticate to the server.

4. Click Forward to continue.

Alternatively, you can identify a server that does not appear on the list
of servers. Type the information needed to create an SMB URI that
contains the following information:

Workgroup This is the workgroup name assigned to the SMB

server. Using the workgroup name isn't necessary in all cases.

Server This is the NetBIOS name or IP address for the computer,
which may or may not be the same as its TCP/IP name. To
translate this name into the address needed to reach the SMB
host, Samba checks several places where the name may be
assigned to an IP address. Samba checks the following (in the
order shown) until it finds a match: the local /etc/hosts file, the
local /etc/lmhosts file, a WINS server on the network, and
responses to broadcasts on each local network interface to resolve
the name.

Share This is the name under which the printer is shared with
the remote computer. It may be different from the name by which
local users of the SMB printer know the printer.

User A username is required by the SMB server system to give
you access to the SMB printer. A username is not necessary if you
are authenticating the printer based on share-level rather than
user-level access control. With share-level access, you can add a
password for each shared printer or file system.

Password Use the password associated with the SMB username
or the shared resource, depending on the kind of access control
being used.

CAUTION
When you enter a username and password for SMB, the
information is stored unencrypted in the /etc/cups/printers.conf
file. Be sure that the file remains readable only by root.

The following is an example of the SMB URI that you could add to the
SMB:// box:

jjones:my9passswd@FSTREET/NS1/hp

The URI shown here identifies the username (jjones), the user's
password (my9passswd), the workgroup (FSTREET), the server (NS1), and
the printer queue name (hp).

Complete the rest of the procedure as you would for a local printer (see
the section “Adding a local printer” earlier in this chapter).

If everything is set up properly, you can use the standard lp command
to print the file to the printer. Using this example, employ the
following form for printing:

$ cat file1.ps | lp -P NS1-PS

TIP
If you are receiving failure messages, make sure that the computer
to which you are printing is accessible. For the Printer NS1 hp
example, you can type smbclient -L NS1 -U jjones. Then type the
password (my9passswd, in this case). The –L asks for information
about the server; the –U jjones says to log in the user jjones. If you
get a positive name query response after you enter a password, you
should see a list of shared printers and files from that server. Check
the names and try printing again.

Working with CUPS Printing
Tools such as CUPS web-based administration and the Print Settings
window effectively hide the underlying CUPS facility. Sometimes,
however, you want to work directly with the tools and configuration
files that come with CUPS. The following sections describe how to use
some special CUPS features.

Configuring the CUPS server (cupsd.conf)
The cupsd daemon process listens for requests to your CUPS print
server and responds to those requests based on settings in the
/etc/cups/cupsd.conf file. The configuration variables in the
cupsd.conf file are in the same form as those in the Apache
configuration file (httpd.conf or apache2.conf). Type man cupsd.conf
to see details on any of the settings.

The Print Settings window adds access information to the cupsd.conf
file. For other Linux systems, or if you don't have a desktop on your
server, you may need to configure the cupsd.conf file manually. You
can step through the cupsd.conf file to tune your CUPS server further.
Most of the settings are optional or can just be left as the default. Let's
look at some of the settings that you can use in the cupsd.conf file.

No classification is set by default. With the classification set to
topsecret, you can have Top Secret displayed on all pages that go
through the print server:

Classification topsecret

Other classifications you can substitute for topsecret include
classified, confidential, secret, and unclassified.

The term browsing refers to the act of broadcasting information about
your printer on your local network and listening for other print
servers’ information. The cups-browsed setting is used to browse
shared, remote printers. Browsing is on by default for all local
networks (@LOCAL). You can allow CUPS browser information
(BrowseAllow) for additional selected addresses. Browsing information

is broadcast, by default, on address 255.255.255.255. Here are
examples of several browsing settings:

Browsing On

BrowseProtocols cups

BrowseOrder Deny,Allow

BrowseAllow from @LOCAL

BrowseAddress 255.255.255.255

Listen *:631

To enable web-based CUPS administration and to share printers with
others on the network, the cupsd daemon can be set to listen on port
631 for all network interfaces to your computer based on this entry:
Listen *:631. By default, it listens on the local interface only on many
Linux systems (Listen localhost:631). For Fedora, CUPS listens on all
interfaces by default.

This is a good way to enable users on several connected LANs to
discover and use printers on other nearby LANs.

You can allow or deny access to different features of the CUPS server.
An access definition for a CUPS printer (created from the Print
Settings window) might appear as follows:

<Location /printers/ns1-hp1>

Order Deny,Allow

Deny From All

Allow From 127.0.0.1

AuthType None

</Location>

Here, printing to the ns1-hp1 printer is allowed only for users on the
local host (127.0.0.1). No password is needed (AuthType None). To
allow access to the administration tool, CUPS must be configured to
prompt for a password (AuthType Basic).

Starting the CUPS server
For Linux systems that use System V–style startup scripts (such as
earlier releases of Fedora and RHEL), starting and shutting down the
CUPS print service is pretty easy. Use the chkconfig command to turn
on CUPS so that it starts at each reboot. Run the cups startup script to
have the CUPS service start immediately. In RHEL 6.x or earlier, type

the following as root user:

chkconfig cups on

service cups start

If the CUPS service was already running, you should use restart
instead of start. Using the restart option is also a good way to reread
any configuration options that you may have changed in the
cupsd.conf file (although, if CUPS is already running, service cups
reload rereads configuration files without restarting).

In Fedora 30 and RHEL 8, you use the systemctl command instead of
service to start and stop services:

systemctl status cups.service

* cups.service - CUPS Printing Service

 Loaded: loaded (/usr/lib/systemd/system/cups.service;

enabled)

 Active: active (running) since Sat 2016-07-23 22:41:05

EDT; 18h ago

 Main PID: 20483 (cupsd)

 Status: "Scheduler is running…"

 CGroup: /system.slice/cups.service

 ├─20483 /usr/sbin/cupsd -f

You can tell the CUPS service is running because the status shows the
cupsd daemon active with PID 20483. If that service were not running,
you could start the CUPS service as follows:

systemctl start cups.service

See Chapter 15, “Starting and Stopping Services,” for more
information on the systemctl and service commands for working with
services.

Configuring CUPS printer options manually
If your Linux distribution doesn't have a graphical means of
configuring CUPS, you can edit configuration files directly. For
example, when a new printer is created from the Print Settings
window, it is defined in the /etc/cups/printers.conf file. This is what
a printer entry looks like:

<DefaultPrinter printer>

Info HP LaserJet 2100M

Location HP LaserJet 2100M in hall closet

DeviceURI parallel:/dev/lp0

State Idle

Accepting Yes

Shared No

JobSheets none none

QuotaPeriod 0

PageLimit 0

KLimit 0

</Printer>

This is an example of a local printer that serves as the default printer
for the local system. The Shared No value is set because the printer is
currently available only on the local system. The most interesting
information relates to DeviceURI, which shows that the printer is
connected to parallel port /dev/lp0. The state is Idle (ready to accept
printer jobs), and the Accepting value is Yes (the printer is accepting
print jobs by default).

The DeviceURI has several ways to identify the device name of a
printer, reflecting where the printer is connected. Here are some
examples listed in the printers.conf file:

DeviceURI parallel:/dev/plp

DeviceURI serial:/dev/ttyd1?

baud=38400+size=8+parity=none+flow=soft

DeviceURI scsi:/dev/scsi/sc1d6l0

DeviceURI usb://hostname:port

DeviceURI socket://hostname:port

DeviceURI tftp://hostname/path

DeviceURI ftp://hostname/path

DeviceURI http://hostname[:port]/path

DeviceURI ipp://hostname/path

DeviceURI smb://hostname/printer

The first four examples show the form for local printers (parallel,
serial, scsi, and usb). The other examples are for remote hosts. In
each case, hostname can be the host's name or IP address. Port
numbers or paths identify the locations of each printer on the host.
For example, hostname could be myhost.example.com :631 and path
could be replaced by any name you like, such as printers/myprinter.

http://myhost.example.com

Using Printing Commands
To remain backward compatible with older UNIX and Linux printing
facilities, CUPS supports many of the old commands for working with
printing. Most command-line printing with CUPS can be performed
with the lp command. Word processing applications such as
LibreOffice, OpenOffice, and AbiWord are set up to use this facility for
printing.

You can use the Print Settings window to define the filters needed for
each printer so that the text can be formatted properly. Options to the
lp command can add filters to process the text properly. Other
commands for managing printed documents include lpq (for viewing
the contents of print queues), lprm (for removing print jobs from the
queue), and lpstat -t (for controlling printers).

Printing with lp
You can use the lp command to print documents to both local and
remote printers (provided the printers are configured locally).
Document files can be either added to the end of the lp command line
or directed to the lp command using a pipe (|). Here's an example of a
simple lp command:

$ lp doc1.ps

When you specify just a document file with lp, output is directed to the
default printer. As an individual user, you can change the default
printer by setting the value of the PRINTER variable. Typically, you add
the PRINTER variable to one of your startup files, such as $HOME/.bashrc.
Adding the following line to your .bashrc file, for example, sets your
default printer to lp3:

export PRINTER=lp3

To override the default printer, specify a particular printer on the lp
command line. The following example uses the -P option to select a
different printer:

$ lp -P canyonps doc1.ps

The lp command has a variety of options that enable lp to interpret
and format several different types of documents. These include -# num,
where num is replaced by the number of copies to print (from 1 to 100)
and -l (which causes a document to be sent in raw mode, presuming
that the document has already been formatted). To learn more options
to lp, type man lp.

Listing status with lpstat -t
Use the lpstat -t command to list the status of your printers. Here is
an example:

$ /usr/sbin/lpstat -t

printer hp disabled since Wed 10 Jul 2019 10:53:34 AM EDT

printer deskjet-555 is idle. enabled since Wed 10 Jul 2019

10:53:34 AM EDT

This output shows two active printers. The hp printer is currently
disabled (offline). The deskjet-555 printer is enabled.

Removing print jobs with lprm
Users can remove their own print jobs from the queue with the lprm
command. Used alone on the command line, lprm removes all of the
user's print jobs from the default printer. To remove jobs from a
specific printer, use the -P option, as follows:

$ lprm -P lp0

To remove all print jobs for the current user, type the following:

$ lprm -

The root user can remove all of the print jobs for a specific user by
indicating that user on the lprm command line. For example, to
remove all print jobs for the user named mike, the root user types the
following:

lprm –U mike

To remove an individual print job from the queue, indicate its job

number on the lprm command line. To find the job number, type the
lpq command. Here's what the output of that command may look like:

lpq

printer is ready and printing

Rank Owner Job Files Total Size

Time

active root 133 /home/jake/pr1 467

2 root 197 /home/jake/mydoc 23948

The output shows two printable jobs waiting in the queue. (The printer
is ready and printing the job listed as active.) Under the Job column,
you can see the job number associated with each document. To remove
the first print job, type the following:

lprm 133

Configuring Print Servers
You've configured a printer so that you and the other users on your
computer can print to it. Now you want to share that printer with
other people in your home, school, or office. Basically, that means
configuring the printer as a print server.

The printers configured on your Linux system can be shared in
different ways with other computers on your network. Not only can
your computer act as a Linux print server (by configuring CUPS), but
it can also appear as an SMB (Windows) print server to client
computers. After a local printer is attached to your Linux system and
your computer is connected to your local network, you can use the
procedures in the following sections to share the printer with client
computers using a Linux (UNIX) or SMB interface.

Configuring a shared CUPS printer
Making the local printer added to your Linux computer available to
other computers on your network is fairly easy. If a TCP/IP network
connection exists between the computers sharing the printer, you
simply grant permission to all hosts, individual hosts, or users from
remote hosts to access your computer's printing service.

To configure a printer entry manually in the /etc/cups/printers.conf
file to accept print jobs from all other computers, make sure that the
Shared Yes line is set. The following example from a printers.conf
entry earlier in this chapter demonstrates what the new entry would
look like:

<DefaultPrinter printer>

Info HP LaserJet 2100M

Location HP LaserJet 2100M in hall closet

DeviceURI parallel:/dev/lp0

State Idle

Accepting Yes

Shared Yes

JobSheets none none

QuotaPeriod 0

PageLimit 0

KLimit 0

</Printer>

On Linux systems that use the Print Settings window described earlier
in this chapter, it's best to set up your printer as a shared printer using
that window. Here's how to do that using Fedora 30:

1. From the Activities screen on a GNOME 3 desktop in
Fedora, type Print Settings and press Enter. The Print
Settings window appears.

2. To allow all of your printers to be shared, select Server
➪ Settings. If you are not the root user, you are prompted for
the root password. The Basic Server Settings pop-up appears.

3. Select the check box next to “Publish shared printers
connected to this system” and click OK. You may be asked
to modify your firewall to open the necessary ports for remote
systems to access your printers.

4. To allow or restrict printing for a particular printer
further, double-click the name of the printer that you
want to share. (If the printer is not yet configured, refer to the
section “Setting Up Printers” earlier in this chapter.)

5. Choose the Policies heading and select Shared so that a
check mark appears in the box.

6. If you want to restrict access to the printer to selected
users, select the Access Control heading and choose one
of the following options:

a. Allow Printing for Everyone Except These Users.
With this selected, all users are allowed access to the printer.
By typing usernames into the Users box and clicking Add,
you exclude selected users.

b. Deny Printing for Everyone Except These Users. With
this selected, all users are excluded from using the printer.
Type usernames into the Users box, and click Add to allow
access to the printer for only those names that you enter.

Now you can configure other computers to use your printer, as

described in the section “Setting Up Printers” of this chapter. If you try
to print from another computer and it doesn't work, try these
troubleshooting tips:

Open your firewall. If you have a restrictive firewall, it may not
permit printing. You must enable access to TCP port 631 to allow
access to printing on your computer.

Check names and addresses. Make sure that you entered your
computer's name and print queue properly when you configured
it on the other computer. Try using the IP address instead of the
hostname. (If that works, it indicates a DNS name resolution
problem.) Running a tool such as tcpdump enables you to see
where the transaction fails.

Check which addresses cupsd is listening on. The cupsd
daemon must be listening outside of the localhost for remote
systems to print to it. Use the netstat command (as the root user)
as follows to check this. The first example shows cupsd only
listening on local host (127.0.0.1:631); the second shows cupsd
listening on all network interfaces (0 0.0.0.0:631):

netstat -tupln | grep 631

tcp 0 0 127.0.0.1:631 0.0.0.0:* LISTEN

6492/cupsd

netstat -tupln | grep 631

tcp 0 0 0.0.0.0:631 0.0.0.0:* LISTEN

6492/cupsd

Access changes to your shared printer are made in the cupsd.conf and
printers.conf files in your /etc/cups directory.

Configuring a shared Samba printer
Your Linux printers can be configured as shared SMB printers so that
they appear to be available from Windows systems. To share your
printer as if it were a Samba (SMB) printer, simply configure basic
Samba server settings as described in Chapter 19, “Configuring a
Windows File Sharing (Samba) Server.” All your printers should be
shared on your local network by default. The next section shows what
the resulting settings look like and how you might want to change

them.

Understanding smb.conf for printing
When you configure Samba, the /etc/samba/smb.conf file is
constructed to enable all of your configured printers to be shared.
Here are a few lines from the smb.conf file that relate to printer
sharing:

[global]

 …

 load printers = yes

 cups options = raw

 printcap name = /etc/printcap

 printing = cups

 …

[printers]

 comment = All Printers

 path = /var/spool/samba

 browseable = yes

 writeable = no

 printable = yes

You can read the comment lines to learn more about the file's
contents. Lines beginning with a semicolon (;) indicate the default
setting for the option on a comment line. Remove the semicolon to
change the setting.

The selected lines show that printers from /etc/printcap were loaded
and that the CUPS service is being used. With cups options set to raw,
Samba assumes that print files have already been formatted by the
time they reach your print server. This allows the Linux or Windows
clients to provide their own print drivers.

The last few lines are the actual printers’ definition. By changing the
browseable option from no to yes, you give users the ability to print to
all printers (printable = yes). You can also store Windows native
print drivers on your Samba server. When a Windows client uses your
printer, the driver automatically becomes available. You do not need
to download a driver from the vendor's website. To enable the printer
driver share, add a Samba share called print$ that looks like the
following:

[print$]

comment = Printer Drivers

path = /var/lib/samba/drivers

browseable = yes

guest ok = no

read only = yes

write list = chris, dduffey

After you have the share available, you can start copying Windows
print drivers to the /var/lib/samba/drivers directory.

Setting up SMB clients
Chances are good that if you are configuring a Samba printer on your
Linux computer, you want to share it with Windows clients. If Samba
is set up properly on your computer and the client computers can
reach you over the network, users should have no trouble finding and
using your printer.

For many Windows 10 systems, click Start ➪ Printers and Scanners
and select the printer from the list to configure it.

With Windows Vista, you open the Network icon. The name of your
host computer (the NetBIOS name, which is probably also your
TCP/IP name) appears on the screen or within a workgroup folder on
the screen. Open the icon that represents your computer. The window
that opens shows your shared printers and folders.

TIP
If your computer's icon doesn't appear in Network Neighborhood
or My Network Places, try using the Search window. From
Windows XP, choose Start ➪ Search ➪ Computer or People ➪ A
Computer on the Network. Type your computer's name into the
Computer Name box and click Search. Double-click your computer
in the Search window results panel. A window displaying the
shared printers and folders from your computer appears.

After your shared printer appears in the window, configure a pointer
to that printer by opening (double-clicking) the printer icon. A
message tells you that you must set up the printer before you can use
it. Click Yes to proceed to configure the printer for local use. The Add
Printer Wizard appears. Answer the questions that ask you how you
intend to use the printer and add the appropriate drivers. When you
are finished, the printer appears in your printer window.

Another way to configure an SMB printer from a Windows XP
operating system is to go to Start ➪ Printers and Faxes. In the Printers
and Faxes window that appears, click the Add a Printer icon in the
upper-left portion of the window, and select Network Printer from the
first window. From there, you can browse and/or configure your SMB
printer.

Summary
Providing networked printing services is essential on today's business
networks. With the use of a few network-attached devices, you can
focus your printer spending on a few high-quality devices that multiple
users can share instead of numerous lower-cost devices. In addition, a
centrally located printer can make it easier to maintain the printer
while still enabling everyone to get their printing jobs done.

The default printing service in nearly every major Linux distribution
today is the Common UNIX Printing System (CUPS). Any Linux
system that includes CUPS offers the CUPS web-based administrative
interface for configuring CUPS printing. It also offers configuration
files in the /etc/cups directory for configuring printers and the CUPS
service (cupsd daemon).

In RHEL, Fedora, Ubuntu, and other Linux systems, you can configure
your printer with the printing configuration windows available in both
KDE and GNOME desktops. A variety of drivers makes it possible to
print to different kinds of printers as well as to printers that are
connected to computers on the network.

You can set up your computer as a Linux print server, and you can also
have your computer emulate an SMB (Windows) print server. After
your network is configured properly and a local printer is installed,
sharing that printer over the network as a UNIX or SMB print server is
not very complicated.

Exercises
Use these exercises to test your knowledge of configuring printers in
Linux. These tasks assume that you are running a Fedora or Red Hat
Enterprise Linux system (although some tasks work on other Linux
systems as well). If you are stuck, solutions to the tasks are shown in
Appendix B (although in Linux, you can often complete a task in
multiple ways).

1. Use the Print Settings window (system-config-printer package)
to add a new printer called myprinter to your system. (The printer
does not have to be connected to set up a print queue for the new
printer.) Make it a generic PostScript printer connected to a local
serial, LPT, or other port.

2. Use the lpstat -t command to see the status of all of your
printers.

3. Use the lp command to print the /etc/hosts file to that printer.

4. Check the print queue for that printer to see that the print job is
there.

5. Remove the print job from the queue (cancel it).

6. Using the Printing window, set the basic server setting that
publishes your printers so that other systems on your local
network can print to your printers.

7. Allow remote administration of your system from a web browser.

8. Demonstrate that you can do remote administration of your
system by opening a web browser to port 631 from another system
to the Linux system running your print server.

9. Use the netstat command to see on which addresses the cupsd
daemon is listening (the printing port is 631).

10. Delete the myprinter printer entry from your system.

CHAPTER 17
Configuring a Web Server

IN THIS CHAPTER
Installing an Apache web server

Configuring Apache

Securing Apache with iptables and SELinux

Creating virtual hosts

Building a secure (HTTPS) website

Checking Apache for errors

Web servers are responsible for serving up the content you view on the
Internet every day. By far, the most popular web server is the Apache
(HTTPD) web server, which is sponsored by the Apache Software
Foundation (http://apache.org). Because Apache is an open source
project, it is available with every major Linux distribution, including
Fedora, RHEL, and Ubuntu.

You can configure a basic web server to run in Linux in just a few
minutes. However, you can configure your Apache web server in a
tremendous number of ways. You can configure an Apache web server
to serve content for multiple domains (virtual hosting), provide
encrypted communications (HTTPS), and secure some or all of a
website using different kinds of authentication.

This chapter takes you through the steps to install and configure an
Apache web server. These steps include procedures for securing your
server as well as using a variety of modules so that you can incorporate
different authentication methods and scripting languages into your
web server. Then I describe how to generate certificates to create an
HTTPS Secure Sockets Layer (SSL) website.

http://apache.org

Understanding the Apache Web Server
Apache HTTPD (also known as the Apache HTTPD Server) provides
the service with which the client web browsers communicate. The
daemon process (httpd) runs in the background on your server and
waits for requests from web clients. Web browsers provide those
connections to the HTTP daemon and send requests, which the
daemon interprets, sending back the appropriate data (such as a web
page or other content).

Apache HTTPD includes an interface that allows modules to tie into
the process to handle specific portions of a request. Among other
things, modules are available to handle the processing of scripting
languages, such as Perl or PHP, within web documents and to add
encryption to connections between clients and the server.

Apache began as a collection of patches and improvements from the
National Center for Supercomputing Applications (NCSA), University
of Illinois, Urbana Champaign, to the HTTP daemon. The NCSA HTTP
daemon was the most popular HTTP server at the time, but it had
started to show its age after its author, Rob McCool, left NCSA in mid
1994.

NOTE
Another project that came from NCSA is Mosaic. Most modern
web browsers can trace their origins to Mosaic.

In early 1995, a group of developers formed the Apache Group and
began making extensive modifications to the NCSA HTTPD code base.
Apache soon replaced NCSA HTTPD as the most popular web server, a
title it still holds today.

The Apache Group later formed the Apache Software Foundation
(ASF) to promote the development of Apache and other free software.
With the start of new projects at ASF, the Apache server became
known as Apache HTTPD, although the two terms are still used
interchangeably. Currently, ASF has more than 350 open source
initiatives, including Tomcat (which includes open source Java Servlet
and JavaServer Pages technologies), Hadoop (a project providing
highly available, distributed computing), and SpamAssassin (an email
filtering program).

Getting and Installing Your Web Server
Although Apache is available with every major Linux distribution, it is
often packaged in different ways. In most cases, all you need to start a
simple Apache web server is the package containing the Apache
daemon itself (/usr/sbin/httpd) and its related files. In Fedora,
RHEL, and others, the Apache web server comes in the httpd package.

Understanding the httpd package
To examine the httpd package in Fedora or RHEL before you install it,
download the package using the yumdownloader command and run a
few rpm commands on it to view its contents:

yumdownloader httpd

rpm -qpi httpd-*rpm

Name : httpd

Version : 2.4.41

Release : 1.fc30

Architecture: x86_64

Install Date: (not installed)

Group : Unspecified

Size : 5070831

License : ASL 2.0

Signature : RSA/SHA256, Mon 19 Aug 2019 06:06:09 AM EDT,

Key ID ef3c111fcfc659b9

Source RPM : httpd-2.4.41-1.fc30.src.rpm

Build Date : Thu 15 Aug 2019 06:07:29 PM EDT

Build Host : buildvm-30.phx2.fedoraproject.org

Relocations : (not relocatable)

Packager : Fedora Project

Vendor : Fedora Project

URL : http://httpd.apache.org/

Bug URL : https://bugz.fedoraproject.org/httpd

Summary : Apache HTTP Server

Description :

The Apache HTTP Server is a powerful, efficient, and

extensible

web server.

The yumdownloader command downloads the latest version of the httpd
package to the current directory. The rpm ‐qpi command queries the

httpd RPM package you just downloaded for information. You can see
that the package was created by the Fedora project and that it is
indeed the Apache HTTP Server package. Next, look inside the
package to see the configuration files:

rpm -qpc httpd-*rpm

/etc/httpd/conf.d/autoindex.conf

/etc/httpd/conf.d/userdir.conf

/etc/httpd/conf.d/welcome.conf

/etc/httpd/conf.modules.d/00-base.conf

/etc/httpd/conf.modules.d/00-dav.conf

…

/etc/httpd/conf/httpd.conf

/etc/httpd/conf/magic

/etc/logrotate.d/httpd

/etc/sysconfig/htcacheclean

The main configuration file is /etc/httpd/conf/httpd.conf for Apache.
The welcome.conf file defines the default home page for your website,
until you add some content. The magic file defines rules that the server
can use to figure out a file's type when the server tries to open it.

The /etc/logrotate.d/httpd file defines how log files produced by
Apache are rotated. The /usr/lib/tmpfiles.d/httpd.conf file defines a
directory that contains temporary runtime files (no need to change
that file).

Some Apache modules drop configuration files (*.conf) into the
/etc/httpd/conf.modules.d/ directory. Any file in that directory that
ends in .conf is pulled into the main httpd.conf file and used to
configure Apache. Most module packages that come with
configuration files put those configuration files in the
/etc/httpd/conf.d directory. For example, the mod_ssl (for secure web
servers) and mod_python (for interpreting python code) modules have
related configuration files in the /etc/httpd/conf.d directory named
ssl.conf and python.conf, respectively.

You can just install the httpd package to begin setting up your web
server. However, you might prefer to add some other packages that are
often associated with the httpd package. One way to do that is to
install the entire Web Server (in Fedora) or Basic Web Server group
(in RHEL), as in the following example:

yum groupinstall "Web Server"

Besides installing some packages that are peripheral to httpd (such as
rsyslogd, irqbalance, and others), here are other packages in the Web
Server group in Fedora that you get by default along with httpd:

httpd‐manual Fills the /var/www/manual directory with the Apache
documentation manuals. After you start the httpd service (as
shown in later steps), you can access this set of manuals from a
web browser on the local machine by typing
http://localhost/manual into the location box.

Externally, instead of localhost, you could use the fully qualified
domain name or IP address of the system. The Apache
Documentation screen then appears, as shown in Figure 17.1.

FIGURE 17.1 Access Apache documentation directly from the
local Apache server.

mod_ssl Contains the module and configuration file needed for the
web server to provide secure connections to clients using Secure
Sockets Layer (SSL) and Transport Layer Security (TLS)
protocols. These features are necessary if you need encrypted
communications for online shopping or other data that you want
to keep private. The configuration file is located at
/etc/httpd/conf.d/ssl.conf.

crypto‐utils Contains commands for generating keys and
certificates needed to do secure communications with the Apache
web server.

mod_perl Contains the Perl module (mod_perl), configuration file,
and associated files needed to allow the Apache web server to
execute any Perl code directly.

php Contains the PHP module and configuration file needed to
run PHP scripts directly in Apache. Related packages include php‐
ldap (for running PHP code that needs to access LDAP databases)
and php‐mysql (to add database support to the Apache server).

php‐ldap Adds support for Lightweight Directory Access Protocol
(LDAP) to the PHP module, allowing directory service access over
networks.

squid Provides proxy services for specific protocols (such as
HTTP), as mentioned in Chapter 14, “Administering Networking.”
Although it doesn't provide HTTP content itself, a Squid proxy
server typically forwards requests from proxy clients to the
Internet or other network providing web content. This provides a
means of controlling or filtering content that clients can reach
from a home, school, or place of business.

webalizer Contains tools for analyzing web server data.

Optional packages in the Web Server group come from the web server
sub group. Run yum groupinfo web‐server to display those packages.
Some of those packages offer special ways of providing content, such
as wikis (moin), content management systems (drupal7), and blogs
(wordpress). Others include tools for graphing web statistics (awstats)
or offer lightweight web server alternatives to Apache (lighttpd and
cherokee).

Installing Apache
Although you only need httpd to get started with an Apache web
server, if you are just learning about Apache, you should install the
manuals (httpd‐manual) as well. If you are thinking of creating a secure
(SSL) site and possibly generating some statistics about your website,
you can just install the entire group in Fedora 30:

yum groupinstall "Web Server"

Assuming that you have an Internet connection to the Fedora
repository (or RHEL repository, if you are using RHEL), all of the
mandatory and default packages from that group are installed. You
have all of the software that you need to do the procedures and
exercises described in this chapter.

Starting Apache
To get the Apache web server going, you want to enable the service to
start on every reboot, and you want to start it immediately. In Red Hat
Enterprise Linux (up to RHEL 6) and in older Fedora distributions,
you could type the following as root:

chkconfig httpd on

service httpd start

Starting httpd: [OK]

In Fedora 30 and RHEL 8 systems, you enable and start httpd using
the systemctl command:

systemctl enable httpd.service

systemctl start httpd.service

systemctl status httpd.service

• httpd.service - The Apache HTTP Server

 Loaded: loaded (/usr/lib/systemd/system/httpd.service;

enabled;

 vendor preset: disabled)

 Drop-In: /usr/lib/systemd/system/httpd.service.d

 └─php-fpm.conf

 Active: active (running) since Mon 2019-09-02 16:16:56

EDT;

 21min ago

 Docs: man:httpd.service(8)

 Main PID: 11773 (/usr/sbin/httpd)

 Status: "Total requests: 14; Idle/Busy workers

100/0;Requests/sec:

 0.0111; Bytes served/s>

 Tasks: 214 (limit: 2294)

 Memory: 24.6M

 CGroup: /system.slice/httpd.service

 ├─11773 /usr/sbin/httpd -DFOREGROUND

 ├─11774 /usr/sbin/httpd -DFOREGROUND

 ├─11775 /usr/sbin/httpd -DFOREGROUND

 ├─11776 /usr/sbin/httpd -DFOREGROUND

 ├─11777 /usr/sbin/httpd -DFOREGROUND

 └─11778 /usr/sbin/httpd -DFOREGROUND

 …

When the httpd service starts, five or six httpd daemon processes are
launched by default (depending on your Linux system) to respond to

requests for the web server. You can configure more or fewer httpd
daemons to be started based on settings in the httpd.conf file
(described in the section “Understanding the Apache configuration
files” later in this chapter).

To change the behavior of the httpd daemon, you can edit the httpd
service by running systemctl edit httpd.

Because there are different versions of httpd around, check the man
page (man httpd) to see what options can be passed to the httpd
daemon. For example, run systemctl edit httpd and add an entry as
follows:

[Service]

Environment=OPTIONS='-e debug'

Save the changes (Ctrl+O, Ctrl+X). Adding ‐e debug increases the log
level so that the maximum number of Apache messages are sent to log
files. Restart the httpd service for the changes to take effect. Type the
ps command to make sure that the options took effect:

$ ps -ef | grep httpd

root 14575 1 0 08:49 ? 00:00:01 /usr/sbin/httpd -e

debug -DFOREGROUND

apache 14582 14575 0 08:49 ? 00:00:00 /usr/sbin/httpd -e

debug -DFOREGROUND

If you added a debug option (‐e debug), remember to remove that
option by running systemctl edit httpd again and removing the entry
when you are done debugging Apache, and restart the service. Leaving
debugging on will quickly fill up your log files.

Securing Apache
To secure Apache, you need to be aware of standard Linux security
features (permissions, ownership, firewalls, and Security Enhanced
Linux) as well as security features that are specific to Apache. The
following sections describe security features that relate to Apache.

Apache file permissions and ownership
The httpd daemon process runs as the user apache and group apache.

By default, HTML content is stored in the /var/www/html directory (as
determined by the value of DocumentRoot in the httpd.conf file).

For the httpd daemon to be able to access that content, standard Linux
permissions apply: If read permission is not on for “other” users, it
must be on for the apache user or group for the files to be read and
served to clients. Likewise, any directory the httpd daemon must
traverse to get to the content must have execute permission on for the
apache user, apache group, or other user.

Although you cannot log in as the apache user (/sbin/nologin is the
default shell), you can create content as root and change its ownership
(chown command) or permission (chmod command). Often, however,
separate user or group accounts are added to create content that is
readable by everyone (other) but only writable by that special user or
group.

Apache and firewalls
If you have locked down your firewall in Linux, you need to open
several ports for clients to be able to talk to Apache through the
firewall. Standard web service (HTTP) is accessible over TCP port 80;
secure web service (HTTPS) is accessible via TCP port 443. (Port 443
only appears if you have installed the mod_ssl package, as described
later.)

To verify which ports are being used by the httpd server, use the
netstat command:

netstat -tupln | grep httpd

tcp6 0 0 :::80 :::* LISTEN

29169/httpd

tcp6 0 0 :::443 :::* LISTEN

29169/httpd

The output shows that the httpd daemon (process ID 29169) is
listening on all addresses for port 80 (:::80) and port 443 (:::443).
Both ports are associated with the TCP protocol (tcp6). To open those
ports in Fedora or Red Hat Enterprise Linux, you need to add some
firewall rules.

On a current Fedora 30 or RHEL 7 or 8 system, open the Firewall

window (type Firewall and press Enter from the Activities screen on
the GNOME 3 desktop). From there, select Permanent as the
configuration. Then, with the public zone selected, click the check
boxes next to the http and https service boxes. Those ports
immediately become open.

For RHEL 6 or older Fedora releases, add rules to the
/etc/sysconfig/iptables file (somewhere before a final DROP or REJECT)
such as the following:

-A INPUT -m state --state NEW -m tcp -p tcp --dport 80 -j

ACCEPT

-A INPUT -m state --state NEW -m tcp -p tcp --dport 443 -j

ACCEPT

Restart iptables (service iptables restart) for the new rules to take
effect.

Apache and SELinux
If Security Enhanced Linux (SELinux) is set to enforcing (as it is by
default in Fedora and Red Hat Enterprise Linux), SELinux adds
another layer of security over your httpd service. In essence, SELinux
actually sets out to protect the system from being damaged by
someone who may have cracked the httpd daemon. SELinux does this
by creating policies that do the following:

Deny access to files that are not set to the right file contexts. For
httpd in SELinux, there are different file contexts for content,
configuration files, log files, scripts, and other httpd related files.
Any file that is not set to the proper context is not accessible to the
httpd daemon.

Prevent insecure features from being used, such as file uploading
and clear text authentication, by setting Booleans for such
features to the off position. You can selectively turn on Booleans
as they are needed—if they meet your security requirements.

Keep the httpd daemon from accessing nonstandard features,
such as a port outside of the default ports the service would expect
to use.

A full description of SELinux is contained in Chapter 24, “Enhancing
Linux Security with SELinux.” However, here are a few specifics you
should know about using SELinux with the Apache httpd service:

Turn off SELinux You don't have to use SELinux. You can set
SELinux to permissive mode if you feel that it is too difficult and
unnecessary to create the SELinux policies needed to get your web
server to work with SELinux in enforcing mode. You can change
the mode to permissive by editing the /etc/sysconfig/selinux file
so that the SELINUX value is set as follows. With this set, the next
time you reboot the system, it is in permissive mode. This means
that if you break SELinux policies, that event is logged but not
prevented (as it would be in enforcing mode).

SELINUX=permissive

Read the httpd_selinux man page Type man httpd_selinux
from the shell. This man page shows you the proper file contexts
and available Booleans. (If the man page is not there, install it
with yum install selinux‐policy‐doc.)

Use standard locations for files When you create new files,
those files inherit the file contexts of the directories in which they
are stored. Because /etc/httpd is set to the right file context for
configuration files, /var/www/html is right for content files, and so
on. Simply copying files to or creating new files in those locations
causes the file contexts to be set properly.

Modify SELinux to allow non standard features You may
want to serve web content from the /mystuff directory or put
configuration files in the /etc/whatever directory. Likewise, you
may want to allow users of your server to upload files, run scripts,
or enable other features that are disabled by SELinux by default.
In those cases, you can use SELinux commands to set the file
contexts and Booleans that you need to get SELinux working the
way you want.

Be sure to read Chapter 24, “Enhancing Linux Security with SELinux,”
to learn more about SELinux.

Understanding the Apache configuration files
The configuration files for Apache HTTPD are incredibly flexible,
meaning that you can configure the server to behave in almost any
manner you want. This flexibility comes at the cost of increased
complexity in the form of a large number of configuration options
(called directives). In practice, however, you need to be familiar with
only a few directives in most cases.

NOTE
See http://httpd.apache.org/docs/current/mod/directives.html
for a complete list of directives supported by Apache. If you have
httpd‐manual installed, you can reach descriptions of these
directives and other Apache features by opening the manual from
the server you have running Apache: http://localhost/manual/.

In Fedora and RHEL, the basic Apache server's primary configuration
file is in /etc/httpd/conf/httpd.conf. Besides this file, any file ending
in .conf in the /etc/httpd/conf.d directory is also used for Apache
configuration (based on an Include line in the httpd.conf file). In
Ubuntu, the Apache configuration is stored in text files read by the
Apache server, beginning with /etc/apache2/apache2.conf.
Configuration is read from start to finish, with most directives being
processed in the order in which they are read.

Using directives
The scope of many configuration directives can be altered based on
context. In other words, some parameters may be set on a global level
and then changed for a specific file, directory, or virtual host. Other
directives are always global in nature, such as those specifying on
which IP addresses the server listens. Still others are valid only when
applied to a specific location.

Locations are configured in the form of a start tag containing the
location type and a resource location, followed by the configuration
options for that location, and finishing with an end tag. This form is
often called a configuration block, and it looks very similar to HTML
code. A special type of configuration block, known as a location block,
is used to limit the scope of directives to specific files or directories.
These blocks take the following form:

<locationtag specifier>

(options specific to objects matching the specifier go

within this block)

</locationtag>

http://httpd.apache.org/docs/current/mod/directives.html
http://localhost/manual/

Different types of location tags exist and are selected based on the type
of resource location that is being specified. The specifier included in
the start tag is handled based on the type of location tag. The location
tags that you generally use and encounter are Directory, Files, and
Location, which limit the scope of the directives to specific directories,
files, or locations, respectively.

Directory tags are used to specify a path based on the location on
the filesystem. For instance, <Directory /> refers to the root
directory on the computer. Directories inherit settings from
directories above them, with the most specific Directory block
overriding less specific ones, regardless of the order in which they
appear in the configuration files.

Files tags are used to specify files by name. Files tags can be
contained within a Directory block to limit them to files under
that directory. Settings within a Files block override the ones in
Directory blocks.

Location tags are used to specify the URI used to access a file or
directory. This is different from Directory in that it relates to the
address contained within the request and not to the real location
of the file on the drive. Location tags are processed last and
override the settings in Directory and Files blocks.

Match versions of these tags—DirectoryMatch, FilesMatch, and
LocationMatch—have the same function but can contain regular
expressions in the resource specification. FilesMatch and
LocationMatch blocks are processed at the same time as Files and
Location, respectively. DirectoryMatch blocks are processed after
Directory blocks.

Apache can also be configured to process configuration options
contained within files with the name specified in the AccessFileName
directive (which is generally set to .htaccess). Directives in access
configuration files are applied to all objects under the directory they
contain, including subdirectories and their contents. Access
configuration files are processed at the same time as Directory blocks,
using a similar “most specific match” order.

NOTE
Access control files are useful for allowing users to change specific
settings without having access to the server configuration files. The
configuration directives permitted within an access configuration
file are determined by the AllowOverride setting on the directory in
which they are contained. Some directives do not make sense at
that level and generally result in a ″server internal error″ message
when trying to access the URI. The AllowOverride option is covered
in detail at
http://httpd.apache.org/docs/mod/core.html#allowoverride.

Three directives commonly found in location blocks and access control
files are DirectoryIndex, Options, and ErrorDocument:

DirectoryIndex tells Apache which file to load when the URI
contains a directory but not a filename. This directive doesn't
work in Files blocks.

Options is used to adjust how Apache handles files within a
directory. The ExecCGI option tells Apache that files in that
directory can be run as CGI scripts, and the Includes option tells
Apache that server side includes (SSIs) are permitted. Another
common option is the Indexes option, which tells Apache to
generate a list of files if one of the filenames found in the
DirectoryIndex setting is missing. An absolute list of options can
be specified, or the list of options can be modified by adding + or ‐
in front of an option name. See
http://httpd.apache.org/docs/mod/core.html#options for more
information.

ErrorDocument directives can be used to specify a file containing
messages to send to web clients when a particular error occurs.
The location of the file is relative to the /var/www directory. The
directive must specify an error code and the full URI for the error
document. Possible error codes include 403 (access denied), 404
(file not found), and 500 (server internal error). You can find more

http://httpd.apache.org/docs/mod/core.html#allowoverride
http://httpd.apache.org/docs/mod/core.html#options

information about the ErrorDocument directive at
http://httpd.apache.org/docs/mod/core.html#errordocument. As
an example, when a client requests a URL from the server that is
not found, the following ErrorDocument line causes the 404 error
code to send the client an error message that is listed in the
/var/www/error/HTTP_NOT_FOUND.html.var file.

ErrorDocument 404 /error/HTTP_NOT_FOUND.html.var

Another common use for location blocks and access control files is to
limit or expand access to a resource. The Allow directive can be used to
permit access to matching hosts, and the Deny directive can be used to
forbid it. Both of these options can occur more than once within a
block and are handled based on the Order setting. Setting Order to
Deny, Allow permits access to any host that is not listed in a Deny
directive. A setting of Allow, Deny denies access to any host not
allowed in an Allow directive.

As with most other options, the most specific Allow or Deny option for a
host is used, meaning that you can Deny access to a range and Allow
access to subsets of that range. By adding the Satisfy option and some
additional parameters, you can add password authentication. For
more information on Allow or Deny, Satisfy, or other directives, refer
to the Apache Directive Index:
http://httpd.apache.org/docs/current/mod/directives.html.

Understanding default settings
The reason you can start using your Apache web server as soon as you
install it is that the httpd.conf file includes default settings that tell the
server where to find web content, scripts, log files, and other items
that the server needs to operate. It also includes settings that tell the
server how many server processes to run at a time and how directory
contents are displayed.

If you want to host a single website (such as for the example.com
domain), you can simply add content to the /var/www/html directory
and add the address of your website to a DNS server so that others can
browse to it. You can then change directives, such as those described
in the previous section, as needed.

http://httpd.apache.org/docs/mod/core.html#errordocument
http://httpd.apache.org/docs/current/mod/directives.html
http://example.com

To help you understand the settings that come in the default
httpd.conf file, I've displayed some of those settings with descriptions
below. I have removed comments and rearranged some of the settings
for clarity.

The following settings show locations where the httpd server is getting
and putting content by default:

ServerRoot "/etc/httpd"

Include conf.d/*.conf

ErrorLog logs/error_log

CustomLog "logs/access_log" combined

DocumentRoot "/var/www/html"

ScriptAlias /cgi-bin/ "/var/www/cgi-bin/"

The ServerRoot directive identifies /etc/httpd as the location where
configuration files are stored.

At the point in the file where the Include line appears, any files ending
in .conf from the /etc/httpd/conf.d directory are included in the
httpd.conf file. Configuration files are often associated with Apache
modules (and are often included in the software package with a
module) or with virtual host blocks (which you might add yourself to
virtual host configurations in separate files). See the section “Adding a
virtual host to Apache” later in this chapter.

As errors are encountered and content is served, messages about those
activities are placed in files indicated by the ErrorLog and CustomLog
entries. From the entries shown here, those logs are stored in the
/etc/httpd/logs/error_log and /etc/httpd/logs/access_log
directories, respectively. Those logs are also hard linked to the
/var/log/httpd directory, so you can access the same file from there as
well.

The DocumentRoot and ScriptAlias directives determine where content
that is served by your httpd server is stored. Traditionally, you would
place an index.html file in the DocumentRoot directory (/var/www/html,
by default) as the home page and add other content as needed. The
ScriptAlias directive tells the httpd daemon that any scripts requested
from the cgi‐bin directory should be found in the /var/www/cgi‐bin
directory. For example, a client could access a script located in

/var/www/cgi‐bin/script.cgi by entering a URL such as
http://example.com/cgi-bin/script.cgi.

In addition to file locations, you can find other information in the
httpd.conf file. Here are some examples:

Listen 80

User apache

Group apache

ServerAdmin root@localhost

DirectoryIndex index.html index.php

AccessFileName .htaccess

The Listen 80 directive tells httpd to listen for incoming requests on
port 80 (the default port for the HTTP web server protocol). By
default, it listens on all network interfaces, although you could restrict
it to selected interfaces by IP address (for example, Listen
192.168.0.1:80).

The User and Group directives tell httpd to run as apache for both the
user and group. The value of ServerAdmin (root@localhost, by default)
is published on some web pages to tell users where to email if they
have problems with the server.

The DirectoryIndex lists files that httpd will serve if a directory is
requested. For example, if a web browser requested
http://host/whatever/, httpd would see whether
/var/www/html/whatever/index.html existed and serve it if so. If it
didn't exist, in this example, httpd would look for index.php. If that file
couldn't be found, the contents of the directory would be displayed. An
AccessFileName directive can be added to tell httpd to use the contents
of the .htaccess file if it exists in a directory to read in settings that
apply to access to that directory. For example, the file could be used to
require password protection for the directory or to indicate that the
contents of the directory should be displayed in certain ways. For this
file to work, however, a Directory container (described next) would
have to have AllowOverride opened. (By default, the AllowOverride
None setting prevents the .htaccess file from being used for any
directives.)

The following Directory containers define behavior when the root

http://example.com/cgi-bin/script.cgi

directory (/), /var/www, and /var/www/html directories are accessed:

<Directory/>

 AllowOverride none

 Require all denied

</Directory>

<Directory "/var/www">

 AllowOverride None

 # Allow open access:

 Require all granted

</Directory>

<Directory "/var/www/html">

 Options Indexes FollowSymLinks

 AllowOverride None

 Require all granted

</Directory>

The first Directory container (/) indicates that if httpd tries to access
any files in the Linux filesystem, access is denied. The AllowOverride
none directive prevents .htaccess files from overriding settings for that
directory. Those settings apply to any subdirectories that are not
defined in other Directory containers.

Content access is relaxed within the /var/www directory. Access is
granted to content added under that directory, but overriding settings
is not allowed.

The /var/www/html Directory container follows symbolic links and
does not allow overrides. With Require all granted set, httpd doesn't
prevent any access to the server.

If all of the settings just described work for you, you can begin adding
the content that you want to the /var/www/html and /var/www/cgi‐bin
html directories. One reason you might not be satisfied with the default
setting is that you might want to serve content for multiple domains
(such as example.com, example.org, and example.net). To do that, you
need to configure virtual hosts. Virtual hosts, which are described in
greater detail in the next section, are a convenient (and almost
essential) tool for serving different content to clients based on the
server address or name to which a request is directed. Most global
configuration options are applied to virtual hosts, but they can be
overridden by directives within the VirtualHost block.

http://example.com
http://example.org
http://example.net

Adding a virtual host to Apache
Apache supports the creation of separate websites within a single
server to keep content separate. Individual sites are configured on the
same server in what are referred to as virtual hosts.

Virtual hosts are really just a way to have the content for multiple
domain names available from the same Apache server. Instead of
needing to have one physical system to serve content for each domain,
you can serve content for multiple domains from the same operating
system.

An Apache server that is doing virtual hosting may have multiple
domain names that resolve to the IP address of the server. The content
that is served to a web client is based on the name used to access the
server.

For example, if a client got to the server by requesting the name
www.example.com, the client would be directed to a virtual host
container that had its ServerName set to respond to www.example.com.
The container would provide the location of the content and possibly
different error logs or Directory directives from the global settings.
This way, each virtual host could be managed as if it were on a
separate machine.

To use name based virtual hosting, add as many VirtualHost
containers as you like. Here's how to configure a virtual host:

http://www.example.com
http://www.example.com

NOTE
After you enable your first VirtualHost, your default DocumentRoot
(/var/www/html) is no longer used if someone accesses the server by
IP address or some name that is not set in a VirtualHost container.
Instead, the first VirtualHost container is used as the default
location for the server.

1. In Fedora or RHEL, create a file named
/etc/httpd/conf.d/example.org.conf using this template:

<VirtualHost *:80>

 ServerAdmin webmaster@example.org

 ServerName www.example.org

 ServerAlias web.example.org

 DocumentRoot /var/www/html/example.org/

DirectoryIndex index.php index.html index.htm

</VirtualHost>

This example includes the following settings:

The *:80 specification in the VirtualHost block indicates to
what address and port this virtual host applies. With multiple
IP addresses associated with your Linux system, the * can be
replaced by a specific IP address. The port is optional for
VirtualHost specifications but should always be used to
prevent interference with SSL virtual hosts (which use port
443 by default).

The ServerName and ServerAlias lines tell Apache which
names this virtual host should be recognized as, so replace
them with names appropriate to your site. You can leave out
the ServerAlias line if you do not have any alternate names
for the server, and you can specify more than one name per
ServerAlias line or have multiple ServerAlias lines if you
have several alternate names.

The DocumentRoot specifies where the web documents

(content served for this site) are stored. Although shown as a
subdirectory that you create under the default DocumentRoot
(/var/www/html), often sites are attached to the home
directories of specific users (such as
/home/chris/public_html) so that each site can be managed
by a different user.

2. With the host enabled, use apachectl to check the
configuration, and then do a graceful restart:

apachectl configtest

Syntax OK

apachectl graceful

Provided that you have registered the system with a DNS server, a web
browser should be able to access this website using either
www.example.org or web.example.org. If that works, you can start
adding other virtual hosts to the system as well.

Another way to extend the use of your website is to allow multiple
users to share their own content on your server. You can enable users
to add content that they want to share via your web server in a
subdirectory of their home directories, as described in the next
section.

http://www.example.org
http://web.example.org

NOTE
Keeping individual virtual hosts in separate files is a convenient
way to manage virtual hosts. However, you should be careful to
keep your primary virtual host in a file that will be read before the
others because the first virtual host receives requests for site
names that don't match any in your configuration. In a commercial
web hosting environment, it is common to create a special default
virtual host that contains an error message indicating that no site
by that name has been configured.

Allowing users to publish their own web content
In situations where you do not have the ability to set up a virtual host
for every user for whom you want to provide web space, you can easily
make use of the mod_userdir module in Apache. With this module
enabled (which it is not by default), the public_html directory under
every user's home directory is available to the web at
http://servername/~username/.

For example, a user named wtucker on www.example.org stores web
content in /home/wtucker/public_html. That content would be

available from http://www.example.org/~wtucker.

Make these changes to the /etc/httpd/conf/httpd.conf file to allow
users to publish web content from their own home directories. Not all
versions of Apache have these blocks in their httpd.conf file, so you
might have to create them from scratch:

1. Create a <IfModule mod_userdir.c> block. Change chris to any
username you want to allow users to create their own public_html
directory. You can add multiple usernames.

<IfModule mod_userdir.c>

 UserDir enabled chris

 UserDir public_html

</IfModule>

http://www.example.org
http://www.example.org/~wtucker

2. Create a <Directory /home/*/public_html> directive block
and change any settings you like. This is how the block will
look:

<Directory "/home/*/public_html">

 Options Indexes Includes FollowSymLinks

 Require all granted

</Directory>

3. Have your users create their own public_html directories
in their own home directories.

$ mkdir $HOME/public_html

4. Set the execute permission (as root user) to allow the
httpd daemon to access the home directory:

chmod +x /home /home/*

5. If SELinux is in enforcing mode (which it is by default in
Fedora and RHEL), a proper SELinux file context
(httpd_user_content_t) should already be set on the
following directories so that SELinux allows the httpd
daemon to access the content automatically: /home/*/www,
/home/*/web, and /home/*/public_html. If for some reason the
context is not set, you can set it as follows:

ttpd_user_content_t to /home/*/

chcon -R --reference=/var/www/html/ /home/*/public_html

6. Set the SELinux Boolean to allow users to share HTML
content from their home directories:

setsebool –P httpd_enable_homedirs true

7. Restart or reload the httpd service.

At this point, you should be able to access content placed in a
user's public_html directory by pointing a web browser to
http://hostname/~user.

Securing your web traffic with SSL/TLS

Any data that you share from your website using standard HTTP
protocol is sent in clear text. This means that anyone who can watch
the traffic on a network between your server and your client can view
your unprotected data. To secure that information, you can add
certificates to your site (so a client can validate who you are) and
encrypt your data (so nobody can sniff your network and see your
data).

Electronic commerce applications, such as online shopping and
banking, should always be encrypted using either the Secure Sockets
Layer (SSL) or Transport Layer Security (TLS) specification. TLS is
based on version 3.0 of the SSL specifications, so they are very similar
in nature. Because of this similarity—and because SSL is older—the
SSL acronym is often used to refer to either variety. For web
connections, the SSL connection is established first, and then normal
HTTP communication is “tunneled” through it.

NOTE
Because SSL negotiation takes place before any HTTP
communication, name based virtual hosting (which occurs at the
HTTP layer) does not work easily with SSL. As a consequence,
every SSL virtual host you configure should have a unique IP
address. (See the Apache site for more information:
httpd.apache.org/docs/vhosts/name-based.html.)

While you are establishing a connection between an SSL client and an
SSL server, asymmetric (public key) cryptography is used to verify
identities and establish the session parameters and the session key. A
symmetric encryption algorithm is then used with the negotiated key
to encrypt the data that are transmitted during the session. The use of
asymmetric encryption during the handshaking phase allows safe
communication without the use of a preshared key, and the symmetric
encryption is faster and more practical for use on the session data.

For the client to verify the identity of the server, the server must have a
previously generated private key as well as a certificate containing the
public key and information about the server. This certificate must be
verifiable using a public key that is known to the client.

Certificates are generally digitally signed by a third party certificate
authority (CA) that has verified the identity of the requester and the
validity of the request to have the certificate signed. In most cases, the
CA is a company that has made arrangements with the web browser
vendor to have its own certificate installed and trusted by default
client installations. The CA then charges the server operator for its
services.

Commercial certificate authorities vary in price, features, and browser
support, but remember that price is not always an indication of
quality. Some popular CAs are InstantSSL
(https://www.instantssl.com), Let's Encrypt
(https://www.letsencrypt.org), and DigiCert
(https://www.digicert.com).

http://httpd.apache.org/docs/vhosts/name-based.html
https://www.instantssl.com
https://www.letsencrypt.org
https://www.digicert.com

You also have the option of creating self signed certificates, although
these should be used only for testing or when a very small number of
people will be accessing your server and you do not plan to have
certificates on multiple machines. Directions for generating a self
signed certificate are included in the section “Generating an SSL key
and self signed certificate” later in this chapter.

The last option is to run your own certificate authority. This is
probably practical only if you have a small number of expected users
and the means to distribute your CA certificate to them (including
assisting them with installing it in their browsers). The process for
creating a CA is too elaborate to cover in this book, but it is a
worthwhile alternative to generating self signed certificates.

The following sections describe how HTTPS communications are
configured by default in Fedora and RHEL when you install the
mod_ssl package. After that, I describe how to configure SSL
communications better by generating your own SSL keys and
certificates to use with the web server (running on a Fedora or RHEL
system) configured in this chapter.

Understanding how SSL is configured
If you have installed the mod_ssl package in Fedora or RHEL (which is
done by default if you installed the Basic Web Server group), a self
signed certificate and private key are created when the package is
installed. This allows you to use HTTPS protocol immediately to
communicate with the web server.

Although the default configuration of mod_ssl allows you to have
encrypted communications between your web server and clients,
because the certificate is self signed, a client accessing your site is
warned that the certificate is untrusted. To begin exploring the SSL
configuration for your Apache web server, make sure that the mod_ssl
package is installed on the server running your Apache (httpd)
service:

yum install mod_ssl

The mod_ssl package includes the module needed to implement

SSLon your web server (mod_ssl.so) and a configuration file for your
SSL hosts: /etc/httpd/conf.d/ssl.conf. There are many comments in
this file to help you understand what to change. Those lines that are
not commented out define some initial settings and a default virtual
host. Here are some of those lines:

Listen 443 https

…

<VirtualHost _default_:443>

ErrorLog logs/ssl_error_log

TransferLog logs/ssl_access_log

LogLevel warn

SSLEngine on

…

SSLCertificateFile /etc/pki/tls/certs/localhost.crt

SSLCertificateKeyFile /etc/pki/tls/private/localhost.key

…

</VirtualHost>

The SSL service is set to listen on standard SSL port 443on all the
system’s network interfaces.

A VirtualHost block is created that causes error messages and access
messages to be logged to log files that are separate from the standard
logs used by the server (ssl_error_log and ssl_access_log in the
/var/log/httpd/ directory). The level of log messages is set to warn and
the SSLEngine is turned on.

In the preceding sample code, two entries associated with SSL
Certificates in the VirtualHost block identify the key and certificate
information. As mentioned previously, a key is generated when
mod_ssl is installed and placed in the file
/etc/pki/tls/private/localhost.key. A self signed certificate,
/etc/pki/tls/certs/localhost.crt, is created using that key. When
you create your own key and certificate later, you need to replace the
values of SSLCertificateFile and SSLCertificateKeyFile in this file.

After installing the mod_ssl package and reloading the configuration
file, you can test that the default certificate is working by following
these steps:

1. Open a connection to the website from a web browser,
using the HTTPS protocol. For example, if you are running

Firefox on the system where the web server is running, type
https://localhost into the location box and press Enter. Figure
17.2 shows an example of the page that appears.

FIGURE 17.2 Accessing an SSL website with a default certificate

2. This page warns you that there is no way of verifying the
authenticity of this site. That is because there is no way to know
who created the certificate that you are accepting.

3. Because you are accessing the site via a browser on the
local host, click Advanced and then View to see the
certificate that was generated. It includes your hostname,
information on when the certificate was issued and when it
expires, and lots of other organization information.

4. Select Accept the Risk and Continue to allow
connections to this site.

5. Close that window, and then select Confirm Security
Exception to accept the connection. You should now see
your default web page using HTTPS protocol. From now on, your
browser will accept HTTPS connections to the web server using
that certificate and encrypt all communications between the
server and browser.

Because you don't want your website to scare off users, the best thing
to do is to get a valid certificate to use with your site. The next best
thing to do is to create a self signed certificate that at least includes
better information about your site and organization. The following
section describes how to do that.

Generating an SSL key and self‐signed certificate
To begin setting up SSL, use the openssl command, which is part of
the openssl package, to generate your public and private key. After
that, you can generate your own self signed certificate to test the site
or to use internally.

1. If the openssl package is not already installed, install it as
follows:

yum install openssl

2. Generate a 2048 bit RSA private key and save it to a file:

cd /etc/pki/tls/private

openssl genrsa -out server.key 2048

chmod 600 server.key

2. NOTE
You can use a filename other than server.key and should do so
if you plan to have more than one SSL host on your machine
(which requires more than one IP address). Just make sure
that you specify the correct filename in the Apache
configuration later.

Or, in higher security environments, encrypting the key by
adding the ‐des3 argument after the genrsa argument on the
openssl command line is a good idea. When prompted for a
passphrase, press Enter:

openssl genrsa -des3 -out server.key 1024

3. If you don't plan to have your certificate signed, or if you
want to test your configuration, generate a self signed
certificate and save it in a file named server.crt in the
/etc/pki/tls/certs directory:

cd /etc/pki/tls/certs

openssl req -new -x509 -nodes -sha1 -days 365 \

 -key /etc/pki/tls/private/server.key \

 -out server.crt

Country Name (2 letter code) [AU]: US

State or Province Name (full name) [Some-State]: NJ

Locality Name (eg, city) [Default City]: Princeton

Organization Name (eg, company) [Default Company Ltd

Ltd]:TEST USE ONLY

Organizational Unit Name (eg, section) []:TEST USE ONLY

Common Name (eg, YOUR name) []:secure.example.org

Email Address []:dom@example.org

4. Edit the /etc/httpd/conf.d/ssl.conf file to change the key
and certificate locations to use the ones that you just
created. For example:

SSLCertificateFile /etc/pki/tls/certs/server.crt

SSLCertificateKeyFile /etc/pki/tls/private/server.key

5. Restart or reload the httpdserver.

6. Open https://localhost from a local browser again, repeat
the procedure to review, and accept the new certificate.

For internal use or testing, a self signed certificate might work for you.
However, for public websites, you should use a certificate that is
validated by a certificate authority (CA). The procedure for doing that
is covered next.

Generating a certificate signing request
If you plan to have your certificate signed by a CA (including one that
you run yourself), you can use your private key to generate a certificate
signing request (CSR):

1. Create a directory for storing your CSR.

mkdir /etc/pki/tls/ssl.csr

cd /etc/pki/tls/ssl.csr/

2. Use the openssl command to generate the CSR. The result is
a CSR file in the current directory named server.csr. When you
enter the information, the Common Name entry should match the
name that clients will use to access your server. Be sure to get the
other details right so that it can be validated by a third party CA.
Also, if you had entered a passphrase for your key, you are
prompted to enter it here to use the key.

openssl req -new -key ../private/server.key -out

server.csr

Country Name (2 letter code) [AU]:US

State or Province Name (full name) [Some-State]:Washington

Locality Name (eg, city) []:Bellingham

Organization Name (eg, company) [Internet Widgits Pty

Ltd]:Example Company, LTD.

Organizational Unit Name (eg, section) []:Network

 Operations

Common Name (eg, YOUR name) []:secure.example.org

Email Address []:dom@example.org

Please enter the following 'extra' attributes

to be sent with your certificate request

A challenge password []:

An optional company name []:

3. Visit the website of the certificate signing authority that
you choose and request a signed certificate. At some point,
the CA site will probably ask you to copy and paste the contents of
your CSR (server.csr file in this example) into a form needed to
make the request.

4. When the CA sends you the certificate (probably via
email), save it in the /etc/pki/tls/certs/ directory using a
name based on the site you are hosting — for example,
example.org.crt.

5. Change the value of SSLCertificateFile in the
/etc/httpd/conf.d/ssl.conf file to point to your new CRT
file. Or, if you have multiple SSL hosts, you might want to create
a separate entry (possibly in a separate .conf file) that looks like
the following:

Listen 192.168.0.56:443

<VirtualHost *:443>

 ServerName secure.example.org

 ServerAlias web.example.org

 DocumentRoot /home/username/public_html/

 DirectoryIndex index.php index.html index.htm

 SSLEngine On

 SSLCertificateKeyFile /etc/pki/tls/private/server.key

 SSLCertificateFile /etc/pki/tls/certs/example.org.crt

</VirtualHost>

The IP address shown in the Listen directive should be replaced by the
public IP address representing the SSL host you are serving.
Remember that each SSL host should have its own IP address.

Troubleshooting Your Web Server
In any complex environment, you occasionally run into problems. The
following sections include tips for isolating and resolving the most
common errors that you may encounter.

Checking for configuration errors
You may occasionally run into configuration errors or script problems
that prevent Apache from starting or that prevent specific files from
being accessible. Most of these problems can be isolated and resolved
using two Apache provided tools: the apachectl program and the
system error log.

When encountering a problem, first use the apachectl program with
the configtest parameter to test the configuration. In fact, it's a good
idea to develop the habit of running this every time you make a
configuration change:

apachectl configtest

Syntax OK

apachectl graceful

/usr/sbin/apachectl graceful: httpd gracefully restarted

In the event of a syntax error, apachectl indicates where the error
occurs and also does its best to give a hint about the nature of the
problem. You can then use the graceful restart option (apachectl
graceful) to instruct Apache to reload its configuration without
disconnecting any active clients.

NOTE
The graceful restart option in apachectl automatically tests the
configuration before sending the reload signal to apache, but
getting in the habit of running the manual configuration test after
making any configuration changes is still a good idea.

Some configuration problems pass the syntax tests performed by
apachectl but cause the HTTP daemon to exit immediately after
reloading its configuration. If this happens, use the tail command to
check Apache's error log for useful information. On Fedora and RHEL
systems, the error log is in /var/log/httpd/error.log. On other
systems, you can find the location by looking for the ErrorLog directive
in your Apache configuration.

You might encounter an error message that looks something like this:

[crit] (98)Address already in use: make_sock: could not bind

to port 80

This error often indicates that something else is bound to port 80, that
another Apache process is already running (apachectl usually catches
this), or that you have told Apache to bind the same IP address and
port combination in more than one place.

You can use the netstat command to view the list of programs
(including Apache) with TCP ports in the LISTEN state:

netstat -nltp

Active Internet connections (only servers)

Proto Local Address Foreign Address State PID/Program

name

tcp6 :::80 :::* LISTEN 2105/httpd

The output from netstat (which was shortened to fit here) indicates
that an instance of the httpd process with a process ID of 2105 is
listening (as indicated by the LISTEN state) for connections to any local
IP address (indicated by :::80) on port 80 (the standard HTTP port).
If a different program is listening to port 80, it is shown there. You can

use the kill command to terminate the process, but if it is something
other than httpd, you should also find out why it is running.

If you don't see any other processes listening on port 80, it could be
that you have accidentally told Apache to listen on the same IP address
and port combination in more than one place. Three configuration
directives can be used for this: BindAddress, Port, and Listen:

BindAddress enables you to specify a single IP address on which to
listen, or you can specify all IP addresses using the * wildcard.
You should never have more than one BindAddress statement in
your configuration file.

Port specifies on which TCP port to listen, but it does not enable
you to specify the IP address. Port is generally not used more than
once in the configuration.

Listen enables you to specify both an IP address and a port to
bind to. The IP address can be in the form of a wildcard, and you
can have multiple Listen statements in your configuration file.

To avoid confusion, it is generally a good idea to use only one of these
directive types. Of the three, Listen is the most flexible, so it is
probably the one you want to use the most. A common error when
using Listen is to specify a port on all IP addresses (*:80) as well as
that same port on a specific IP address (1.2.3.4:80), which results in
the error from make_sock.

Configuration errors relating to SSL commonly result in Apache
starting improperly. Make sure that all key and certificate files exist
and that they are in the proper format (use openssl to examine them).

For other error messages, try doing a web search to see whether
somebody else has encountered the problem. In most cases, you can
find a solution within the first few matches.

If you aren't getting enough information in the ErrorLog, you can
configure it to log more information using the LogLevel directive. The
options available for this directive, in increasing order of verbosity, are
emerg, alert, crit, error, warn, notice, info, and debug. Select only one
of these.

Any message that is at least as important as the LogLevel that you
select are stored in the ErrorLog. On a typical server, LogLevel is set to
warn. You should not set it to any value lower than crit, and you
should avoid leaving it set to debug because that can slow down the
server and result in a very large ErrorLog.

As a last resort, you can also try running httpd ‐X manually to check
for crashes or other error messages. The ‐X runs httpd so that it
displays debug and higher messages on the screen.

Accessing forbidden and server internal errors
The two common types of errors that you may encounter when
attempting to view specific pages on your server are permission errors
and server internal errors. Both types of errors can usually be isolated
using the information in the error log. After making any of the changes
described in the following list to attempt to solve one of these
problems, try the request again and check the error log to see whether
the message has changed (for example, to show that the operation
completed successfully).

NOTE
″File not found″ errors can be checked in the same way as ″access
forbidden″ and ″server internal errors.″ You may sometimes find
that Apache is not looking where you think it is for a specific file.
Generally, the entire path to the file shows up in the error log.
Make sure that you are accessing the correct virtual host, and
check for any Alias settings that might be directing your location
to a place you don't expect.

File permissions A “File permissions prevent access” error
indicates that the apache process is running as a user that is
unable to open the requested file. By default, httpd is run by the
Apache user and group. Make sure that the account has execute
permissions on the directory, and every directory above it, as well
as read permissions on the files themselves. Read permissions on
a directory are also necessary if you want Apache to generate an
index of files. See the manual page for chmod for more information
about how to view and change permissions.

NOTE
Read permissions are not necessary for compiled binaries,
such as those written in C or C++, but they can be safely added
unless a need exists to keep the contents of the program secret.

Access denied A “Client denied by server configuration” error
indicates that Apache was configured to deny access to the object.
Check the configuration files for Location and Directory sections
that might affect the file that you are trying to access. Remember
that settings applied to a path are also applied to any paths below
it. You can override these by changing the permissions only for
the more specific path to which you want to allow access.

Index not found The “Directory index forbidden by rule” error
indicates that Apache could not find an index file with a name
specified in the DirectoryIndex directive and was configured not
to create an index containing a list of files in a directory. Make
sure that your index page, if you have one, has one of the names
specified in the relevant DirectoryIndex directive, or add an
Options Indexes line to the appropriate Directory or Location
section for that object.

Script crashed “Premature end of script headers” errors can
indicate that a script is crashing before it finishes. On occasion,
the errors that caused this also show up in the error log. When
using suexec or suPHP, this error may also be caused by a file
ownership or permissions error. These errors appear in log files in
the /var/log/httpd directory.

SELinux errors If file permissions are open but messages
denying permission appear in log files, SELinux could be causing
the problem. Set SELinux to permissive mode temporarily
(setenforce 0) and try to access the file again. If the file is now
accessible, set SELinux to enforcing mode again (setenforce 1)
and check file contexts and Booleans. File contexts must be
correct for httpd to be able to access a file. A Boolean might

prevent a file being served from a remotely mounted directory or
prevent a page from sending an email or uploading a file. Type man
httpd_selinux for details about SELinux configuration settings
associated with the httpd services. (Install the selinux‐policy‐
devel package to have that man page added to your system.)

Summary
The open source Apache project is the world's most popular web
server. Although Apache offers tremendous flexibility, security, and
complexity, a basic Apache web server can be configured in just a few
minutes in Fedora, RHEL, and most other Linux distributions.

The chapter described the steps for installing, configuring, securing,
and troubleshooting a basic Apache web server. You learned how to
configure virtual hosting and secure SSL hosts. You also learned how
to configure Apache to allow any user account on the system to publish
content from their own public_html directory.

Continuing on the topic of server configuration, in Chapter 18,
“Configuring an FTP Server,” you will learn how to set up an FTP
server in Linux. The examples illustrate how to configure an FTP
server using the vsftpd package.

Exercises
The exercises in this section cover topics related to installing and
configuring an Apache web server. As usual, I recommend that you use
a spare Fedora or Red Hat Enterprise Linux system to do the
exercises. Don't do these exercises on a production machine because
these exercises modify the Apache configuration files and service, and
they could damage services that you have currently configured. Try to
use a virtual machine or find a computer where it will do no harm to
interrupt services on the system.

These exercises assume that you are starting with a Fedora or RHEL
installation on which the Apache server (httpd package) is not yet
installed.

If you are stuck, solutions to the tasks are shown in Appendix B. These
show you one approach to each task, although Linux may offer
multiple ways to complete a task.

1. From a Fedora system, install all of the packages associated with
the Basic Web Server group.

2. Create a file called index.html in the directory assigned to
DocumentRoot in the main Apache configuration file. The file
should have the words “My Own Web Server” inside.

3. Start the Apache web server and set it to start up automatically at
boot time. Check that it is available from a web browser on your
local host. (You should see the words “My Own Web Server”
displayed if it is working properly.)

4. Use the netstat command to see on which ports the httpd server
is listening.

5. Try to connect to your Apache web server from a web browser that
is outside of the local system. If it fails, correct any problems that
you encounter by investigating the firewall, SELinux, and other
security features.

6. Using the openssl or similar command, create your own private

RSA key and self signed SSL certificate.

7. Configure your Apache web server to use your key and self signed
certificate to serve secure (HTTPS) content.

8. Use a web browser to create an HTTPS connection to your web
server and view the contents of the certificate that you created.

9. Create a file named /etc/httpd/conf.d/example.org.conf, which
turns on name based virtual hosting and creates a virtual host
that does these things:

Listens on port 80 on all interfaces

Has a server administrator of joe@example.org

Has a server name of joe.example.org

Has a DocumentRoot of /var/www/html/example.org

Has a DirectoryIndex that includes at least index.html Create
an index.html file in DocumentRoot that contains the words
“Welcome to the House of Joe” inside.

10. Add the text joe.example.org to the end of the localhost entry
in your /etc/hosts file on the machine that is running the

web server. Then type http://joe.example.org into the location
box of your web browser. You should see “Welcome to the House
of Joe” when the page is displayed.

mailto:joe@example.org
http://joe.example.org
http://joe.example.org
http://joe.example.org

CHAPTER 18
Configuring an FTP Server

IN THIS CHAPTER
Learning how FTP works

Getting a vsftpd server installed

Choosing security settings for vsftpd

Setting up vsftpd configuration files

Running FTP clients

The File Transfer Protocol (FTP) is one of the oldest protocols in
existence for sharing files over networks. Although there are more
secure protocols for network file sharing, FTP is still used quite often
for making files freely available on the Internet.

Several FTP server projects are available with Linux today. However,
the one often used with Fedora, Red Hat Enterprise Linux, CentOS,
Ubuntu, and other Linux distributions is the Very Secure FTP Daemon
(vsftpd package). This chapter describes how to install, configure, use,
and secure an FTP server using the vsftpd package.

Understanding FTP
FTP operates in a client/server model. An FTP server daemon listens
for incoming requests (on TCP port 21) from FTP clients. The client
presents a login and password. If the server accepts the login
information, the client can interactively traverse the filesystem, list
files and directories, and then download (and sometimes upload) files.

What makes FTP insecure is that everything sent between the FTP
client and server is done in clear text. The FTP protocol was created at
a time when most computer communication was done on private lines
or over dial up, where encryption was not thought to be critical. If you
use FTP over a public network, someone sniffing the line anywhere
between the client and server would be able to see not only the data
being transferred but also the authentication process (login and
password information).

So, FTP is not good for sharing files privately (use SSH commands
such as sftp, scp, or rsync if you need private, encrypted file transfers).
However, if you are sharing public documents, open source software
repositories, or other openly available data, FTP is a good choice.
Regardless of the operating system people use, they surely have an
FTP file transfer application available to get files that you offer from
your FTP server.

When users authenticate to an FTP server in Linux, their usernames
and passwords are authenticated against the standard Linux user
accounts and passwords. There is also a special, non authenticated
account used by the FTP server called anonymous. The anonymous
account can be accessed by anyone because it does not require a valid
password. In fact, the term anonymous FTP server is often used to
describe a public FTP server that does not require (or even allow)
authentication of a legitimate user account.

NOTE
Although the ability to log in to the vsftpd server using a regular
Linux user account is enabled by default in Fedora and Red Hat
Enterprise Linux, if SELinux is set to enforcing mode, it prevents
the logins and file transfers from succeeding. If you want to keep
SELinux in enforcing mode yet still allow Linux logins, you can
change a Boolean (see the section “Configuring SELinux for your
FTP server” later in this chapter) to allow regular user logins to
succeed.

After the authentication phase (on the control port, TCP port 21), a
second connection is made between the client and server. FTP
supports both active and passive connection types. With an active FTP
connection, the server sends data from its TCP port 20 to some
random port the server chooses above port 1023 on the client. With a
passive FTP connection, the client requests the passive connection and
requests a random port from the server.

Many browsers support passive FTP mode so that if the client has a
firewall, it doesn't block the data port that the FTP server might use in
active mode. Supporting passive mode requires some extra work on
the server's firewall to allow random connections to ports above 1023
on the server. The section “Opening up your firewall for FTP,” later in
this chapter, describes what you need to do to your Linux firewall to
make both passive and active FTP connections work.

After the connection is established between the client and server, the
client's current directory is established. For the anonymous user, the
/var/ftp directory is the home directory for Fedora or RHEL, and it's
/srv/ftp for Ubuntu and most Debian based distributions. The
anonymous user cannot go outside of the /var/ftp directory structure.
If a regular user, let's say joe, logs in to the FTP server, /home/joe is
joe's current directory, but joe can change to any part of the filesystem
for which he has permission.

Command oriented FTP clients (such as lftp and ftp commands) go

into an interactive mode after connecting to the server. From the
prompt you see, you can run many commands that are similar to those
that you would use from the shell. You could use pwd to see your
current directory, ls to list directory contents, and cd to change
directories. When you see a file that you want, you use the get and put
commands to download files from or upload them to the server,
respectively.

With graphical tools for accessing FTP servers (such as a web
browser), you type the URL of the site that you want to visit (such as
ftp://docs.example.com) into the location box of the browser. If you
don't add a username or password, an anonymous connection is made
and the contents of the home directory of the site are displayed. Click
links to directories to change to those directories. Click links to files to
display or download those files to your local system.

Armed with some understanding of how FTP works, you are now
ready to install an FTP server (vsftpd package) on your Linux system.

ftp://docs.example.com

Installing the vsftpd FTP Server
Setting up the Very Secure FTP server requires only one package in
Fedora, RHEL, and other Linux distributions: vsftpd. Assuming you
have a connection to your software repository, just type the following
as root for Fedora or RHEL to install vsftpd:

yum install vsftpd

If you are using Ubuntu (or another Linux distribution based on
Debian packaging), type the following to install vsftpd:

$ sudo apt-get install vsftpd

Here are some commands that you can run after the vsftpd package is
installed to familiarize yourself with the contents of that package.
From Fedora or RHEL, run this command to get some general
information about the package:

rpm -qi vsftpd

…

Packager : Fedora Project

Vendor : Fedora Project

URL : https://security.appspot.com/vsftpd.html

Summary : Very Secure Ftp Daemon

Description : vsftpd is a Very Secure FTP daemon. It was

written

 completely from scratch.

If you want to get more information about vsftpd, follow the URL
listed to the related website
(https://security.appspot.com/vsftpd.html). You can get additional
documentation and information about the latest revisions of vsftpd.

You can view the full contents of the vsftpd package (rpm ‐ql vsftpd),
or you can view just the documentation (‐qd) or configuration (‐qc)
files. To see the documentation files in the vsftpd package, use the
following:

rpm -qd vsftpd

/usr/share/doc/vsftpd/EXAMPLE/INTERNET_SITE/README

…

https://security.appspot.com/vsftpd.html

/usr/share/doc/vsftpd/EXAMPLE/PER_IP_CONFIG/README

…

/usr/share/doc/vsftpd/EXAMPLE/VIRTUAL_HOSTS/README

/usr/share/doc/vsftpd/EXAMPLE/VIRTUAL_USERS/README

…

/usr/share/doc/vsftpd/FAQ

…

/usr/share/doc/vsftpd/vsftpd.xinetd

/usr/share/man/man5/vsftpd.conf.5.gz

/usr/share/man/man8/vsftpd.8.gz

In the /usr/share/doc/vsftpd/EXAMPLE directory structure, there are
sample configuration files included to help you configure vsftpd in
ways that are appropriate for an Internet site, multiple IP address site,
and virtual hosts. The main /usr/share/doc/vsftpd directory contains
an FAQ (frequently asked questions), installation tips, and version
information.

The man pages might have the most useful information when you set
out to configure the vsftpd server. Type man vsftpd.conf to read about
the configuration file and man vsftpd to read about the daemon
process and how to manage it as a systemd service.

To list the configuration files, type the following:

rpm -qc vsftpd

/etc/logrotate.d/vsftpd

/etc/pam.d/vsftpd

/etc/vsftpd/ftpusers

/etc/vsftpd/user_list

/etc/vsftpd/vsftpd.conf

The main configuration file is /etc/vsftpd/vsftpd.conf (in RHEL and
Fedora) or /etc/vsftpd.conf (in Ubuntu). The ftpusers and user_list
(Fedora and RHEL, but not Ubuntu) files in the same directory store
information about user accounts that are restricted from accessing the
server. The /etc/pam.d/vsftpd file sets how authentication is done to
the FTP server. The /etc/logrotate.d/vsftpd file configures how log
files are rotated over time.

Now you have vsftpd installed and have taken a quick look at its
contents. The next step is to start up and test the vsftpd service.

Starting the vsftpd Service
No configuration is required to launch the vsftpd service if you just
want to use the default settings. If you start vsftpd as it is delivered
with Fedora, the following is what you get:

The vsftpd service starts the vsftpd daemon, which runs in the
background.

The standard port on which the vsftpd daemon listens is TCP port
21. By default, data is transferred to the user, after the connection
is made, on TCP port 20. TCP port 21 must be open in the firewall
to allow new connections to access the service. Both IPv4 and
IPv6 connections are available by default. This procedure changes
to the TCP IPv4 service. (See the section “Securing Your FTP
Server” later in this chapter for details on opening ports, enabling
connection tracking needed for passive FTP, and setting other
firewall rules related to FTP.)

The vsftpd daemon reads vsftpd.conf to determine what features
the service allows.

Linux user accounts (excluding administrative users) can access
the FTP server. The anonymous user account (no password
required) can be enabled. (If SELinux is in enforcing mode, you
need to set a Boolean to allow regular users to log in to the FTP
server. See the section “Securing Your FTP Server” for details.)

The anonymous user has access only to the /var/ftp directory and
its subdirectories. A regular user starts with their home directory
as the current directory but can access any directory to which the
user would be able to gain access via a regular login or SSH
session. Lists of users in the /etc/vsftpd/user_list and
/etc/vsftpd/ftpusers files define some administrative and special
users who do not have access to the FTP server (root, bin,
daemon, and others).

By default, the anonymous user can download files from the
server but not upload them. A regular user can upload or

download files, based on regular Linux permissions.

Log messages detailing file uploads or downloads are written in
the /var/log/xferlogs file. Those log messages are stored in a
standard xferlog format.

If you are ready to start your server using the defaults just described,
the following examples show you how to do that. If you want to change
some additional settings first, go to the section “Configuring Your FTP
Server,” later in this chapter, finalize your settings, and then come
back here for instructions on how to enable and start your server.

1. Check the vsftpd service. Before you start the vsftpd service, you
can check out whether it is running already. In Fedora or Red Hat
Enterprise Linux 7 or 8, you do the following:

 # systemctl status vsftpd.service

 vsftpd.service - Vsftpd ftp daemon

 Loaded: loaded

(/usr/lib/systemd/system/vsftpd.service; disabled)

 Active: inactive (dead)

In Red Hat Enterprise Linux 6, you need two commands to see
the same information:

 # service vsftpd status

 vsftpd is stopped

 # chkconfig --list vsftpd

 vsftpd 0:off 1:off 2:off 3:off 4:off 5:off

6:off

In both the Fedora and RHEL examples above, the service,
chkconfig, and systemctl commands show the status as stopped.
You can also see that it is disabled in Fedora and RHEL 7 or 8
and off at every runlevel for RHEL 6. Disabled (off) means that
the service will not turn on automatically when your start the
system.

2. To start and enable vsftpd in Fedora or RHEL 7 or 8 (then check
the status), type the following:

 # systemctl start vsftpd.service

 # systemctl enable vsftpd.service

 ln -s '/lib/systemd/system/vsftpd.service'

 '/etc/systemd/system/multi-

user.target.wants/vsftpd.service'

 # systemctl status vsftpd.service

 vsftpd.service - Vsftpd ftp daemon

 Loaded: loaded

(/usr/lib/systemd/system/vsftpd.service;

 enabled vendor preset: disabled))

 Active: active (running) since Wed, 2019-

09-18 00:09:54 EDT; 22s ago

 Main PID: 4229 (vsftpd)

 Tasks: 1 (limit: 12232)

 Memory: 536.0K

 CGroup: /system.slice/vsftpd.service

 └ 4229 /usr/sbin/vsftpd

/etc/vsftpd/vsftpd.conf

In Red Hat Enterprise Linux 6, start and turn on (enable) vsftpd
(then check the status), as follows:

 # service vsftpd start

 Starting vsftpd for vsftpd: [

OK]

 # chkconfig vsftpd on ; chkconfig --list vsftpd

 vsftpd 0:off 1:off 2:on 3:on

4:on 5:on 6:off

3. Now, on either system, you could check that the service is running
using the netstat command:

 # netstat -tupln | grep vsftpd

 tcp 0 0 0.0.0.0:21 0.0.0.0:* LISTEN

4229/vsftpd

From the netstat output, you can see that the vsftpd process
(process ID of 4229) is listening (LISTEN) on all IP addresses for
incoming connections on port 21 (0.0.0.0:21) for the TCP (tcp)
protocol.

4. A quick way to check that vsftpd is working is to put a file in the
/var/ftp directory and try to open it from your web browser on
the local host:

 # echo "Hello From Your FTP Server">

/var/ftp/hello.txt

From a web browser on the local system, type the following into
the location box of Firefox or another browser:

 ftp://localhost/hello.txt

If the text Hello From Your FTP Server appears in the web browser,
the vsftpd server is working and accessible from your local system.
Next, try this again from a web browser on another system, replacing
localhost with your host's IP address or fully qualified host name. If
that works, the vsftpd server is publicly accessible. If it doesn't, which
it quite possibly may not, see the next section, “Securing Your FTP
Server.” That section tells you how to open firewalls and modify other
security features to allow access and otherwise secure your FTP server.

Securing Your FTP Server
Even though it is easy to get a vsftpd FTP server started, that doesn't
mean that it is immediately fully accessible. If you have a firewall in
place on your Linux system, it is probably blocking access to all
services on your system except for those that you have explicitly
allowed.

If you decide that the default vsftpd configuration works for you as
described in the previous section, you can set to work allowing the
appropriate access and providing security for your vsftpd service. To
help you secure your vsftpd server, the next sections describe how to
configure your firewall and SELinux (Booleans and file contexts).

Opening up your firewall for FTP
If you have a firewall implemented on your system, you need to add
firewall rules that allow incoming requests to your FTP site and allow
packets to return to your system on established connections. Firewalls
are implemented using iptables rules and managed with the iptables
service or firewalld service (see Chapter 25, “Securing Linux on a
Network,” for details about firewall services).

In Fedora and Red Hat Enterprise Linux, firewall rules have
traditionally been stored in the /etc/sysconfig/iptables file and the
underlying service was iptables (RHEL 6) or iptables.service
(Fedora). Modules are loaded into your firewall from the
/etc/sysconfig/iptables‐config file. In RHEL 7 and Fedora 21 or
later, the new firewalld service manages those rules and rules are
stored in the /etc/firewalld/zones directory.

NOTE
It is best to work on your firewall directly from a system console, if
possible, instead of over a remote login (such as ssh) because a
small error can immediately lock you out of your server. After that,
you must go over to the console to get back into the server and fix
the problem. You need to add a few things to your firewall to allow
access to your FTP server without opening up access to other
services. First, you need to allow your system to accept requests on
TCP port 21; then you need to make sure that the connection
tracking module is loaded.

In RHEL 7 and Fedora 20 or later, you can use the Firewall
Configuration window to enable your firewall and open access to your
FTP service. Install the firewall‐config package and run firewall‐
config to start the Firewall Configuration window, as shown in Figure
18.1.

FIGURE 18.1 Open access to your FTP service from the Firewall
Configuration window.

Next, to open access permanently to your FTP service, click the
Configuration box and select Permanent. Then select the check box
next to ftp under the Services tab. This automatically opens TCP port
21 (FTP) on your firewall and loads kernel modules needed to allow
access to passive FTP service. Select Options ➪ Reload Firewalld to
apply the firewall rule permanently.

For RHEL 6 and earlier systems, add rules directly to the
/etc/sysconfig/iptables file. If you are using a default firewall, rules
in the beginning open access to requests for any services coming from
the local host and allow packets to come in that are associated with, or
related to, established connections. In the middle are rules that open
ports for service requests that you have already allowed, such as the
secure shell service (sshd on TCP port 22). At the end of the rules, a
final rule usually DROPs or REJECTs any request that has not explicitly
been allowed.

To allow public access to someone requesting your FTP server, you
want to allow new requests to TCP port 21. You typically want to add
the rule somewhere before the final DROP or REJECT rule. The following
output shows partial contents of the /etc/sysconfig/iptables file with
the rule allowing access to your FTP server in bold:

*filter

:INPUT ACCEPT [0:0]

:FORWARD ACCEPT [0:0]

:OUTPUT ACCEPT [0:0]

-A INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT

-A INPUT -i lo -j ACCEPT

-A INPUT -m state --state NEW -m tcp -p tcp --dport 22 -j

ACCEPT

-A INPUT -m state --state NEW -m tcp -p tcp --dport 21 -j

ACCEPT

…

-A INPUT -j REJECT --reject-with icmp-host-prohibited

COMMIT

This example shows that, for the filter table, the firewall accepts
packets from established connections, connections from local hosts,
and any new requests on TCP port 22 (SSH service). The line we just
added (‐‐dport 21) allows any packets on new connections to TCP port
21 to be accepted.

NOTE
It is important to have the ESTABLISHED, RELATED line in your
iptables firewall rules. Without that line, users would be able to
connect to your SSH (port 22) and FTP (port 21) services, but they
would not be able to communicate after that. So, a user could get
authenticated but not be able to transfer data.

The next thing that you must do on RHEL 6 and earlier systems is set
up the FTP connection tracking module to be loaded each time the
firewall starts up. Edit this line at the beginning of the
/etc/sysconfig/iptables‐config file to appear as follows:

IPTABLES_MODULES="nf_conntrack_ftp"

At this point, you can restart your firewall (keeping in mind that a
mistake could lock you out if you are logged in remotely). Use one of
the following two commands to restart your firewall, depending on
whether your system is using the older iptables service or the newer
firewalld service:

service iptables restart

or

systemctl restart firewalld.service

Try again to access your FTP server from a remote system (using a web
browser or some other FTP client).

Configuring SELinux for your FTP server
If SELinux is set to permissive or disabled, it does not block access to
the vsftpd service in any way. However, if SELinux is in enforcing
mode, a few SELinux issues could cause your vsftpd server not to
behave as you would like. Use the following commands to check the
state of SELinux on your system:

getenforce

Enforcing

grep ^SELINUX= /etc/sysconfig/selinux

SELINUX=enforcing

The getenforce command shows how SELinux is currently set. (Here,
it's in enforcing mode.) The SELINUX= variable in
/etc/sysconfig/selinux shows how SELinux is set when the system
comes up. If it is in enforcing mode, as it is here, check the
ftpd_selinux man page for information about SELinux settings that
can impact the operation of your vsftpd service. Install the selinux‐
policy‐doc package to get the ftpd_selinux man page as well as man
pages for other services with SELinux policies.

Here are some examples of file contexts that must be set for SELinux
to allow files and directories to be accessed by vsftpd:

To share content so that it can be downloaded to FTP clients, that
content must be marked with a public_content_t file context.
Files created in the /var/ftp directory or its subdirectories inherit
public_content_t file context automatically. (Be sure to create
new content or copy existing content to the /var/ftp directories.
Moving the files there may not change the file context properly.)

To allow files to be uploaded by anonymous users, the file context
on the directory to which you upload must be set to
public_content_rw_t. (Other permissions, SELinux Booleans, and
vsftpd.conf settings must be in place for this to work as well.)

If you have files in the /var/ftp directory structure that have the
wrong file contexts (which can happen if you move files there from
other directories instead of copying them), you can change or restore
the file context on those files so that they can be shared. For example,
to recursively change the file context of the /var/ftp/pub/stuff
directory so that the content can be readable from the FTP server
through SELinux, enter the following:

semanage fcontext -a -t public_content_t

"/var/ftp/pub/stuff(/.*)?"

restorecon -F -R -v /var/ftp/pub/stuff

If you wanted to allow users also to write to a directory as well as to
read from it, you would need to assign the public_content_rw_t file

context to the directory to which you want to allow uploads. This
example tells SELinux to allow uploading of files to the
/var/ftp/pub/uploads directory:

semanage fcontext -a -t public_content_rw_t\

 "/var/ftp/pub/uploads(/.*)?"

restorecon -F -R -v /var/ftp/pub/uploads

FTP server features that are considered insecure by SELinux have
Booleans that let you allow or disallow those features. Here are some
examples:

For SELinux to allow anonymous users to read and write files and
directories, you need to turn on the allow_ftpd_anon_write
(RHEL 6) or ftpd_anon_write (RHEL 7 or later) Boolean:

 # setsebool -P ftpd_anon_write on

To be able to mount remote NFS or CIFS (Windows) shared
filesystems and share them from your vsftpd server, you need to
turn on the following two Booleans, respectively:

 # setsebool -P allow_ftpd_use_nfs on

 # setsebool -P allow_ftpd_use_cifs on

If you ever find that you cannot access files or directories from your
FTP server that you believe should be accessible, try turning off
SELinux temporarily:

setpenforce 0

If you can access the files or directories with SELinux now in
permissive mode, put the system back in enforcing mode (setenforce
1). Now you know you have to go back through your SELinux settings
and find out what is preventing access. (See Chapter 24, “Enhancing
Linux Security with SELinux,” for more information on SELinux.)

Relating Linux file permissions to vsftpd
The vsftpd server relies on standard Linux file permissions to allow or
deny access to files and directories. As you would expect, for an
anonymous user to view or download a file, at least read permission

must be open for other (r). To access a directory, at least execute
permission must be on for other (x).

For regular user accounts, the general rule is that if a user can access a
file from the shell, that user can access the same file from an FTP
server. So, typically, regular users should at least be able to get
(download) and put (upload) files to and from their own home
directories, respectively. After permissions and other security
provisions are in place for your FTP server, you may want to consider
other configuration settings for your FTP server.

Configuring Your FTP Server
Most of the configuration for the vsftpd service is done in the
/etc/vsftpd/vsftpd.conf file. Examples of vsftpd.conf for different
types of sites are included in the /usr/share/doc/vsftpd directory.
Depending on how you want to use your FTP site, the following
sections discuss a few ways to configure your FTP server.

Remember to restart the vsftpd service after making any configuration
changes.

Setting up user access
The vsftpd server comes with all local Linux users (those listed in the
/etc/passwd file) configured to access the server and the anonymous
user prevented. This is based on the following vsftpd.conf settings:

anonymous_enable=NO

local_enable=YES

Some web server companies let users use FTP to upload the content
for their own web servers. In some cases, the users have FTP only
accounts, meaning that they cannot log in to a shell, but they can log in
via FTP to manage their content. Creating a user account that has no
default shell (actually, /sbin/nologin) is how you can keep a user from
logging into a shell but still allow FTP access. For example, the
/etc/passwd entry for the FTP only user account bill might look
something like the following:

bill:x:1000:1000:Bill Jones:/home/bill:/sbin/nologin

With the user account set with /sbin/nologin as the default shell, any
attempts to log in from a console or via ssh as the user bill are denied.
However, as long as bill has a password and local account access to
the FTP server is enabled, bill should be able to log in to the FTP
server via an FTP client.

Not every user with an account on the Linux system has access to the
FTP server. The setting userlist_enable=YES in vsftpd.conf says to

deny access to the FTP server to all accounts listed in the
/etc/vsftpd/user_list file. That list includes administrative users
root, bin, daemon, adm, lp, and others. You can add to that list other
users to whom you would like to deny access.

If you change userlist_enable to NO, the user_list file becomes a list
of only those users who do have access to the server. In other words,
setting userlist_enable=NO, removing all usernames from the
user_list file, and adding the usernames chris, joe, and mary to that
file cause the server to allow only those three users to log in to the
server.

No matter how the value of userlist_enable is set, the
/etc/vsftpd/ftpusers file always includes users who are denied access
to the server. Like the userlist_enable file, the ftpusers file includes a
list of administrative users. You can add more users to that file if you
want them to be denied FTP access.

One way to limit access to users with regular user accounts on your
system is to use chroot settings. Here are examples of some chroot
settings:

chroot_local_user=YES

chroot_list_enable=YES

chroot_list_file=/etc/vsftpd/chroot_list

With the settings just shown uncommented, you could create a list of
local users and add them to the /etc/vsftpd/chroot_list file. After
one of those users logged in, that user would be prevented from going
to places in the system that were outside of that user's home directory
structure.

If uploads to your FTP server are allowed, the directories a user tries
to upload to must be writeable by that user. However, uploads can be
stored under a username other than that of the user who uploaded the
file. This is one of the features discussed next, in the section “Allowing
uploading.”

Allowing uploading
To allow any form of writing to the vsftpd server, you must have

write_enable=YES set in the vsftpd.conf file (which it is, by default).
Because of that, if local accounts are enabled, users can log in and
immediately begin uploading files to their own home directories.
However, anonymous users are denied the ability to upload files by
default.

To allow anonymous uploads with vsftpd, you must have the first
option in the following code example, and you may want the second
line of code as well (both can be enabled by uncommenting them from
the vsftpd.conf file). The first allows anonymous users to upload files;
the second allows them to create directories:

anon_upload_enable=YES

anon_mkdir_write_enable=YES

The next step is to create a directory where anonymous users can
write. Any directory under the /var/ftp directory that has write
permissions for the user ftp, the ftp group, or other can be written to
by an anonymous user. A common thing is to create an uploads
directory with permission open for writing. The following are
examples of commands to run on the server:

mkdir /var/ftp/uploads

chown ftp:ftp /var/ftp/uploads

chmod 775 /var/ftp/uploads

As long as the firewall is open and SELinux Booleans are set properly,
an anonymous user can cd to the uploads directory and put a file from
the user's local system into the uploads directory. On the server, the
file would be owned by the ftp user and ftp group. The permissions
set on the directory (775) would allow you to see the files that were
uploaded but not change or overwrite them.

One reason for allowing anonymous FTP, and then enabling it for
anonymous uploads, is to allow people you don't know to drop files
into your uploads folder. Because anyone who can find the server can
write to this directory, some form of security needs to be in place. You
want to prevent an anonymous user from seeing files uploaded by
other users, taking files, or deleting files uploaded by other
anonymous FTP users. One form of security is the chown feature of
FTP.

By setting the following two values, you can allow anonymous uploads.
The result of these settings is that when an anonymous user uploads a
file, that file is immediately assigned ownership of a different user.
The following is an example of some chown settings that you could put
in your vsftpd.conf file to use with your anonymous upload directory:

chown_uploads=YES

chown_username=joe

If an anonymous user were to upload a file after vsftpd was restarted
with these settings, the uploaded file would be owned by the user joe
and the ftp group. Permissions would be read/write for the owner and
nothing for anyone else (rw‐‐‐‐‐‐‐).

So far, you have seen configuration options for individual features on
your vsftpd server. Some sets of vsftp.conf variables can work
together in ways that are appropriate for certain kinds of FTP sites.
The next section contains one of these examples, represented by a
sample vsftpd.conf configuration file that comes with the vsftpd
package. That file can be copied from a directory of sample files to the
/etc/vsftpd/vsftpd.conf file to use for an FTP server that is available
on the Internet.

Setting up vsftpd for the Internet
To share files from your FTP server safely to the Internet, you can lock
down your server by limiting it to only allow downloads and only from
anonymous users. To start with a configuration that is designed to
share vsftpd files safely over the Internet, back up your current
/etc/vsftpd/vsftpd.conf file and copy this file to overwrite your
vsftpd.conf:

/usr/share/doc/vsftpd/EXAMPLE/INTERNET_SITE/vsftpd.conf

The following paragraphs describe the contents of that vsftpd.conf.
Settings in the first section set the access rights for the server:

Access rights

anonymous_enable=YES

local_enable=NO

write_enable=NO

anon_upload_enable=NO

anon_mkdir_write_enable=NO

anon_other_write_enable=NO

Turning on anonymous_enable (YES)and turning off local_enable
(NO)ensures that no one can log in to the FTP server using a regular
Linux user account. Everyone must come in through the anonymous
account. No one can upload files (write_enable=NO). Then, the
anonymous user cannot upload files (anon_upload_enable=NO), create
directories (anon_mkdir_write_enable=NO), or otherwise write to the
server (anon_other_write_enable=NO). Here are the Security settings:

Security

anon_world_readable_only=YES

connect_from_port_20=YES

hide_ids=YES

pasv_min_port=50000

pasv_max_port=60000

Because the vsftpd daemon can read files assigned to the ftp user and
group, setting anon_world_readable_only=YES ensures that anonymous
users can see files where the read permission bit is turned on for other
(‐‐‐‐‐‐r‐‐), but not write files. The connect_from_port_20=YES setting
gives the vsftpd daemon slightly more permission to send data the
way a client might request by allowing PORT style data
communications.

Using hide_ids=YES hides the real permissions set on files, so to the
user accessing the FTP site, everything appears to be owned by the ftp
user. The two pasv settings restrict the range of ports that can be used
with passive FTP (where the server picks a higher number port on
which to send data) to between 50000 and 60000.

The next section contains features of the vsftpd server:

Features

xferlog_enable=YES

ls_recurse_enable=NO

ascii_download_enable=NO

async_abor_enable=YES

With xferlog_enable=YES, all file transfers to and from the server are
logged to the /var/log/xferlog file. Setting ls_recurse_enable=NO

prevents users from recursively listing the contents of an FTP
directory (in other words, it prevents the type of listing that you could
get with the ls ‐R command) because on a large site, that could drain
resources. Disabling ASCII downloads forces all downloads to be in
binary mode (preventing files from being translated in ASCII, which is
inappropriate for binary files). The async_abor_enable=YES setting
ensures that some FTP clients, which might hang when aborting a
transfer, will not hang.

The following settings have an impact on performance:

Performance

one_process_model=YES

idle_session_timeout=120

data_connection_timeout=300

accept_timeout=60

connect_timeout=60

anon_max_rate=50000

With one_process_model=YES set, performance can improve because
vsftpd launches one process per connection. Reducing the
idle_session_timeout from the default 300 seconds to 120 seconds
causes FTP clients that are idle more than 2 minutes to be
disconnected. Thus, less time is spent managing FTP sessions that are
no longer in use. If a data transfer stalls for more than
data_connection_timeout seconds (300 seconds here), the connection
to the client is dropped.

The accept_timeout setting of 60 seconds allows 1 minute for a PASV
connection to be accepted by the remote client. The connect_timeout
sets how long a remote client has to respond to a request to establish a
PORT style data connection. Limiting the transfer rate to 50000 (bytes
per second) with anon_max_rate can improve overall performance of
the server by limiting how much bandwidth each client can consume.

Using FTP Clients to Connect to Your Server
Many client programs come with Linux, which you can use to connect
to your FTP server. If you simply want to do an anonymous download
of some files from an FTP server, your Firefox web browser provides
an easy interface to do that. For more complex interactions between
your FTP client and server, you can use command line FTP clients.
The following sections describe some of these tools.

Accessing an FTP server from Firefox
The Firefox web browser provides a quick and easy way to test access
to your FTP server or to access any public FTP server. On your own
system, type ftp://localhost into the location box. You are prompted
to log in, which you can do as a regular user or the anonymous user if
your server is accessible via anonymous FTP. As the anonymous user,
you should see something similar to the example shown in Figure 18.2.

FIGURE 18.2 Accessing an FTP server from Firefox

To log in to an FTP server as a particular user from Firefox, you can
precede the host name with a username:password@ notation, as shown
in the following example:

ftp://chris:MypassWd5@localhost

If you provide the correct username and password, you should
immediately see the contents of your home directory. Click a folder to
open it. Click a file to download or view the file.

Accessing an FTP server with the lftp command
To test your FTP server from the command line, you can use the lftp
command. To install the lftp command in Fedora or RHEL, enter the
following from the command line:

yum install lftp

If you use the lftp command with just the name of the FTP server you
are trying to access, the command tries to connect to the FTP server as
the anonymous user. By adding the ‐u username, you can enter the
user's password when prompted and gain access to the FTP server as
the user you logged in as.

After you have added your user and password information, you get an
lftp prompt, ready for you to start typing commands. The connection
is made to the server when you type your first command. You can use
the commands to move around the FTP server and then use the get
and put commands to download and upload files.

The following example shows how to use commands as just described.
It assumes that the FTP server (and associated security measures) has
been configured to allow local users to connect and to read and write
files:

lftp -u chris localhost

Password:

lftp chris@localhost:~> pwd

ftp://chris@localhost/%2Fhome/chris

lftp chris@localhost:~> cd stuff/state/

lftp chris@localhost:~/stuff/state> ls

-rw-r--r-- 1 13597 13597 1394 Oct 23 2014

enrolled-20141012

-rw-r--r-- 1 13597 13597 514 Oct 23 2014

enrolled-20141013

lftp chris@localhost:~/stuff/state> !pwd

/root

lftp chris@localhost:~/stuff/state> get survey-20141023.txt

3108 bytes transferred

lftp chris@localhost:~/stuff/state> put /etc/hosts

201 bytes transferred

lftp chris@localhost:~/stuff/state> ls

-rw-r--r-- 1 13597 13597 1394 Oct 23 2014

enrolled-20141012

-rw-r--r-- 1 13597 13597 514 Oct 23 2014

enrolled-20141013

-rw-r--r-- 1 0 0 201 May 03 20:22

hosts

lftp chris@localhost:~/stuff/state> !ls

anaconda-ks.cfg bin install.log

dog Pictures sent

Downloads Public survey-20141023.txt

lftp chris@localhost:~/stuff/state> quit

After providing the username (‐u chris), lftp prompts for chris's
Linux user password. Typing pwd shows that chris is logged in to the
local host and that /home/chris is the current directory. Just as you
would from a regular Linux command line shell, you can use cd to
change to another directory and ls to list that directory's contents.

To have the commands you run interpreted by the client system, you
can simply put an exclamation mark (!) in front of a command. For
example, running !pwd shows that the current directory on the system
that initiated the lftp is /root. This is good to know because if you get
a file from the server without specifying its destination, it goes to the
client's current directory (in this case, /root). Other commands you
might run so that they are interpreted by the client system include !cd
(to change directories) and !ls (to list files).

Assuming that you have read permission for a file on the server and
write permission from the current directory on the initiating system,
you can use the get command to download a file from the server (get
survey‐20141023.txt). If you have write and upload permission on the
current directory on the server, you can use put to copy a file to the
server (put /etc/hosts).

Running an ls command shows that the /etc/hosts file was uploaded
to the server. Running the !ls command lets you see that the survey‐
20141023.txt file was downloaded from the server to the initiating
system.

Using the gFTP client
Many other FTP clients are available with Linux as well. Another FTP
client that you could try is gFTP. The gFTP client provides an interface
that lets you see both the local and remote sides of your FTP session.
To install gFTP in Fedora, run the following command to install the
gftp package:

yum install gftp

To start gFTP, launch it from the applications menu or run gftp &
from the shell. To use it, type the URL of the FTP server to which you
wish to connect, enter the username you want to use (such as
anonymous), and press Enter. Figure 18.3 shows an example of gFTP
being used to connect to the gnome.org site: ftp.gnome.org.

FIGURE 18.3 The gFTP FTP client lets you see both sides of an FTP
session.

To traverse the FTP site from gFTP, just double click folders (just as
you would from a file manager window). The full paths to the local
directory (on the left) and remote directory (on the right) are shown
above the listings of files and folders below.

To transfer a file from the remote side to the local side, select the file
that you want from the right and click the arrow in the middle of the

http://gnome.org
http://ftp.gnome.org

screen pointing to the left. Watch the progress of the file transfer from
messages on the bottom of the screen. When the transfer completes,
the file appears in the left pane.

You can bookmark the address information that you need to connect
to an FTP site. That address is added to a set of bookmarks already
stored under the Bookmarks menu. You can select sites from the list to
try out the gFTP. Most of the sites are for Linux distributions and
other open source software sites.

Summary
Setting up an FTP server is an easy way to share files over a TCP
network. The Very Secure FTP Daemon (vsftpd package) is available
for Fedora, Red Hat Enterprise Linux, Ubuntu, and other Linux
systems.

A default vsftpd server allows anonymous users to download files
from the server and regular Linux users to upload or download files
(provided the correct security settings are applied). Moving around on
an FTP server is similar to moving around a Linux filesystem. You
move up and down the directory structure to find the content that you
want.

There are both graphical and text based FTP clients. A popular text
based client for Linux is lftp. As for graphical FTP clients, you can use
a regular web browser, such as Firefox, or dedicated FTP clients, such
as gFTP.

FTP servers are not the only way to share files over a network from
Linux. The Samba service provides a way to share files over a network
so that the shared Linux directory looks like a shared directory from a
Windows system. Chapter 19, “Configuring a Windows File Sharing
(Samba) Server,” describes how to use Samba to offer Windows style
file sharing.

Exercises
The exercises in this section describe tasks related to setting up an FTP
server in RHEL or Fedora and connecting to that server using an FTP
client. If you are stuck, solutions to the tasks are shown in Appendix B.
Keep in mind that the solutions shown in Appendix B are usually just
one of multiple ways to complete a task.

Don't do these exercises on a Linux system running a public FTP
server because they almost certainly will interfere with that server.

1. Determine which package provides the Very Secure FTP Daemon
service.

2. Install the Very Secure FTP Daemon package on your system, and
search for the configuration files in that package.

3. Enable anonymous FTP and disable local user login for the Very
Secure FTP Daemon service.

4. Start the Very Secure FTP Daemon service and set it to start when
the system boots.

5. On the system running your FTP server, create a file named test
in the anonymous FTP directory that contains the words
“Welcome to your vsftpd server.”

6. From a web browser on the system running your FTP server, open
the test file from the anonymous FTP home directory. Be sure
that you can see that file's contents.

7. From a web browser outside of the system that is running the FTP
server, try to access the test file in the anonymous FTP home
directory. If you cannot access the file, check that your firewall,
SELinux, and TCP wrappers are configured to allow access to that
file.

8. Configure your vsftpd server to allow file uploads by anonymous
users to a directory named in.

9. Install the lftp FTP client (if you don't have a second Linux

system, install lftp on the same host running the FTP server). If
you cannot upload files to the in directory, check that your
firewall, SELinux, and TCP wrappers are configured to allow
access to that file.

10. Using any FTP client you choose, visit the /pub/debian‐meetings
directory on the ftp.gnome.org site and list the contents of that
directory.

http://ftp.gnome.org

CHAPTER 19
Configuring a Windows File Sharing (Samba)
Server

IN THIS CHAPTER
Getting and installing Samba

Using Samba security features

Editing the smb.conf configuration file

Accessing Samba from Linux and Windows clients

Using Samba in the enterprise

Samba is the project that implements open source versions of
protocols used to share files and printers among Windows systems as
well as authenticate users and restrict hosts. Samba offers a number of
ways to share files among Windows, Linux, and MacOS systems that
are well known and readily available to users of those systems.

This chapter steps you through the process of installing and
configuring a Samba server. It describes the security features that you
need to know to share your file and printer resources and describes
how to access those resources from Linux and Windows systems.

Understanding Samba
Samba (https://samba.org) is a suite of programs that allows Linux,
UNIX, and other systems to interoperate with Microsoft Windows file
and printer sharing protocols. Windows, MacOS, and other client
systems can access Samba servers to share files and printers in the
same ways that they would from Windows file and print servers.

With Samba, you can use standard TCP/IP networking to
communicate with clients. For name service, Samba supports regular
TCP/IP hostnames as well as NetBIOS names. For that reason, Samba
doesn't require the NetBEUI (Microsoft Raw NetBIOS frame)
protocol. File sharing is done using Server Message Block (SMB)
protocol, which is sometimes referred to as the Common Internet File
System (CIFS).

The Samba project has gone to great lengths to make its software
secure and robust. In fact, many people prefer using Samba servers
over Windows file servers because of the added security that is
inherent in running Windows-style file sharing services on Linux or
other UNIX-like operating systems.

Beyond all of the technical mumbo-jumbo, however, the end result is
that Samba makes it easy to share files and printers between Linux
servers and Windows desktop systems. For the server, only a few
configuration files and tools are needed to manage Samba. For the
clients, shared resources just show up under Network selection in the
File Explorer (formerly Windows Explorer) application or in the
Network Neighborhood on older Windows systems.

To configure the Samba service, you directly edit Samba configuration
files (particularly smb.conf) and run a few commands. Graphical and
web-based interfaces, such as system-config-samba and Samba SWAT,
are no longer included with the latest Fedora and RHEL systems.

To begin using Samba on your Linux system, you need to install a few
software packages, as described in the next section.

https://samba.org

Installing Samba
In Red Hat Enterprise Linux and Fedora, to configure a Samba file and
print server, installing the samba package gets you everything you need
to start. Among other components, the samba package includes the
Samba service daemon (/usr/sbin/smbd) and NetBIOS name server
daemon (/usr/sbin/nmbd). Installing the samba package pulls in the
samba-common package, which contains server configuration files
(smb.conf, lmhosts, and others) and commands for adding passwords
and testing configuration files, along with other Samba features.

Features from other packages are referenced in this chapter, so I
describe how to install those packages as well. Those packages include
the following:

samba-client package: Contains command-line tools such as
smbclient (for connecting to Samba or Windows shares),
nmblookup (for looking up host addresses), and findsmb (to find
SMB hosts on the network).

samba-winbind package: Includes components that allow your
Samba server in Linux to become a complete member of a
Windows domain, including using Windows user and group
accounts in Linux.

To install all the packages just mentioned (samba-common is installed as
a dependency of samba, so it doesn't need to be noted specifically),
enter the following as root from the command line in Fedora or RHEL:

yum install samba samba-client samba-winbind

…

Last metadata expiration check: 0:01:44 ago on Sun 24 Jan

2020 11:35:37 AM EST.

Dependencies resolved.

===

 Package Architecture Version Repository Size

===

Installing:

 samba x86_64 4.10.4-101.el8_1 rhel-8-for-x86_64-

baseos-rpms 739 k

 samba-winbind x86_64 4.10.4-101.el8_1 rhel-8-for-x86_64-

baseos-rpms 570 k

Installing dependencies:

 samba-common-tools

 x86_64 4.10.4-101.el8_1 rhel-8-for-x86_64-

baseos-rpms 469 k

 samba-libs x86_64 4.10.4-101.el8_1 rhel-8-for-x86_64-

baseos-rpms 185 k

 samba-winbind-modules

 x86_64 4.10.4-101.el8_1 rhel-8-for-x86_64-

baseos-rpms 122 k

 samba-client x86_64 4.10.4-101.el8_1 rhel-8-for-x86_64-

baseos-rpms 658 k

Transaction Summary

===

Install 6 Packages

Total download size: 2.5 M

Installed size: 6.8 M

Is this ok [y/d/N]: y

After you have installed the Samba packages, look at the configuration
files in the samba-common package:

rpm -qc samba-common

/etc/logrotate.d/samba

/etc/samba/lmhosts

/etc/samba/smb.conf

/etc/sysconfig/samba

The /etc/logrotate.d/samba and /etc/sysconfig/samba files are
usually not modified. The first sets how files in /var/log/samba log files
are rotated (copied to other files and removed) over time. The second
is a file where you could put options that are passed to the smbd, nmbd,
or winbindd daemon, so you could turn off features such as debugging.

Most configuration files that you would modify for Samba are in the
/etc/samba directory. The smb.conf file is the primary configuration file
where you put global settings for the Samba server as well as
individual file and printer share information (more on that later). The
lmhosts file enables the Samba NetBIOS hostname to be mapped into
IP addresses.

Although it doesn't exist by default, you can create a file named
/etc/samba/smbusers to map Linux usernames into Windows
usernames. As you configure your Samba server, you can refer to the
smb.conf man page (man smb.conf). There are also man pages for
Samba commands, such as smbpasswd (to change passwords),
smbclient (to connect to a Samba server), and nmblookup (to look up
NetBIOS information).

After you have installed Samba packages and completed a quick survey
of what they contain, try starting up the Samba service and see what
you get in a default configuration.

Starting and Stopping Samba
With samba and samba-common installed, you can start the server and
investigate how it runs in the default configuration. Two main services
are associated with a Samba server, each of which has its own service
daemon:

smb: This service controls the smbd daemon process, which
provides the file and print sharing services that can be accessed by
Windows clients.

nmb: This service controls the nmbd daemon. By providing NetBIOS
name service name-to-address mapping, nmbd can map requests
from Windows clients for NetBIOS names so that they can be
resolved into IP addresses.

To share files and printers with other Linux systems with Samba, only
the smb service is required. The next section describes how to start and
enable the smb service.

Starting the Samba (smb) service
The smb service is what starts the smbd server and makes files and
printers available from your local system to other computers on the
network. As usual, services are enabled and started differently on
different Linux systems. For different Linux systems, you need to find
the name of the service and the correct tool to start the smbd daemon.

In Fedora and RHEL, to enable Samba to start immediately when the
system boots, enter the following from the command line as root:

systemctl enable smb.service

systemctl start smb.service

systemctl status smb.service

smb.service - Samba SMB Daemon

 Loaded: loaded (/usr/lib/systemd/system/smb.service;

enabled)

 Active: active (running) since Fri 2020-01-31 07:23:37

EDT; 6s ago

 Docs: man:smbd(8)

 man:samba(7)

 man:smb.conf(5)

 Status: "smbd: ready to serve connections…"

 Tasks: 4 (limit: 12216)

 Memory: 20.7M

 Main PID: 4838 (smbd)

CGroup: /system.slice/smb.service

 ├ 4838 /usr/sbin/smbd --foreground --no-process-group

 └ 4840 /usr/sbin/smbd --foreground --no-process-group

The first systemctl command enables the service, the second starts it
immediately, and the third shows the status. To investigate further,
notice that the service file is located at
/usr/lib/systemd/system/smb.service. Look at the contents of that
file:

cat /usr/lib/systemd/system/smb.service

[Unit]

Description=Samba SMB Daemon

Documentation=man:smbd(8) man:samba(7) man:smb.conf(5)

Wants=network-online.target

After=network.target network-online.target nmb.service

winbind.service

[Service]

Type=notify

NotifyAccess=all

PIDFile=/run/smbd.pid

LimitNOFILE=16384

EnvironmentFile=-/etc/sysconfig/samba

ExecStart=/usr/sbin/smbd --foreground --no-process-group

$SMBDOPTIONS

ExecReload=/bin/kill -HUP $MAINPID

LimitCORE=infinity

Environment=KRB5CCNAME=FILE:/run/samba/krb5cc_samba

[Install]

WantedBy=multi-user.target

The Samba daemon process (smbd) starts up after the network,
network-online, nmb, and winbind targets. The /etc/sysconfig/samba
file contains variables that are passed as arguments to the smbd, nmbd,
and winbindd daemons when they start. No options are set by default
for any of those daemons. The WantedBy line indicates that smb.service
should start when the system boots up into multi-user mode (multi-
user.target), which it does by default.

In RHEL 6 and earlier, you can start the Samba service as follows:

service smb start

Starting SMB services: [OK]

chkconfig smb on

service smb status

smbd (pid 28056) is running…

chkconfig --list smb

smb 0:off 1:off 2:on 3:on 4:on 5:on

6:off

Whether you are running your Samba server on RHEL, Fedora, or
another Linux system, you can check access to the Samba server using
the smbclient command (from the samba-client package). You can get
basic information from a Samba server using the following command:

smbclient -L localhost

Enter SAMBA\root's password: <ENTER>

Anonymous login successful

 Sharename Type Comment

 --------- ---- -------

 print$ Disk Printer Drivers

 IPC$ IPC IPC Service

 (Samba Server Version 4.10.10)

 deskjet Printer deskjet

Reconnecting with SMB1 for workgroup listing.

Anonymous login successful

 Server Comment

 --------- -------

 Workgroup Master

 --------- -------

The smbclient output allows you to see what services are available
from the server. By default, anonymous login is allowed when
querying the server (so I just pressed Enter when prompted for a
password).

You can discern a number of things about the default Samba server
setup from this output:

All printers that are shared via the CUPS server on your Linux
system are, by default, also made available from the Samba server
running on that same system.

No directories are shared yet from the server.

There is no NetBIOS name service running yet from the Samba
server.

Next, you can decide whether you want to run the NetBIOS name
service on your Samba server.

Starting the NetBIOS (nmbd) name server
If no Windows domain server is running on the network, as is the case
here, you can start the nmb service on the Samba host to provide that
service. To start the nmb service (nmbd daemon) in Fedora or RHEL 7,
type the following:

systemctl enable nmb.service

systemctl start nmb.service

systemctl status nmb.service

In RHEL 6 and earlier, you would type the following to start the nmb
service:

service nmb start

service nmb status

chkconfig nmb on

chkconfig --list nmb

Regardless of how the NetBIOS service was started, the nmbd daemon
should now be running and ready to serve NetBIOS name-to-address
mapping. Run the smbclient -L command again, followed by the IP
address of the server. This time, the last few lines of the output should
show the information obtained from the NetBIOS server now running
on the Samba server. In this case, the last few lines look like this:

smbclient -L localhost

 …

 Workgroup Master

 --------- -------

 SAMBA FEDORA30

You can see that the new NetBIOS server's name is FEDORA30 and that it
is the master server for the workgroup. To query the nmbd server for
the IP address of FEDORA30, you would enter the following:

nmblookup -U localhost FEDORA30

querying FEDORA30 on 127.0.0.1

192.168.122.81 FEDORA30<00>

You should be able to see your Samba server running from the local
system now. The hostname assigned to the system (in this case
FEDORA30) is assigned by default.

However, if you have a firewall configured or SELinux enabled, you
may not be able to access the Samba server fully from a remote system
yet. The next section should help you to open Samba to systems
outside of the local system as well as to allow some Samba features
that may be turned off by SELinux.

Stopping the Samba (smb) and NetBIOS (nmb) services
To stop the smb and nmb services in Fedora or RHEL, you can use the
same systemctl command that you used to start them. You can use the
same command to disable the services as well so that they do not start
up again when the system boots. Here are examples of how to stop the
smb and nmb services immediately:

systemctl stop smb.service

systemctl stop nmb.service

In RHEL 6 and earlier, you would enter the following to stop the smb
and nmb services:

service smb stop

service nmb stop

To prevent the smb and nmb services from starting the next time the
system reboots, enter the following commands in Fedora or RHEL:

systemctl disable smb.service

systemctl disable nmb.service

In Red Hat Enterprise Linux 6 and earlier, enter the following
commands to disable the smb and nmb services:

chkconfig smb off

chkconfig nmb off

Of course, you only want to stop or disable the smb and nmb services if

you no longer want to use the Samba service. If you are ready to
continue to configure your Samba service, you can continue on and
begin to configure your Linux security features to allow the Samba
service to become available to others on your network.

Securing Samba
If you cannot access your Samba server immediately after starting it,
you probably have some security work to do. Because many default
installations of Linux prevent, rather than allow, access to the system,
dealing with security for a service such as Samba usually has more to
do with making it available than making it secure.

Here are the security features that you should be aware of when
configuring your Samba system:

Firewalls The default firewall for Fedora, RHEL, and other
Linux systems prevents any access to local services from outside
systems. So, to allow users from other computers to access your
Samba service, you must create firewall rules that open one or
more ports for selected protocols (TCP in particular).

SELinux Many features of Samba are designated as potentially
insecure by SELinux. Because the default SELinux Booleans
(on/off switches for certain features) are set to provide the least
access required, you need to turn Booleans on for features such as
allowing users to access their own home directories with Samba.
In other words, you can configure Samba to share user home
directories, but SELinux prohibits someone from trying to use
that feature unless you explicitly configure SELinux to allow that
feature.

Host and user restrictions Within the Samba configuration
files themselves, you can indicate which hosts and users can have
access to the Samba server as a whole or to particular shared
directories.

The next sections describe how to set up the security features just
mentioned for Samba.

Configuring firewalls for Samba
If an iptables or firewalld firewall is configured for your system when
you first install it, the firewall typically allows any requests for services

from local users but none by outside users. That's why, at the end of
the installation section of this chapter, you should have been able to
test that Samba was working using the smbclient command from the
local system. However, if the request originated from another system,
it would have been rejected.

Configuring firewall rules for Samba mainly consists of opening up
incoming ports on which the smbd and nmbd daemons are listening.
These are the ports that you should open to get a working Samba
service on your Linux system:

TCP port 445: This is the primary port on which the Samba smbd
daemon listens. Your firewall must support incoming packet
requests on this port for Samba to work.

TCP port 139: The smbd daemon also listens on TCP port 139 in
order to handle sessions associated with NetBIOS hostnames. It is
possible to use Samba over TCP without opening this port, but it
is not recommended.

UDP ports 137 and 138: The nmbd daemon uses these two ports
for incoming NetBIOS requests. If you are using the nmbd daemon,
these two ports must be open for new packet requests for
NetBIOS name resolution.

For Fedora and RHEL, allowing incoming access to those four ports is
easy. Simply open the Firewall Configuration window, and select the
check boxes next to the samba and samba-client entries on the public
zone, Services tab. Those ports become immediately accessible (no
restart of the firewalld service is required).

For earlier Fedora and RHEL systems that use iptables directly
instead of the firewalld service, opening the firewall is a more manual
process. Consider a default firewall from Fedora that allows incoming
packets from the local host, from established connections, and related
to established connections but denies all other incoming packets. The
following example represents a set of firewall rules in the
/etc/sysconfig/iptables file, with four new rules (highlighted in the
example that follows) added to open ports for Samba:

*filter

:INPUT ACCEPT [0:0]

:FORWARD ACCEPT [0:0]

:OUTPUT ACCEPT [0:0]

-A INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT

-A INPUT -p icmp -j ACCEPT

-A INPUT -i lo -j ACCEPT

-I INPUT -m state --state NEW -m udp -p udp --dport 137 -j

ACCEPT

-I INPUT -m state --state NEW -m udp -p udp --dport 138 -j

ACCEPT

-I INPUT -m state --state NEW -m tcp -p tcp --dport 139 -j

ACCEPT

-I INPUT -m state --state NEW -m tcp -p tcp --dport 445 -j

ACCEPT

-A INPUT -j REJECT --reject-with icmp-host-prohibited

-A FORWARD -j REJECT --reject-with icmp-host-prohibited

COMMIT

Your firewall may include additional rules to allow incoming packet
requests for other services, such as Secure Shell (sshd) or web (httpd)
services. You can leave those in place. The main point is to have your
Samba rules placed somewhere before the final REJECT rules.

If your iptables firewall is enabled, you can restart it to have the new
rules take effect. To do that, type systemctl restart iptables.service
(in older Fedora systems) or service restart iptables (in RHEL 6 or
earlier). Try connecting to the Samba service by using the smbclient
command again, or by using other techniques described in the section
“Accessing Samba Shares” later in this chapter.

See Chapter 25, “Securing Linux on a Network,” for more information
on using iptables.

Configuring SELinux for Samba
There are both file context and Boolean considerations related to using
Samba with SELinux in enforcing mode. File contexts must be
properly set on a directory that is shared by Samba. Booleans allow
you to override the secure-by-default approach to certain Samba
features.

You can find information on how SELinux confines Samba on the
samba_selinux man page (man samba_selinux). You must install the

selinux-policy-doc package to get that man page. For a deeper
understanding of SELinux, refer to Chapter 24, “Enhancing Linux
Security with SELinux.”

Setting SELinux Booleans for Samba
An easy way to list and change SELinux Booleans for Samba is from
the command line. To use the semanage command to list Samba-related
Booleans, enter the following:

semanage boolean -l | egrep "smb|samba"

The following is a list of SELinux Booleans that apply to Samba and
their descriptions. Most of the Booleans let you set which files and
directories the Samba server can read and write on behalf of Samba
users. Others let you allow potentially insecure features:

samba_run_unconfined: Allows samba to run unconfined scripts
from Samba shares.

smbd_anon_write: Allows Samba to let anonymous users modify
public files used for public file transfer services. Files and
directories must be labeled public_content_rw_t.

samba_enable_home_dirs: Allows Samba to share users’ home
directories.

samba_export_all_ro: Allows Samba to share any file and
directory read-only.

use_samba_home_dirs: Allows a remote Samba server to access
home directories on the local machine.

samba_create_home_dirs: Allows Samba to create new home
directories (for example, via PAM).

samba_export_all_rw: Allows Samba to share any file or directory
read/write.

The following Booleans affect Samba's ability to share directories that
are themselves mounted from other remote services (such as NFS) or
to act as a Windows domain controller:

samba_share_fusefs: Allows Samba to export ntfs/fusefs

volumes.

samba_share_nfs: Allows Samba to export NFS volumes.

samba_domain_controller: Allows Samba to act as the domain
controller, add users and groups, and change passwords.

The setsebool command is used to turn the SELinux Booleans on or
off. Used with the -P option, setsebool sets the Boolean you indicate
permanently. For example, to allow Samba to share any file or
directory with read-only permission from the server, you could type
the following from a shell as root user:

setsebool -P samba_export_all_ro on

getsebool samba_export_all_ro

samba_export_all_ro --> on

The setsebool command sets the Boolean in this case to on. The
getsebool lets you see the value of the Boolean.

Setting SELinux file contexts for Samba
SELinux confines the files that the Samba service can access. Instead
of allowing any file with the proper read and write permission to be
shared by the Samba server, SELinux (when in enforcing mode)
requires that files and directories have the correct file contexts set on
them before the Samba service can even see that the files exist.

In order for the Samba service to function with SELinux immediately,
some files and directories come preset with the proper file contexts.
For example, Samba configuration files (/etc/samba/*), log files
(/var/log/samba/*), and libraries (/var/lib/samba/*) have rules
assigned to ensure that they get the proper file contexts. To find files
and directories associated with the Samba service and smbd daemon
that have file contexts preset, run the following:

semanage fcontext -l | grep -i samba

semanage fcontext -l | grep -i smb

The file context portion in which you are interested ends with _t: for
example, samba_etc_t, samba_log_t, and samba_var_t for the
/etc/samba, /var/log/samba, and /var/lib/samba directories,

respectively.

You may find that you need to change file contexts—for example, when
you put files in nonstandard locations (such as moving the smb.conf
file to /root/smb.conf) or when you want to share a directory (other
than home directories, which can be turned on by setting a Boolean).
Unlike the vsftpd (FTP) and httpd (web) servers that come with Linux,
Samba has no default shared content directories (those just mentioned
used /var/ftp and /var/www/html).

You can change a file context permanently by creating a new file
context rule and then applying that rule to the file or directory for
which it is intended. You can do that with the semanage command (to
make the rule) and restorecon command (to apply the rule). For
example, if you wanted to share a directory, /mystuff, you would
create that directory with the proper permissions and run the
following command to make it available for read/write access from
Samba:

semanage fcontext -a -t samba_share_t "/mystuff(/.*)?"

restorecon -v /mystuff

After those commands are run, the /mystuff directory, along with any
files and directories below that point, have the file context of
samba_share_t. It is then up to you to assign the correct Linux
ownership and file permissions to allow access to the users you
choose. The upcoming section “Configuring Samba” provides an
example of creating a share, and it shows you how to add permissions
and ownership to a shared directory using standard Linux commands.

Configuring Samba host/user permissions
Within the smb.conf file itself, you can allow or restrict access to the
entire Samba server or to specific shares based on the hosts or users
trying to gain access. You can also restrict access to the Samba server
by providing the service only on particular interfaces.

For example, if you have one network interface card connected to the
Internet and another connected to the local network, you can tell
Samba to serve requests only on the local network interface. The next

section describes how to configure Samba, including how to identify
which hosts, users, or network interfaces can access your Samba
server.

Configuring Samba
Inside the /etc/samba/smb.conf file are settings for configuring your
Samba server, defining shared printers, configuring how
authentication is done, and creating shared directories. The file
consists of the following predefined sections:

[global] Settings that apply to the Samba server as a whole are
placed in this section. This is where you set the server's
description, its workgroup (domain), the location of log files, the
default type of security, and other settings.

[homes] This section determines whether users with accounts on
the Samba server can see their home directories (browseable) or
write to them.

[printers] In this section, settings tell Samba whether to make
printers available through Samba that are configured for Linux
printing (CUPS).

[print$] This section configures a directory as a shared printer
drivers folder.

Inside the smb.conf file, lines beginning with pound signs (#) or
semicolons (;) are comments. Removing the semicolons enables you
to set up different kinds of shared information quickly. The # sign can
also be used to comment out a line.

When you begin editing your smb.conf file, make a backup that you can
go back to if something goes wrong. You can start by copying the
smb.conf.example file to smb.conf, if you want to start with some
examples.

Configuring the [global] section
Here is an example of a [global] section of the smb.conf file:

[global]

 workgroup = SAMBA

 security = user

 passdb backend = tdbsam

 printing = cups

 printcap name = cups

 load printers = yes

 cups options = raw

; netbios name = MYSERVER

; interfaces = lo eth0 192.168.12.2/24 192.168.13.2/24

; hosts allow = 127. 192.168.12. 192.168.13.

The workgroup (also used as the domain name) is set to SAMBA in this
example. When a client communicates with the Samba server, this
name tells the client which workgroup the Samba server is in.

The default security type is set to user (Samba usernames and
passwords).

The passdb backend = tdbsam specifies to use a Samba backend
database to hold passwords. You can use the smbpasswd command to
set each user's password (as described later).

Setting printing = cups and printcap name = cups indicates to use the
printcap created by the CUPS printing service. When you set load
printers = yes, Samba knows to share any printers configured by
your local CUPS printing service from Samba.

The cups options lets you pass any options that you like to the CUPS
printers served by your Samba server. By default, only raw is set, which
allows Windows clients to use their own print drivers. Printers on your
Samba server print the pages they are presented in raw form.

By default, your server's DNS hostname (enter hostname to see what it
is) is used as your Samba server's NetBIOS name as well. You can
override that and set a separate NetBIOS name by uncommenting the
netbios name line and adding the server name you want. For example,
netbios name = myownhost. localhost is used as your NetBIOS name if
it has not otherwise been set.

If you want to restrict access to the Samba server so that it only
responds on certain interfaces, you can uncomment the interfaces
line and add either the IP address or name (lo, eth0, eth1, and so on)
of the network interfaces you want.

You can restrict access to the Samba server to specific hosts as well.

Uncomment the hosts allow line (remove the semicolon) and insert
the IP addresses of the hosts that you want to allow. To enter a range
of addresses, simply end the subnetwork portion of the address,
followed by a dot. For example, 127. is associated with IP addresses
that point to the local host. The 192.168.12. entry matches all IP
addresses from 192.168.12.1 to 192.168.12.254.

Configuring the [homes] section
The [homes] section is configured, by default, to allow any Samba user
account to be able to access its own home directory via the Samba
server. Here is what the default homes entry looks like:

[homes]

 comment = Home Directories

 valid users = %S, %D%w%S

 browseable = No

 read only = No

 inherit acls = Yes

Setting valid users to %S substitutes the current service name, which
allows any valid users of the service to access their home directories.
The valid users are also identified by domain or workgroup (%D),
winbind separator (%w), and name of current service (%S).

The browseable = No setting prevents the Samba server from
displaying the availability of the shared home directories. Users who
can provide their own Samba usernames and passwords can read and
write in their own home directories (read only = no). With inherit
acls set to Yes, access control lists can be inherited to add another
layer of security on the shared files.

If after starting the smb service you cannot log in using a valid user
account, you may need to change some security features on your
system. On Fedora and RHEL systems, in particular, SELinux features
need to be changed to allow users to access their home directories if
you are in SELinux enforcing mode.

For example, if you tried to use smbclient to log in to your home
directory, the login would succeed, but when you tried to list the
contents of the home directory, you might see the following message:

NT_STATUS_ACCESS_DENIED listing *

To tell SELinux to allow Samba users to access their home directories
as Samba shares, turn on the samba_enable_home_dirs Boolean by
entering the following as root from a shell:

setsebool -P samba_enable_home_dirs on

The setsebool command turns on the capability of Samba to share
home directories (which is off by default). First create a password for
the user with smbpasswd and then log in with smbclient. The form for
using the smbclient command to check access to the user's home
directory, again for the user chris, would be the following (replacing
the IP address with the name or address of your Samba server):

$ smbpasswd -a chris

New SMB password: *********

Retype new SMB password: *********

Added user chris.

$ smbclient -U chris //192.168.0.119/chris

Enter SAMBA\chris's password:

Try "help" to get a list of possible commands.

smb: \> ls file.txt

 file.txt 149946368 Sun Jan 4 09:28:53 2020

 39941 blocks of size 524288. 28191 blocks

available

smb:\> quit

The main point to remember is that, even though the share is not
browseable, you can request it by giving the Samba server's hostname
or IP address, followed by the user's name (here, chris), to access the
user's home directory.

Configuring the [printers] section
Any printer that you configure for CUPS printing on your Linux
system is automatically shared to others over Samba, based on the
[printers] section that is added by default. The global cups options =
raw setting makes all printers raw printers (meaning that the Windows
client needs to provide the proper printer driver for each shared
printer).

Here's what the default printers section looks like in the smb.conf file:

[printers]

 comment = All Printers

 path = /var/tmp

 printable = Yes

 create mask = 0600

 browseable = No

The path tells Samba to store temporary print files in /var/tmp. The
printable = Yes line causes all of your CUPS printers on the local
system to be shared by Samba. Printers are writeable and allow guest
printing by default. The create mask = 0600 setting used here has the
effect of removing write and execute bits for group and other, within
the ACL, when files are created in the path directory.

To see that local printers are available, you could run the smbclient -L
command from a Linux system, as shown earlier. On a Windows
system, you can select Network from the File Explorer window and
select the icon representing your Samba server. All shared printers
and folders appear in that window. (See the section “Accessing Samba
Shares” later in this chapter for details on viewing and using shared
printers.)

Creating a Samba shared folder
Before you can create a shared folder, that folder (directory) must exist
and have the proper permissions set. In this example, the
/var/salesdata directory is shared. You want the data to be writeable
by the user named chris but visible to anyone on your network. To
create that directory and set the proper permissions and SELinux file
contexts, type the following as root user:

mkdir /var/salesdata

chmod 775 /var/salesdata

chown chris:chris /var/salesdata

semanage fcontext -a -t samba_share_t /var/salesdata

restorecon -v /var/salesdata

touch /var/salesdata/test

ls -lZ /var/salesdata/test

-rw-r--r--. 1 root root

 unconfined_u:object_r:samba_share_t:s0 0 Dec 24 14:35

 /var/salesdata/test

Adding the shared folder to Samba
With the /var/salesdata directory created and properly configured to
be shared by Samba, here is what the shared folder (called salesdata)
might look like in the smb.conf file:

[salesdata]

 comment = Sales data for current year

 path = /var/salesdata

 read only = no

; browseable = yes

 valid users = chris

Before this share was created, the /var/salesdata directory was
created, with chris assigned as the user and group, and the directory
was set to be readable and writeable by chris. (The SELinux file
context must also be set if SELinux is in enforcing mode.) The Samba
username chris must be presented along with the associated password
to access the share. After chris is connected to the share, chris has
read and write access to it (read only = no).

Now that you have seen the default settings for Samba and an example
of a simple shared directory (folder), read the next few sections to see
how to configure shares even further. In particular, the examples
demonstrate how to make shares available to particular users, hosts,
and network interfaces.

Checking the Samba share
For the changes to your Samba configuration to take effect, you need
to restart the smb service. After that is done, check that the Samba
share you created is available and that any user you assigned to the
share can access it. To do those things, enter the following as root user
from a shell on the Samba server:

systemctl restart smb.service

smbclient -L localhost -U chris

Enter SAMBA\chris's password: *******

 Sharename Type Comment

 --------- ---- -------

 salesdata Disk Sales data for current year

 print$ Disk Printer Drivers

 IPC$ IPC IPC Service (Samba 4.10.4)

 chris Disk Home Directories

Reconnecting with SMB1 for workgroup listing.

 Server Comment

 --------- -------

 Workgroup Master

 --------- -------

 SAMBA FEDORA30

…

Here you can see the share name (salesdata), the domain set to the
workgroup name SAMBA, and the description entered earlier (Sales
data for current year). Next, a quick way to test access to the share is
to use the smbclient command. You can use the hostname or IP
address with smbclient to access the share. Because I am on the local
system in this example, I just use the name localhost and the user I
added (chris):

smbclient -U chris //localhost/salesdata

Enter SAMBA\chris's password: ********

Try "help" to get a list of possible commands.

smb: \> lcd /etc

smb: \> put hosts

putting file hosts as \hosts (43.5 kb/s) (average 43.5 kb/s)

smb: \> ls

 . D 0 Sun Dec 29

09:52:51 2020

 .. D 0 Sun Dec 29

09:11:50 2020

 hosts A 89 Sun Dec 29

09:52:51 2020

 39941 blocks of size 524288. 28197 blocks available

smb: \> quit

A Samba share is in the form //host/share or \\host\share. However,
when you identify a Samba share from a Linux shell in the latter case,
the backslashes need to be escaped. So, as an argument, the first
example of the share would have to appear as
\\\\localhost\\salesdata. Thus, the first form is easier to use.

NOTE
Escaping a character that you type from the shell is done by putting
a backslash (\) in front of that character. It tells the shell to use the
character following the backslash literally, instead of giving the
character a special meaning to the shell. (The * and ? characters
are examples of characters with special meaning.) Because the
backslash itself has special meaning to the shell, if you want to use
a backslash literally, you need to precede it with a backslash. That
is why when you want to type a Samba address that includes two
backslashes, you actually have to enter four backslashes.

When prompted, enter the Samba password for that user (it may be
different from the Linux user's password). The Samba user's password
was set earlier with smbpasswd in this example. You see the smb: \>
prompt after that.

At this point, you have a session open to the Samba host that is similar
to an ftp session for traversing an FTP server. The lcd /etc command
makes /etc the current directory on the local system. The put hosts
command uploads the hosts file from the local system to the shared
directory. Typing ls shows that the file exists on the server. The quit
command ends the session.

Restricting Samba access by network interface
To restrict access to all of your shares, you can set the global interfaces
setting in the smb.conf file. Samba is designed more for local file
sharing than for sharing over wide area networks. If your computer
has a network interface connected to a local network and one
connected to the Internet, consider allowing access only to the local
network.

To set which interfaces Samba listens on, uncomment the interfaces
line shown in an earlier example in the [global] section of the
smb.conf file. Then add the interface names or IP address ranges of
those computers that you want to allow access to your computer. Here

is an example:

interfaces = lo 192.168.22.15/24

This interfaces entry allows access to the Samba service to all users on
the local system (lo). It also allows access to any systems on the
192.168.22 network. See the smb.conf man page's description of
different ways of identifying hosts and network interfaces.

Restricting Samba access by host
Host access to the Samba server can be set for the entire service or for
single shares.

Here are some examples of hosts allow and hosts deny entries:

hosts allow = 192.168.22. EXCEPT 192.168.22.99

hosts allow = 192.168.5.0/255.255.255.0

hosts allow = .example.com market.example.net

hosts deny = evil.example.org 192.168.99.

These entries can be put in the [global] section or in any shared
directory section. The first example allows access to any host in the
192.168.22. network except for 192.168.22.99, which is denied. Note
that a dot is required at the end of the network number. The
192.168.5.0/255.255.255.0 example uses netmask notation to identify
192.168.5 as the set of addresses that are allowed.

In the third line of the sample code, any host from the . example.com
network is allowed, as is the individual host market.example.net. The
hosts deny example shows that you can use the same form to identify
names and IP addresses in order to prevent access from certain hosts.

Restricting Samba access by user
Particular Samba users and groups can be allowed access to specific
Samba shares by identifying those users and groups within a share in
the smb.conf file. Aside from guest users, which you may or may not
allow, the default user authentication for Samba requires you to add a
Samba (Windows) user account that maps into a local Linux user
account.

http://example.com
http://market.example.net

To allow a user to access the Samba server, you need to create a
password for the user. Here is an example of how to add a Samba
password for the user jim:

smbpasswd -a jim

New SMB password: *******

Retype new SMB password: *******

After running that smbpasswd command, jim can use that username
and password to access the Samba server. The
/var/lib/samba/private/passdb.tdb file holds the password just
entered for jim. After that, the user jim can change the password by
simply typing smbpasswd when he is logged in. The root user can
change the password by rerunning the command shown in the
example but dropping the -a option.

If you wanted to give jim access to a share, you could add a valid
users line to that shared block in the smb.conf file. For example, to
provide both chris and jim access to a share, you could add the
following line:

valid users = jim, chris

If the read only option is set to no for the share, both users could
potentially write files to the share (depending on file permissions). If
read only is set to yes, you could still allow access to jim and chris to
write files by adding a write list line as follows:

write list = jim, chris

The write list can contain groups (that is, Linux groups contained in
the /etc/group file) to allow write permission to any Linux user that
belongs to a particular Linux group. You can add write permission for
a group by putting a plus (+) character in front of a name. For
example, the following adds write access for the market group to the
share with which this line is associated:

write list = jim, chris, +market

There are many ways to change and extend the features of your shared
Samba resources. For further information on configuring Samba, be

sure to examine the smb.conf file itself (which includes many useful
comments) and the smb.conf man page.

Accessing Samba Shares
After you have created some shared directories in Samba, many client
tools are available in both Linux and Windows for accessing those
shares. Command-line tools in Linux include the smbclient command,
demonstrated earlier in this chapter. For a graphical means of
accessing shares, you can use the file managers available in both
Windows (File Explorer) and Linux (Nautilus, with the GNOME
desktop).

Accessing Samba shares in Linux
Once a Samba share is available, it can be accessed from remote Linux
and Windows systems using file managers or remote mount
commands.

Accessing Samba shares from a Linux file manager
Opening a file manager in Linux can provide you with access to the
shared directories from Linux (Samba) and Windows (SMB). How you
access the file manager is different on different Linux desktops. In
GNOME 3, you can click the Files icon. In other desktops, open the
Home folder.

With the Nautilus window manager displayed, select Other Location in
the left navigation bar. Available networks (such as Windows
Network) should appear. Look to the box at the bottom of the window
identified as Connect to Server, and then enter the location of an
available Samba share. Given the previous examples, you would be
able to use either of these shares:

smb://192.168.122.119/chris

smb://192.168.122.119/salesdata

The window should appear similar to Figure 19.1:

FIGURE 19.1 Identify a Samba share from the Nautilus Connect to
Server box.

Click Connect. From the window that appears, you can select to
connect as a registered user. If you do that, you can enter your
username, Samba domain name, and the password for your user. You
can also select whether or not to save that password. Figure 19.2 shows
an example of that window:

FIGURE 19.2 Add your Samba credentials.

Click Connect.

If the user and password are accepted, you should see the contents of
the remote directory. If you have write access to the share, you can
open another Nautilus window and drag and drop files between the
two systems. Figure 19.3 shows an example of the Nautilus window
after I have connected to the salesdata share.

FIGURE 19.3 Displaying a Samba share from Connect to Server in
Nautilus

Mounting a Samba share from a Linux command line
Because a Samba shared directory can be viewed as a remote
filesystem, you can use common Linux tools to connect a Samba share
(temporarily or permanently) to your Linux system. Using the
standard mount command (with cifs-utils installed), you can mount a
remote Samba share as a CIFS filesystem in Linux. This example
mounts the salesdata share from the host at IP address 192.168.0.119
on the local directory /mnt/sales:

yum install cifs-utils -y

mkdir /mnt/sales

mount -t cifs -o user=chris \

 //192.168.0.119/salesdata /mnt/sales

Password for chris@//192.168.122.119/salesdata: *******

ls /mnt/sales

hosts memos test whitepapers

When prompted, enter the Samba password for chris. Given that the
user chris in this example has read-write permission to the shared
directory, users on your system should be able to read and write to the
mounted directory. Regardless of who saves files on the shared
directory, on the server those files are owned by the user chris. This
mount lasts until the system is rebooted or you run the umount

command on the directory. If you want the share to be mounted
permanently (that is, every time the system boots up) in the same
location, you can do some additional configuration. First, open the
/etc/fstab file and add an entry similar to the following:

//192.168.0.119/salesdata /mnt/sales cifs

credentials=/root/cif.txt 0 0

Next, create a credentials file (in this example, /root/cif.txt). In that
file, put the name of the user and the user's password that you want to
present when the system tries to mount the filesystem. Here is an
example of the contents of that file:

user=chris

pass=mypass

Before you reboot to check that the entry is correct, try mounting it
from the command line. A mount -a command tries to mount any
filesystem listed in the /etc/fstab file that is not already mounted. The
df command shows information about disk space for the mounted
directory, as in the following example:

mount -a

df -h /mnt/sales

Filesystem Size Used Avail Ues%

Mounted on

//192.168.0.119/salesdata 20G 5.7G 14G 30%

/mnt/sales

You should now be able to use the shared Samba directory as you do
any directory on the local system.

Accessing Samba shares in Windows
As with Linux, you can access Samba shares from the file manager
window, in this case Windows File Explorer. To do this, open any
folder in Windows, and select Network from the left panel. An icon
representing the Samba server should appear on the screen. Click that
icon and enter a password if prompted for one. You should see all
shared printers and folders from that server (see Figure 19.4).

In Figure 19.4, you can see that there are two shared folders

(directories): chris and salesdata. There are also several shared
printers. To use the folders, double-click them and enter the required
authentication information. Because printers are set up to use raw
drivers by default, you need to obtain Windows drivers to use any of
the Samba printers.

FIGURE 19.4 Accessing Samba shares from Windows

Using Samba in the Enterprise
Although it's beyond the scope of this book, Windows file and printer
sharing via Samba servers is a very popular application in large
enterprises. Despite the fact that Linux has begun to dominate the
enterprise-quality server market, Microsoft Windows systems are still
the predominant systems used on the desktop.

The major features needed to integrate Samba servers into a large
enterprise with many Microsoft Windows desktops are related to
authentication. Most large enterprises use Microsoft Active Directory
Services (ADS) servers for authentication. On the Linux side, that
means configuring Kerberos on the Linux system and using ADS
(instead of user) for the type of security in the smb.conf file.

The advantage of central authentication is that users have to
remember only one set of credentials throughout the enterprise and
system administrators need to manage fewer user accounts and
passwords.

Summary
Because of the popularity of Windows desktops, Samba servers have
become popular for sharing files and printers among Windows and
Linux systems. Samba provides a way to interoperate with Windows
systems by implementing the Server Message Block (SMB) or
Common Internet File (CIFS) protocol for sharing resources over a
network.

This chapter stepped through the process of installing, starting,
securing, configuring, and accessing Samba servers on a Linux system.
Using command-line tools, I demonstrated how to set up a Samba
server. I showed you both command-line and desktop tools for getting
to Samba shares from Linux and Windows systems.

The next chapter describes the Network File System (NFS) facility.
NFS is the native Linux facility for sharing and mounting filesystems
over networks with other Linux and UNIX systems.

Exercises
The exercises in this section describe tasks related to setting up a
Samba server in Linux and accessing that server using a Samba client.
As usual, there are often several ways to accomplish some of the tasks
here. So don't worry if you don't go about the exercises in exactly the
same way as shown in the answers, as long as you get the same results.
See Appendix B for suggested solutions.

Don't do these exercises on a Linux system running a Samba server
because they will almost certainly interfere with that server. These
exercises were tested on a Fedora system. Some of the steps might be
slightly different on another Linux system.

1. Install the samba and samba-client packages.

2. Start and enable the smb and nmb services.

3. Set the Samba server's workgroup to TESTGROUP, the netbios name
to MYTEST, and the server string to Samba Test System.

4. Add a Linux user named phil to your system, and add a Linux
password and Samba password for phil.

5. Set the [homes] section so that home directories are browseable
(yes) and writeable (yes), and phil is the only valid user.

6. Set any SELinux Boolean that is necessary to make it so that phil
can access his home directory via a Samba client, then restart the
smb and nmb services.

7. From the local system, use the smbclient command to list that the
homes share is available.

8. From a Nautilus (file manager) window on the local system,
connect to the homes share for the user phil on the local Samba
server in a way that allows you to drag and drop files to that
folder.

9. Open up the firewall so that anyone who has access to the server
can access the Samba service (smbd and nmbd daemons).

10. From another system on your network (Windows or Linux), try to
open the homes share again as the user phil, and again make sure
that you can drag and drop files to it.

CHAPTER 20
Configuring an NFS File Server

IN THIS CHAPTER
Getting NFS server software

Enabling and starting NFS

Exporting NFS directories

Setting security features for NFS

Mounting remote NFS shared directories

Instead of representing storage devices as drive letters (A, B, C, and so
on), as they are in Microsoft operating systems, Linux systems
invisibly connect filesystems from multiple hard disks, USB drives,
CD-ROMs, and other local devices to form a single Linux filesystem.
The Network File System (NFS) facility enables you to extend your
Linux filesystem to connect filesystems on other computers to your
local directory structure.

An NFS file server provides an easy way to share large amounts of data
among the users and computers in an organization. An administrator
of a Linux system that is configured to share its filesystems using NFS
has to perform the following tasks to set up NFS:

1. Set up the network. NFS is typically used on private networks
as opposed to public networks, such as the Internet.

2. Start the NFS service. Several service daemons need to start up
and run to have a fully operational NFS service. In Fedora and
Red Hat Enterprise Linux, you can start up the nfs-server service.

3. Choose what to share from the server. Decide which
directories (folders) on your Linux NFS server to make available
to other computers. You can choose any point in the filesystem

and make all files and directories below that point accessible to
other computers.

4. Set up security on the server. You can use several different
security features to apply the level of security with which you are
comfortable. Mount-level security enables you to restrict the
computers that can mount a resource and, for those allowed to
mount it, enables you to specify whether it can be mounted
read/write or read-only. In NFS, user-level security is
implemented by mapping users from the client systems to users
on the NFS server (based on UID and not username) so that they
can rely on standard Linux read/write/execute permissions, file
ownership, and group permissions to access and protect files.

5. Mount the filesystem on the client. Each client computer
that is allowed access to the server's NFS shared filesystem can
mount it anywhere the client chooses. For example, you may
mount a filesystem from a computer called oak on the /mnt/oak
directory in your local filesystem. After it is mounted, you can
view the contents of that directory by typing ls /mnt/oak.

Although it is often used as a file server (or other type of server), Linux
is a general-purpose operating system, so any Linux system can share,
or export, filesystems as a server or use another computer's filesystems
(mount) as a client. In fact, both Red Hat Enterprise Linux 8 and
Fedora 30 Workstation include the nfs-server service in their default
installations.

NOTE
A filesystem is usually a structure of files and directories that exists
on a single device (such as a hard disk partition or CD-ROM). The
term Linux filesystem refers to the entire directory structure
(which may include filesystems from several disk partitions, NFS,
or a variety of network resources), beginning from root (/) on a
single computer. A shared directory in NFS may represent all or
part of a computer's filesystem, which can be attached (from the
shared directory down the directory tree) to another computer's
filesystem.

If you already have the NFS and Cockpit services running on your
system, you can mount NFS shares and view mounted shares from the
Cockpit Web UI. Here's how to do that:

1. Log in to your Cockpit interface (port 9090) through your web
browser and select Storage. The URL to get to storage in the
Cockpit service on your local system should be something like
https://host1.example.com:9090/storage.

2. If there are mounted NFS shares on your system, they should
appear under the NFS Mounts section. Figure 20.1 shows an
example containing two mounted NFS shares.

3. To mount a remote NFS share, select the plus (+) sign on the NFS
Mounts line. Fill in the address or hostname of the NFS server,
the shared directory on the NFS share, and the point on the local
file system where you will mount that share. Then select Add, as
shown in Figure 20.2.

At this point, you should be able to access the content from the remote
NFS share from the mount point on your local filesystem. By default,
the NFS mount information is added to the /etc/fstab file, so the NFS
share will be made available each time the system reboots. Now that
you have seen the easy way to use NFS, the rest of the chapter
describes how to use NFS from the ground up.

https://host1.example.com:9090/storage

FIGURE 20.1 View NFS shares mounted locally using Cockpit Web
UI

FIGURE 20.2 Add a new NFS mount using Cockpit Web UI

Installing an NFS Server
To run an NFS server, you need a set of kernel modules (which are
delivered with the kernel itself) plus some user-level tools to configure
the service, run daemon processes, and query the service in various
ways.

For earlier releases of Fedora and RHEL, the components you need
that are not already in the kernel can be added by installing the nfs-
utils package. In RHEL 8 and Fedora 30, the required components
are included in the following default installation:

yum install nfs-utils

Besides a few documents in the /usr/share/doc/nfs-utils directory,
most documentation in the nfs-utils package includes man pages for
its various components. To see the list of documentation, type the
following:

rpm -qd nfs-utils | less

There are tools and man pages for both the NFS server side (for
sharing a directory with others) and the client side (for mounting a
remote NFS directory locally). To configure a server, you can refer to
the exports man page (to set up the /etc/exports file to share your
directories). The man page for the exportfs command describes how
to share and view the list of directories that you share from the
/etc/exports file. The nfsd man page describes the options that you
can pass to the rpc.nfsd server daemon, which lets you do such things
as run the server in debugging mode.

Man pages on the client side include the mount.nfs man page (to see
what mount options you can use when mounting remote NFS
directories on your local system). There is also an nfsmount.conf man
page, which describes how to use the /etc/nfsmount.conf file to
configure how your system behaves when you mount remote resources
locally. The showmount man page describes how to use the showmount
command to see what shared directories are available from NFS
servers.

To find out more about the nfs-utils package, you can run the
following commands to see information about the package,
configuration files, and commands, respectively:

rpm -qi nfs-utils

rpm -qc nfs-utils

rpm -ql nfs-utils | grep bin

Starting the NFS service
Starting the NFS server involves launching several service daemons.
The basic NFS service in Fedora and RHEL 8 is called nfs-server. To
start that service, enable it (so it starts each time your system boots)
and check the status by running the following three commands:

systemctl start nfs-server.service

systemctl enable nfs-server.service

systemctl status nfs-server.service

• nfs-server.service - NFS server and services

 Loaded: loaded (/lib/systemd/system/nfs-server.service;

enabled

 vendor preset: disabled)

 Active: active (exited) since Mon 2019-9-02 15:15:11

EDT; 24s ago

 Main PID: 7767 (code=exited, status=0/SUCCESS)

 Tasks: 0 (limit: 12244)

 Memory: 0B

 CGroup: /system.slice/nfs-server.service

You can see from the status that the nfs-server service is enabled and
active. The NFS service also requires that the RPC service be running
(rpcbind). The nfs-server service automatically starts the rpcbind
service, if it is not already running.

In Red Hat Enterprise Linux 6, you need the service and chkconfig
commands to check, start, and enable the NFS service (nfs). The
following commands show the nfs service not running currently and
disabled:

service nfs status

rpc.svcgssd is stopped

rpc.mountd is stopped

nfsd is stopped

chkconfig --list nfs

nfs 0:off 1:off 2:off 3:off 4:off 5:off 6:off

As mentioned earlier, the rpcbind service must be running for NFS to
work. In RHEL 6, you could use the following commands to start and
permanently enable both the rpcbind and nfs services:

service rcpbind start

Starting rpcbind: [OK]

service nfs start

Starting NFS services: [OK]

Starting NFS quotas: [OK]

Starting NFS daemon: [OK]

Starting NFS mountd: [OK]

chkconfig rpcbind on

chkconfig nfs on

After the service is running, the commands (mount, exportfs, and so
on) and files (/etc/exports, /etc/fstab, and so on) for actually
configuring NFS are basically the same on every Linux system. So,
after you have NFS installed and running, just follow the instructions
in this chapter to start using NFS.

Sharing NFS Filesystems
To share an NFS filesystem from your Linux system, you need to
export it from the server system. Exporting is done in Linux by adding
entries into the /etc/exports file. Each entry identifies a directory in
your local filesystem that you want to share with other computers. The
entry also identifies the other computers that can access the resource
(or opens it to all computers) and includes other options that reflect
permissions associated with the directory.

Remember that when you share a directory, you are sharing all files
and subdirectories below that directory as well (by default). You need
to be sure that you want to share everything in that directory structure.
You can still restrict access within that directory structure in many
ways; those are discussed later in this chapter.

Configuring the /etc/exports file
To make a directory from your Linux system available to other
systems, you need to export that directory. Exporting is done on a
permanent basis by adding information about an exported directory to
the /etc/exports file.

Here's the format of the /etc/exports file:

Directory Host(Options…) Host(Options…) # Comments

In this example, Directory is the name of the directory that you want
to share, and Host indicates the client computer to which the sharing
of this directory is restricted. Options can include a variety of options
to define the security measures attached to the shared directory for the
host. (You can repeat Host and Option pairs.) Comments are any optional
comments that you want to add (following the # sign).

The exports man page (man exports) contains details about the syntax
of the /etc/exports file. In particular, you can see the options that you
can use to limit access and secure each shared directory.

As root user, you can use any text editor to configure /etc/exports to

modify shared directory entries or add new ones. Here's an example of
an /etc/exports file:

/cal *.linuxtoys.net(rw) # Company events

/pub *(ro,insecure,all_squash) # Public dir

/home maple(rw,root_squash) spruce(rw,root_squash)

The /cal entry represents a directory that contains information about
events related to the company. Any computer in the company's
domain (*. linuxtoys.net) can mount that NFS share. Users can write
files to the directory as well as read them (indicated by the rw option).
The comment (# Company events) simply serves to remind you of what
the directory contains.

The /pub entry represents a public directory. It allows any computer
and user to read files from the directory (indicated by the ro option)
but not to write files. The insecure option enables any computer, even
one that doesn't use a secure NFS port, to access the directory. The
all_squash option causes all users (UIDs) and groups (GIDs) to be
mapped to the nobody user (UID 65534), giving them minimal
permission to files and directories.

The /home entry enables a set of users to have the same /home directory
on different computers. Suppose, for example, that you are sharing
/home from a computer named oak. The computers named maple and
spruce could each mount that directory on their own /home directories.
If you gave all users the same username/UID on all machines, you
could have the same /home/user directory available for each user,
regardless of which computer they are logged into. The root_squash is
used to exclude the root user from another computer from having root
privilege to the shared directory.

These are just examples; you can share any directories that you
choose, including the entire filesystem (/). Of course, there are
security implications of sharing the whole filesystem or sensitive parts
of it (such as /etc). Security options that you can add to your
/etc/exports file are described throughout the sections that follow.

Hostnames in /etc/exports
You can indicate in the /etc/exports file which host computers can

http://linuxtoys.net

have access to your shared directory. If you want to associate multiple
hostnames or IP addresses with a particular shared directory, be sure
to leave a space before each hostname. However, add no spaces
between a hostname and its options. Here's an example:

/usr/local maple(rw) spruce(ro,root_squash)

Notice that there is a space after (rw) but none after maple. You can
identify hosts in several ways:

Individual host Enter one or more TCP/IP hostnames or IP
addresses. If the host is in your local domain, you can simply
indicate the hostname. Otherwise, use the full host.domain format.
These are valid ways to indicate individual host computers:

 maple

 maple.handsonhistory.com

 10.0.0.11

IP network Allow access to all hosts from a particular network
address by indicating a network number and its netmask,
separated by a slash (/). Here are valid ways to designate network
numbers:

 10.0.0.0/255.0.0.0 172.16.0.0/255.255.0.0

 192.168.18.0/255.255.255.0

 192.168.18.0/24

TCP/IP domain Using wildcards, you can include all or some
host computers from a particular domain level. Here are some
valid uses of the asterisk and question mark wildcards:

 *.handsonhistory.com

 *craft.handsonhistory.com

 ???.handsonhistory.com

The first example matches all hosts in the handsonhistory.com
domain. The second example matches woodcraft, basketcraft, or
any other hostnames ending in craft in the handsonhistory.com
domain. The final example matches any three-letter hostnames
in the domain.

NIS groups You can allow access to hosts contained in an NIS

http://handsonhistory.com
http://handsonhistory.com

group. To indicate an NIS group, precede the group name with an
at (@) sign (for example, @group).

Access options in /etc/exports
You don't have to just give away your files and directories when you
export a directory with NFS. In the options part of each entry in
/etc/exports, you can add options that allow or limit access by setting
read/write permission. These options, which are passed to NFS, are as
follows:

ro: Client can mount this exported filesystem read-only. The
default is to mount the filesystem read/write.

rw: Explicitly asks that a shared directory be shared with
read/write permissions. (If the client chooses, it can still mount
the directory as read-only.)

User mapping options in /etc/exports
In addition to options that define how permissions are handled
generally, you can use options to set the permissions that specific
users have to NFS shared filesystems.

One method that simplifies this process is to have each user with
multiple user accounts have the same username and UID on each
machine. This makes it easier to map users so they have the same
permissions on a mounted filesystem as they do on files stored on
their local hard disks. If that method is not convenient, user IDs can be
mapped in many other ways. Here are some methods of setting user
permissions and the /etc/exports option that you use for each
method:

root user The client's root user is mapped by default into the
nobody username (UID 65534). This prevents a client computer's
root user from being able to change all files and directories in the
shared filesystem. If you want the client's root user to have root
permission on the server, use the no_root_squash option.

TIP
Keep in mind that even though root is squashed, the root user
from the client can still become any other user account and
access files for those user accounts on the server. So, be sure
that you trust root with all of your user data before you share it
read/write with a client.

nfsnobody or nobody user/group By using the 65534 user ID and
group ID, you essentially create a user/group with permissions
that do not allow access to files that belong to any real users on
the server, unless those users open permission to everyone.
However, files created by the 65534 user or group are available to
anyone assigned as the 65534 user or group. To set all remote
users to the 65534 user/group, use the all_squash option.

The 65534 UIDs and GIDs are used to prevent the ID from
running into a valid user or group ID. Using anonuid or anongid
options, you can change the 65534 user or group, respectively.
For example, anonuid=175 sets all anonymous users to UID 175, and
anongid=300 sets the GID to 300. (Only the number is displayed
when you list file permission unless you add entries with names
to /etc/passwd and /etc/group for the new UIDs and GIDs.)

User mapping If a user has login accounts for a set of
computers (and has the same ID), NFS, by default, maps that ID.
This means that if the user named mike (UID 110) on maple has an
account on pine (mike, UID 110), he can use his own remotely
mounted files on either computer from either computer.

If a client user who is not set up on the server creates a file on the
mounted NFS directory, the file is assigned to the remote client's
UID and GID. (An ls -l on the server shows the UID of the
owner.)

Exporting the shared filesystems

After you have added entries to your /etc/exports file, run the
exportfs command to have those directories exported (made available
to other computers on the network). Reboot your computer or restart
the NFS service, and the exportfs command runs automatically to
export your directories. If you want to export them immediately, run
exportfs from the command line (as root).

TIP
Running the exportfs command after you change the exports file is
a good idea. If any errors are in the file, exportfs identifies them
for you.

Here's an example of the exportfs command:

/usr/sbin/exportfs -a -r -v

exporting maple:/pub

exporting spruce:/pub

exporting maple:/home

exporting spruce:/home

exporting *:/mnt/win

The -a option indicates that all directories listed in /etc/exports
should be exported. The -r resyncs all exports with the current
/etc/exports file (disabling those exports no longer listed in the file).
The -v option says to print verbose output. In this example, the /pub
and /home directories from the local server are immediately available
for mounting by those client computers that are named (maple and
spruce). The /mnt/win directory is available to all client computers.

Securing Your NFS Server
The NFS facility was created at a time when encryption and other
security measures were not routinely built into network services (such
as remote login, file sharing, and remote execution). Therefore, NFS
(even up through version 3) suffers from some rather glaring security
issues.

NFS security issues made it an inappropriate facility to use over public
networks and even made it difficult to use securely within an
organization. These are some of the issues:

Remote root users Even with the default root_squash (which
prevents root users from having root access to remote shares), the
root user on any machine to which you share NFS directories can
gain access to any other user account. Therefore, if you are doing
something like sharing home directories with read/write
permission, the root user on any box to which you are sharing has
complete access to the contents of those home directories.

Unencrypted communications Because NFS traffic is
unencrypted, anyone sniffing your network can see the data that
is being transferred.

User mapping Default permissions to NFS shares are mapped
by user ID. So, for example, a user with UID 1000 on an NFS
client has access to files owned by UID 1000 on the NFS server.
This is regardless of the usernames used.

Filesystem structure exposed Up to NFSv3, if you shared a
directory over NFS, you exposed the location of that directory on
the server's filesystem. (In other words, if you shared the
/var/stuff directory, clients would know that /var/stuff was its
exact location on your server).

That's the bad news. The good news is that most of these issues are
addressed in NFSv4 but require some extra configuration. By
integrating Kerberos support, NFSv4 lets you configure user access
based on each user obtaining a Kerberos ticket. For you, the extra

work is configuring a Kerberos server. As for exposing NFS share
locations, with NFSv4 you can bind shared directories to an /exports
directory, so when they are shared, the exact location of those
directories is not exposed.

Visit https://help.ubuntu.com/community/NFSv4Howto for details on
NFSv4 features in Ubuntu.

As for standard Linux security features associated with NFS, iptables
firewalls, TCP wrappers, and SELinux can all play a role in securing
and providing access to your NFS server from remote clients. In
particular, getting firewall features working with NFS can be
particularly challenging. These security features are described in the
sections that follow.

Opening up your firewall for NFS
The NFS service relies on several different service daemons for normal
operation, with most of these daemons listening on different ports for
access. For the default NFSv4 used in Fedora, TCP and UDP ports
2049 (nfs) and 111 (rpcbind) must be open for an NFS server to
perform properly. The server must also open TCP and UDP ports
20048 for the showmount command to be able to query available NFS
shared directories from rpc.mountd on the server.

For RHEL 8, Fedora 30, and other systems that use the firewalld
service, you can use the Firewall Configuration window (yum install
firewall-config) to open the firewall for your NFS service. Type
firewall-config, then make sure that mountd, nfs, and rpc-bind are
checked in the window to open the appropriate ports to allow access to
your NFS service. Figure 20.3 shows an example of this window:

https://help.ubuntu.com/community/NFSv4Howto

FIGURE 20.3 Use the Firewall Configuration window to open your
firewall to allow access to the NFS service.

For RHEL 6 and other systems that use iptables service directly (prior
to firewalld being added), to open ports on the NFS server's firewall,
make sure iptables is enabled and started with firewall rules similar to
the following added to the /etc/sysconfig/iptables file:

-A INPUT -m state --state NEW -m tcp -p tcp --dport 111 -j

ACCEPT

-A INPUT -m state --state NEW -m udp -p udp --dport 111 -j

ACCEPT

-A INPUT -m state --state NEW -m tcp -p tcp --dport 2049 -j

ACCEPT

-A INPUT -m state --state NEW -m udp -p udp --dport 2049 -j

ACCEPT

-A INPUT -m state --state NEW -m tcp -p tcp --dport 20048 -j

ACCEPT

-A INPUT -m state --state NEW -m udp -p udp --dport 20048 -j

ACCEPT

In Red Hat Enterprise Linux 6.x and earlier, the firewall issue is a bit
more complex. The problem, as it relates to firewalls, is that several
different services are associated with NFS that listen on different
ports, and those ports are assigned randomly. To get around that
problem, you need to lock down the port numbers those services use
and open the firewall so that those ports are accessible.

To make the process of locking down NFS server ports easier, entries
in the /etc/sysconfig/nfs file can be added to assign specific port
numbers to services. The following are examples of options in the
/etc/sysconfig/nfs file with static port numbers set:

RQUOTAD_PORT=49001

LOCKD_TCPPORT=49002

LOCKD_UDPPORT=49003

MOUNTD_PORT=49004

STATD_PORT=49005

STATD_OUTGOING_PORT=49006

RDMA_PORT=49007

With those ports set, I restarted the nfs service (service nfs restart).
Using the netstat command, you can see the resulting processes that
are listening on those assigned ports:

tcp 0 0 0.0.0.0:49001 0.0.0.0:* LISTEN

4682/rpc.rquotad

tcp 0 0 0.0.0.0:49002 0.0.0.0:* LISTEN -

tcp 0 0 0.0.0.0:49004 0.0.0.0:* LISTEN

4698/rpc.mountd

tcp 0 0 :::49002 :::* LISTEN -

tcp 0 0 :::49004 :::* LISTEN

4698/rpc.mountd

udp 0 0 0.0.0.0:49001 0.0.0.0:*

4682/rpc.rquotad

udp 0 0 0.0.0.0:49003 0.0.0.0:* -

udp 0 0 0.0.0.0:49004 0.0.0.0:*

4698/rpc.mountd

udp 0 0 :::49003 :::* -

udp 0 0 :::49004 :::*

4698/rpc.mountd

With those port numbers set and being used by the various services,
you can now add iptables rules, as you did with ports 2049 and 111 for
the basic NFS service.

Allowing NFS access in TCP wrappers
For services such as vsftpd and sshd, TCP wrappers in Linux enable
you to add information to /etc/hosts.allow and /etc/hosts.deny files
to indicate which hosts can or cannot access the service. Although the
nfsd server daemon itself is not enabled for TCP wrappers, the rpcbind
service is.

For NFSv3 and earlier versions, simply adding a line such as the
following to the /etc/hosts.deny file would deny access to the rpcbind
service, but it would also deny access to your NFS service:

rpcbind: ALL

For servers running NFSv4 by default, however, the rpcbind: ALL line
just shown prevents outside hosts from getting information about RPC
services (such as NFS) using commands like showmount. However, it
does not prevent you from mounting an NFS shared directory.

Configuring SELinux for your NFS server
With SELinux set to permissive or disabled, it does not block access to
the NFS service. In enforcing mode, however, you should understand a
few SELinux Booleans. To check the state of SELinux on your system,
enter the following:

getenforce

Enforcing

grep ^SELINUX= /etc/sysconfig/selinux

SELINUX=enforcing

If your system is in enforcing mode, as it is here, check the nfs_selinux
man page for information about SELinux settings that can impact the
operation of your vsftpd service. Here are a few SELinux file contexts
associated with NFS that you might need to know about:

nfs_export_all_ro: With this Boolean set to on, SELinux allows
you to share files with read-only permission using NFS. NFS read-
only file sharing is allowed with this on regardless of the SELinux
file context set on the shared files and directories.

nfs_export_all_rw: With this Boolean set to on, SELinux allows

you to share files with read/write permission using NFS. As with
the previous Boolean, this works regardless of the file context set
on the shared files and directories.

use_nfs_home_dirs: To allow the NFS server to share your home
directories via NFS, set this Boolean to on.

Of the Booleans just described, the first two are on by default. The
use_nfs_home_dirs Boolean is off. To turn on the use_nfs_home_dirs
directory, you could type the following:

setsebool -P use_nfs_home_dirs on

You can ignore all of the Booleans related to NFS file sharing,
however, by changing the file contexts on the files and directories you
want to share via NFS. The public_content_t and public_content_rw_t
file contexts can be set on any directory that you want to share via NFS
(or other file share protocols, such as HTTP, FTP, and others, for that
matter). For example, to set the rule to allow the /whatever directory
and its subdirectories to be shared read/write via NFS, and then to
apply that rule, enter the following:

semanage fcontext -a -t public_content_rw_t

"/whatever(/.*)?"

restorecon -F -R -v /whatever

If you wanted to allow users just to be able to read files from a
directory, but not write to it, you could assign the public_content_t file
context to the directory instead.

Using NFS Filesystems
After a server exports a directory over the network using NFS, a client
computer connects that directory to its own filesystem using the mount
command. That's the same command used to mount filesystems from
local hard disks, DVDs, and USB drives, but with slightly different
options.

The mount command enables a client to mount NFS directories added
to the /etc/fstab file automatically, just as it does with local disks.
NFS directories can also be added to the /etc/fstab file in such a way
that they are not automatically mounted (so you can mount them
manually when you choose). With a noauto option, an NFS directory
listed in /etc/fstab is inactive until the mount command is used, after
the system is up and running, to mount the filesystem.

In addition to the /etc/fstab file, you can set mount options using the
/etc/nfsmount.conf file. Within that file, you can set mount options
that apply to any NFS directory you mount or only those associated
with specific mount points or NFS servers.

Before you set about mounting NFS shared directories, however, you
probably want to check out what shared directories are available via
NFS using the showmount command.

Viewing NFS shares
From a client Linux system, you can use the showmount command to
see what shared directories are available from a selected computer,
such as in this example:

$ showmount -e server.example.com

/export/myshare client.example.com

/mnt/public *

The showmount output shows that the shared directory named
/export/myshare is available only to the host client.example.com. The
/mnt/public shared directory, however, is available to anyone.

http://client.example.com

Manually mounting an NFS filesystem
After you know that the directory from a computer on your network
has been exported (that is, made available for mounting), you can
mount that directory manually using the mount command. This is a
good way to make sure that it is available and working before you set it
up to mount permanently. The following is an example of mounting
the /stuff directory from a computer named maple on your local
computer:

mkdir /mnt/maple

mount maple:/stuff /mnt/maple

The first command (mkdir) creates the mount point directory. (/mnt is
a common place to put temporarily mounted disks and NFS
filesystems.) The mount command identifies the remote computer and
shared filesystem, separated by a colon (maple:/stuff), and the local
mount point directory (/mnt/maple) follows.

NOTE
If the mount fails, make sure that the NFS service is running on the
server and that the server's firewall rules don't deny access to the
service. From the server, type ps ax | grep nfsd to see a list of
nfsd server processes. If you don't see the list, try to start your NFS
daemons as described earlier in this chapter. To view your firewall
rules, type iptables -vnL. By default, the nfsd daemon listens for
NFS requests on port number 2049. Your firewall must accept udp
requests on ports 2049 (nfs) and 111 (rpc). In Red Hat Enterprise
Linux 6 and earlier versions of Fedora, you may need to set static
ports for related services and then open ports for those services in
the firewall. Refer to the section “Securing Your NFS Server”
earlier in this chapter to review how to overcome these security
issues.

To ensure that the NFS mount occurred, type mount -t nfs4. This
command lists all mounted NFS filesystems. Here is an example of the
mount command and its output (with filesystems not pertinent to this
discussion edited out):

mount -t nfs4

192.168.122.240:/mnt on /mnt/fed type nfs4

(rw,relatime,vers=4.2,rsize=262144,wsize=262144,namlen=255,hard,

proto=tcp,timeo=600,retrans=2,sec=sys,clientaddr=192.168.122.63,

local_lock=none,addr=192.168.122.240)

The output from the mount -t nfs4 command shows only those
filesystems mounted from NFS file servers. The NFS filesystem is the
/mnt directory from 192.168.122.240 (192.168.122.240:/mnt). It is
mounted on /mnt/fed, and its mount type is nfs4. The filesystem was
mounted read/write (rw), and the IP address of maple is
192.168.122.240 (addr=192.168.122.240). Many other settings related
to the mount are shown as well, such as the read and write sizes of
packets and the NFS version number.

The mount operation just shown temporarily mounts an NFS
filesystem on the local system. The next section describes how to make
the mount more permanent (using the /etc/fstab file) and how to
select various options for NFS mounts.

Mounting an NFS filesystem at boot time
To set up an NFS filesystem to mount automatically on a specified
mount point each time you start your Linux system, you need to add
an entry for that NFS filesystem to the /etc/fstab file. That file
contains information about all different kinds of mounted (and
available to be mounted) filesystems for your system.

Here's the format for adding an NFS filesystem to your local system:

host:directory mountpoint nfs options 0 0

The first item (host:directory) identifies the NFS server computer
and shared directory. mountpoint is the local mount point on which the
NFS directory is mounted. It is followed by the filesystem type (nfs).
Any options related to the mount appear next in a comma-separated
list. (The last two zeros configure the system not to dump the contents
of the filesystem and not to run fsck on the filesystem.)

The following are examples of NFS entries in /etc/fstab:

maple:/stuff /mnt/maple nfs

bg,rsize=8192,wsize=8192 0 0

oak:/apps /oak/apps nfs noauto,ro

0 0

In the first example, the remote directory /stuff from the computer
named maple (maple:/stuff) is mounted on the local directory
/mnt/maple (the local directory must already exist). If the mount fails
because the share is unavailable, the bg causes the mount attempt to
go into the background and retry again later.

The filesystem type is nfs, and read (rsize) and write (wsize) buffer
sizes (discussed in the section “Using mount options,” later in this
chapter) are set at 8192 to speed data transfer associated with this
connection. In the second example, the remote directory is /apps on
the computer named oak. It is set up as an NFS filesystem (nfs) that

can be mounted on the /oak/apps directory locally. This filesystem is
not mounted automatically (noauto), however, and it can be mounted
only as read-only (ro) using the mount command after the system is
already running.

TIP
The default is to mount an NFS filesystem as read/write. However,
the default for exporting a filesystem is read-only. If you are unable
to write to an NFS filesystem, check that it was exported as
read/write from the server.

Mounting noauto filesystems
Your /etc/fstab file may also contain devices for other filesystems that
are not mounted automatically. For example, you might have multiple
disk partitions on your hard disk or an NFS shared filesystem that you
want to mount only occasionally. A noauto filesystem can be mounted
manually. The advantage is that when you type the mount command,
you can type less information and have the rest filled in by the
contents of the /etc/fstab file. So, for example, you could type

mount /oak/apps

With this command, mount knows to check the /etc/fstab file to get
the filesystem to mount (oak:/apps), the filesystem type (nfs), and the
options to use with the mount (in this case ro, for read-only). Instead
of typing the local mount point (/oak/apps), you could have typed the
remote filesystem name (oak:/apps) and had other information filled
in.

TIP
When naming mount points, including the name of the remote
NFS server in that name can help you remember where the files are
actually being stored. This may not be possible if you are sharing
home directories (/home) or mail directories (/var/spool/mail). For
example, you might mount a filesystem from a machine called duck
on the directory /mnt/duck.

Using mount options
You can add several mount options to the /etc/fstab file (or to a mount
command line itself) to influence how the filesystem is mounted.
When you add options to /etc/fstab, they must be separated by
commas. For example, here the noauto, ro, and hard options are used
when oak:/apps is mounted:

oak:/apps /oak/apps nfs noauto,ro,hard 0 0

The following are some options that are valuable for mounting NFS
filesystems. You can read about these and other NFS mount options
you can put in the /etc/fstab file from the nfs man page (man 5 nfs):

hard If this option is used and the NFS server disconnects or goes
down while a process is waiting to access it, the process hangs
until the server comes back up. This is helpful if it is critical that
the data with which you are working stay in sync with the
programs that are accessing it. (This is the default behavior.)

soft If the NFS server disconnects or goes down, a process trying
to access data from the server times out after a set period when
this option is on. An input/output error is delivered to the process
trying to access the NFS server.

rsize This is the size of the blocks of data (in bytes) that the NFS
client will request be used when it is reading data from an NFS
server. The default is 1024. Using a larger number (such as 8192)
gets you better performance on a network that is fast (such as a

LAN) and is relatively error-free (that is, one that doesn't have
lots of noise or collisions).

wsize This is the size of the blocks of data (in bytes) that the NFS
client will request to be used when it is writing data to an NFS
server. The default is 1024. Performance issues are the same as
with the rsize option.

timeo=# This sets the time after an RPC time-out occurs that a
second transmission is made, where # represents a number in
tenths of a second. The default value is seven-tenths of a second.
Each successive time-out causes the time-out value to be doubled
(up to 60 seconds maximum). Increase this value if you believe
that time-outs are occurring because of slow response from the
server or a slow network.

retrans=# This sets the number of minor time-outs and
retransmissions that need to happen before a major time-out
occurs.

retry=# This sets how many minutes to continue to retry failed
mount requests, where # is replaced by the number of minutes to
retry. The default is 10,000 minutes (which is about one week).

bg If the first mount attempt times out, try all subsequent mounts
in the background. This option is very valuable if you are
mounting a slow or sporadically available NFS filesystem. When
you place mount requests in the background, your system can
continue to mount other filesystems instead of waiting for the
current one to complete.

NOTE
If a nested mount point is missing, a time-out to allow for the
needed mount point to be added occurs. For example, if you
mount /usr/trip and /usr/trip/extra as NFS filesystems and
/usr/trip is not yet mounted when /usr/trip/extra tries to
mount, /usr/trip/extra times out. If you're lucky, /usr/trip
comes up and /usr/trip/extra mounts on the next retry.

fg If the first mount attempt times out, try subsequent mounts in
the foreground. This is the default behavior. Use this option if it is
imperative that the mount be successful before continuing (for
example, if you were mounting /usr).

Not all NFS mount options need to go into the /etc/fstab file. On the
client side, the /etc/nfsmount.conf file can be configured for Mount,
Server, and Global sections. In the Mount section, you can indicate
which mount options are used when an NFS filesystem is mounted to a
particular mount point. The Server section lets you add options to any
NFS filesystem mounted from a particular NFS server. Global options
apply to all NFS mounts from this client.

The following entry in the /etc/nfsmount.conf file sets a 32KB read
and write block size for any NFS directories mounted from the system
named thunder.example.com:

[Server "thunder.example.com"]

 rsize=32k

 wsize=32k

To set default options for all NFS mounts for your systems, you can
uncomment the NFSMount_Global_Options block. In that block, you can
set such things as protocols and NFS versions as well as transmission
rates and retry settings. Here is an example of an
NFSMount_Global_Options block:

[NFSMount_Global_Options]

This sets the default version to NFS 4

http://thunder.example.com

Defaultvers=4

Sets the number of times a request will be retried before

generating a timeout

Retrans=2

Sets the number of minutes before retrying a failed

mount to 2 minutes

Retry=2

In the example just shown, the default NFS version is 4. Data is
retransmitted twice (2) before generating a time-out. The wait time is
2 minutes before retrying a failed transmission. You can override any
of these default values by adding mount options to the /etc/fstab or to
the mount command line when the NFS directory is mounted.

Using autofs to mount NFS filesystems on demand
Improvements to autodetecting and mounting removable devices have
meant that you can simply insert or plug in those devices to have them
detected, mounted, and displayed. However, to make the process of
detecting and mounting remote NFS filesystems more automatic, you
still need to use a facility such as autofs (short for automatically
mounted filesystems).

The autofs facility mounts network filesystems on demand when
someone tries to use the filesystems. With the autofs facility
configured and turned on, you can cause any available NFS shared
directories to mount on demand. To use the autofs facility, you need
to have the autofs package installed. (For Fedora and RHEL, you can
type yum install autofs or for Ubuntu or Debian apt-get install
autofs to install the package from the network.)

Automounting to the /net directory
With autofs enabled, if you know the hostname and directory being
shared by another host computer, simply change (cd) to the autofs
mount directory (/net or /var/autofs by default). This causes the
shared resource to be automatically mounted and made accessible to
you.

The following steps explain how to turn on the autofs facility in
Fedora or RHEL:

1. In Fedora or RHEL, as root user from a Terminal
window, open the /etc/auto.master file and look for the
following line:

 /net -hosts

This causes the /net directory to act as the mount point for the
NFS shared directories that you want to access on the network.
(If there is a comment character at the beginning of that line,
remove it.)

2. To start the autofs service in a Fedora 30, RHEL 7, or
later system, type the following as root user:

 # systemctl start autofs.service

3. On a Fedora 30, RHEL 7, or later system, set up the
autofs service to restart every time you boot your system:

 # systemctl enable autofs

Believe it or not, that's all you have to do. If you have a network
connection to the NFS servers from which you want to share
directories, try to access a shared NFS directory. For example, if you
know that the /usr/local/share directory is being shared from the
computer on your network named shuttle, you can do the following:

$ cd /net/shuttle/

If that computer has any shared directories that are available to you,
you can successfully change to that directory.

You also can type the following:

$ ls

usr

You should be able to see that the usr directory is part of the path to a
shared directory. If there were shared directories from other top-level
directories (such as /var or /tmp), you would see those. Of course,
seeing any of those directories depends on how security is set up on
the server.

Try going straight to the shared directory, as shown in this example:

$ cd /net/shuttle/usr/local/share

$ ls

info man music television

At this point, the ls should reveal the contents of the /usr/local/share
directory on the computer named shuttle. What you can do with that
content depends on how it was configured for sharing by the server.

This can be a bit disconcerting because you don't see any files or
directories until you actually try to use them, such as changing to a
network-mounted directory. The ls command, for example, doesn't
show anything under a network-mounted directory until the directory
is mounted, which may lead to a sometimes-it's-there-and-sometimes-
it's-not impression. Just change to a network-mounted directory, or
access a file on such a directory, and autofs takes care of the rest.

In the example shown, the hostname shuttle is used. However, you
can use any name or IP address that identifies the location of the NFS
server computer. For example, instead of shuttle, you might have
used shuttle.example.com or an IP address such as 192.168.0.122.

Automounting home directories
Instead of just mounting an NFS filesystem under the /net directory,
you might want to configure autofs to mount a specific NFS directory
in a specific location. For example, you could configure a user's home
directory from a centralized server that could be automounted from a
different machine when a user logs in. Likewise, you could use a
central authentication mechanism, such as LDAP (as described in
Chapter 11, “Managing User Accounts”), to offer centralized user
accounts.

The following procedure illustrates how to set up a user account on an
NFS server and share the home directory of a user named joe from
that server so that it can be automounted when joe logs into a
different computer. In this example, instead of using a central
authentication server, matching accounts are created on each system.

1. On the NFS server (mynfs.example.com) that provides a centralized

http://shuttle.example.com
http://mynfs.example.com

user home directory for the user named joe, create a user account
for joe with a home directory of /home/shared/joe as its name.
Also find joe's user ID number from the /etc/passwd file (third
field) so that you can match it when you set up a user account for
joe on another system.

 # mkdir /home/shared

 # useradd -c "Joe Smith" -d /home/shared/joe joe

 # grep joe /etc/passwd

 joe:x:1000:1000:Joe Smith:/home/shared/joe:/bin/bash

2. On the NFS server, export the /home/shared/ directory to any
system on your local network (I use 192.168.0.* here), so that you
can share the home directory for joe and any other users you
create by adding this line to the /etc/exports file:

 # /etc/exports file to share directories under

/home/shared

 # only to other systems on the 192.168.0.0/24 network:

 /home/shared 192.168.0.*(rw,insecure)

2. NOTE
In the exports file example above, the insecure option allows
clients to use ports above port 1024 to make mount requests.
Some NFS clients require this because they do not have access
to NFS-reserved ports.

3. On the NFS server, restart the nfs-server service, or if it is already
running, you can simply export the shared directory as follows:

 # exportfs -a -r -v

4. On the NFS server, make sure that the appropriate ports are open
on the firewall. See the section “Securing Your NFS Server” earlier
in this chapter for details.

5. On the NFS client system, add an entry to the /etc/auto.master
file that identifies the mount point where you want the remote
NFS directory to be mounted and a file (of your choosing) where
you will identify the location of the remote NFS directory. I added
this entry to the auto.master file:

 /home/remote /etc/auto.joe

6. On the NFS client system, add an entry to the file you just noted
(/etc/auto.joe is what I used) that contains an entry like the
following:

 joe -rw mynfs.example.com:/home/shared/joe

7. On the NFS client system, restart the autofs service:

 # systemctl restart autofs.service

8. On the NFS client system, create a user named joe using the
useradd command. For that command line, you need to get the
UID for joe on the server (507 in this example) so that joe on the
client system owns the files from joe's NFS home directory. When
you run the following command, the joe user account is created,

but you will see an error message stating that the home directory
already exists (which is correct):

 # useradd -u 507 -c "Joe Smith" -d /home/remote/joe joe

 # passwd joe

 Changing password for user joe.

 New password: ********

 Retype new password: ********

9. On the NFS client system, log in as joe. If everything is working
properly, when joe logs in and tries to access his home directory
(/home/remote/joe), the directory /home/share/joe should be
mounted from the mynfs.example.com server. The NFS directory
was both shared and mounted as read/write with ownership to
UID 507 (joe on both systems), so the user joe on the local system
should be able to add, delete, change, and view files in that
directory.

After joe logs off (actually, when he stops accessing the directory) for a
time-out period (10 minutes, by default), the directory is unmounted.

http://mynfs.example.com

Unmounting NFS filesystems
After an NFS filesystem is mounted, unmounting it is simple. You use
the umount command with either the local mount point or the remote
filesystem name. For example, here are two ways that you could
unmount maple:/stuff from the local directory /mnt/maple:

umount maple:/stuff

umount /mnt/maple

Either form works. If maple:/stuff is mounted automatically (from a
listing in /etc/fstab), the directory is remounted the next time you
boot Linux. If it was a temporary mount (or listed as noauto in
/etc/fstab), it isn't remounted at boot time.

TIP
The command is umount, not unmount. This is easy to get wrong.

If you get the message device is busy when you try to unmount a
filesystem, it means that the unmount failed because the filesystem is
being accessed. Most likely, one of the directories in the NFS
filesystem is the current directory for your shell (or the shell of
someone else on your system). The other possibility is that a command
is holding a file open in the NFS filesystem (such as a text editor).
Check your Terminal windows and other shells, and then cd out of the
directory if you are in it, or just close the Terminal windows.

If an NFS filesystem doesn't unmount, you can force it (umount -f
/mnt/maple) or unmount and clean up later (umount -l /mnt/maple).
The -l option is usually the better choice because a forced unmount
can disrupt a file modification that is in progress. Another alternative
is to run fuser -v mountpoint to see what users are holding your
mounted NFS share open and then fuser -k mountpoint to kill all of
those processes.

Summary
Network File System (NFS) is one of the oldest computer file sharing
products in existence today. It is still the most popular for sharing
directories of files between UNIX and Linux systems. NFS allows
servers to designate specific directories to make available to
designated hosts and then allows client systems to connect to those
directories by mounting them locally.

NFS can be secured using firewall (iptables) rules, TCP wrappers (to
allow and deny host access), and SELinux (to confine how file sharing
protocols can share NFS resources). Although NFS was inherently
insecure when it was created (data is shared unencrypted and user
access is fairly open), features in NFS version 4 have helped improve
the overall security of NFS.

This NFS chapter is the last of the book's server chapters. Chapter 21,
“Troubleshooting Linux,” covers a wide range of desktop and server
topics as it helps you understand techniques for troubleshooting your
Linux system.

Exercises
Exercises in this section take you through tasks related to configuring
and using an NFS server in Linux. If possible, have two Linux systems
available that are connected on a local network. One of those Linux
systems will act as an NFS server while the other will be an NFS client.

To get the most from these exercises, I recommend that you don't use
a Linux server that has NFS already up and running. You can't do all of
the exercises here without disrupting an NFS service that is already
running and sharing resources.

See Appendix B for suggested solutions.

1. On the Linux system you want to use as an NFS server, install the
packages needed to configure an NFS service.

2. On the NFS server, list the documentation files that come in the
package that provides the NFS server software.

3. On the NFS server, determine the name of the NFS service and
start it.

4. On the NFS server, check the status of the NFS service you just
started.

5. On the NFS server, create the /var/mystuff directory and share it
from your NFS server with the following attributes: available to
everyone, read-only, and the root user on the client has root
access to the share.

6. On the NFS server, make sure that the share you created is
accessible to all hosts by opening TCP wrappers, iptables, and
SELinux.

7. On a second Linux system (NFS client), view the shares available
from the NFS server. (If you don't have a second system, you can
do this from the same system.) If you do not see the shared NFS
directory, go back to the previous question and try again.

8. On the NFS client, create a directory called /var/remote and

temporarily mount the /var/mystuff directory from the NFS
server on that mount point.

9. On the NFS client, unmount /var/remote, add an entry so that the
same mount is done automatically when you reboot (with a bg
mount option), and test that the entry you created is working
properly.

10. From the NFS server, copy some files to the /var/mystuff
directory. From the NFS client, make sure that you can see the
files just added to that directory and make sure that you can't
write files to that directory from the client.

CHAPTER 21
Troubleshooting Linux

IN THIS CHAPTER
Troubleshooting boot loaders

Troubleshooting system initialization

Fixing software packaging problems

Checking network interface issues

Dealing with memory problems

Using rescue mode

In any complex operating system, lots of things can go wrong. You can
fail to save a file because you are out of disk space. An application can
crash because the system is out of memory. The system can fail to boot
up properly for, well, lots of different reasons.

In Linux, the dedication to openness, and the focus on making the
software run with maximum efficiency, has led to an amazing number
of tools that you can use to troubleshoot every imaginable problem. In
fact, if the operating system isn't working as you would like, you even
have the ultimate opportunity to rewrite the code yourself (although I
don't cover how to do that here).

This chapter takes on some of the most common problems that you
can run into on a Linux system, and it describes the tools and
procedures that you can use to overcome those problems. Topics are
broken down by areas of troubleshooting, such as the boot process,
software packages, networking, memory issues, and rescue mode.

Boot-Up Troubleshooting
Before you can begin troubleshooting a running Linux system itself,
that system needs to boot up. For a Linux system to boot up, a series of
things has to happen. A Linux system installed directly on a PC
architecture computer goes through the following steps to boot up:

Turning on the power

Starting the hardware (from BIOS or UEFI firmware)

Finding the location of the boot loader and starting it

Choosing an operating system from the boot loader

Starting the kernel and initial RAM disk for the selected operating
system

Starting the initialization process (init or systemd)

Starting all of the services associated with the selected level of
activity (runlevel or default target)

The exact activities that occur at each of these points have undergone a
transformation in recent years. Boot loaders are changing to
accommodate new kinds of hardware. The initialization process is
changing so that services can start more efficiently, based on
dependencies and in reaction to the state of the system (such as what
hardware is plugged in or what files exist) rather than a static boot
order.

Troubleshooting the Linux boot process begins when you turn on your
computer, and it ends when all of the services are up and running. At
that point, typically a graphical or text-based login prompt is available
from the console, ready for you to log in.

After reading the short descriptions of startup methods, go to the
section “Starting from the firmware (BIOS or UEFI)” in order to
understand what happens at each stage of the boot process and where
you might need to troubleshoot. Because the general structure of the
Linux boot process is the same for the three Linux systems featured

here (Fedora, RHEL, and Ubuntu), I will go through the boot process
only once, but I will describe the differences among them as I go.

Understanding Startup Methods
It's up to the individual Linux distribution how the services associated
with the running Linux system are started. After the boot loader starts
the kernel, how the rest of the activities (mounting filesystems, setting
kernel options, running services, and so on) are done is all managed by
the initialization process.

As I describe the boot process, I focus on two different types of
initialization: System V init and systemd.

Starting with System V init scripts
The System V init facility consists of the init process (the first
process to run after the kernel itself), an /etc/inittab file that directs
all startup activities, and a set of shell scripts that starts each of the
individual services. The first Fedora releases, and up to RHEL 5, used
the System V init process. RHEL 6 contains a sort of hybrid of System
V init, with the init process itself replaced by the Upstart init
process.

System V init was developed for UNIX System V at AT&T in the mid-
1980s when UNIX systems first incorporated the startup of network
interfaces and the services connected to them. It has been supplanted
only over the past decade by Upstart and systemd to better suit the
demands of modern operating systems.

In System V init, sets of services are assigned to what is referred to as
runlevels. For example, the multi-user runlevel can start basic system
services, network interfaces, and network services. Single-user mode
just starts enough of the basic Linux system so that someone can log in
from the system console without starting network interfaces or
services.

After a System V init system is up and running, you can use
commands such as reboot, shutdown, and init to change runlevels. You
can use commands such as service and chkconfig to start/stop
individual services or enable/disable services, respectively.

The System V init scripts are set to run in a specific order, with each
script having to complete before the next can start. If a service fails,
there is no provision for that service to restart automatically. In
contrast, systemd was designed to address these and other System V
init shortcomings.

Starting with systemd
The systemd facility is quickly becoming the present and future of the
initialization process for many Linux systems. It was adopted in
Fedora 15 and in RHEL 7 and replaced Upstart in Debian and Ubuntu
15.04. Although systemd is more complex than System V init, it also
offers many more features, such as these:

Targets Instead of runlevels, systemd focuses on targets. A target
can start a set of services as well as create or start other types of
units (such as directory mounts, sockets, swap areas, and timers).

System V compatibility There are targets that align with
System V runlevels, if you are used to dealing with runlevels. For
example, graphical.target aligns with runlevel 5 while multi-
user.target is essentially runlevel 3. However, there are many
more targets than runlevels, giving you the opportunity to manage
sets of units more finely. Likewise, systemd supports System V
init scripts and commands, such as chkconfig and service for
manipulating those services if System V init services happen to
be installed.

Dependency-based startup When the system starts up, any
service in the default target (graphical.target for desktops and
multi-user.target for most servers) that has had its dependencies
met can start. This feature can speed up the boot process by
ensuring that a single stalled service doesn't stall other services
from starting if they don't need the stalled service.

Resource usage With systemd, you can use cgroups to limit how
much of your system's resources are consumed by a service. For
example, you can limit the amount of memory, CPU, or other
resources an entire service can consume, so a runaway process or
a service that spins off an unreasonable number of child processes

cannot consume more than the entire service is allowed.

When a systemd-enabled Linux system starts up, the first running
process (PID 1) is the systemd daemon (instead of the init daemon).
Later, the primary command for managing systemd services is the
systemctl command. Managing systemd journal (log) messages is done
with the journalctl command. You also have the ability to use old-
style System V init commands such as init, poweroff, reboot,
runlevel, and shutdown to manage services.

Starting from the firmware (BIOS or UEFI)
When you physically turn on a computer, firmware is loaded to
initialize the hardware and find an operating system to boot. On PC
architectures, that firmware has traditionally been referred to as BIOS
(Basic Input Output System). In recent years, a new type of firmware
called UEFI (Unified Extensible Firmware Interface) has become
available to replace BIOS on some computers. The two are mutually
exclusive.

UEFI was designed to allow a secure boot feature, which can be used
to ensure that only operating systems whose components have been
signed can be used during the boot process. UEFI can still be used
with non-signed operating systems by disabling the secure boot
feature.

For Ubuntu, secure boot was first supported in 12.04.2. RHEL 7 and
later versions also officially support secure boot. The main job of BIOS
and UEFI firmware is to initialize the hardware and then hand off
control of the boot process to a boot loader. The boot loader then finds
and starts the operating system. After an operating system is installed,
you should typically just let the firmware do its work and not interrupt
it.

There are, however, occasions when you want to interrupt the
firmware. For this discussion, we focus on how BIOS generally works.
Right after you turn on the power, you should see a BIOS screen that
usually includes a few words noting how to go into Setup mode and
change the boot order. If you press the function key noted (often F1,
F2, or F12) to choose one of those two items, here's what you can do:

Setup utility The setup utility lets you change settings in the
BIOS. These settings can be used to enable or disable certain
hardware components or turn on or off selected hardware
features.

Boot order Computers are capable of starting an operating
system, or more specifically, a boot loader that can start an
operating system, from several different devices attached to the
computer. Those devices can include a CD drive, DVD drive, hard
disk, USB driver, or network interface card. The boot order
defines the order in which those devices are checked. By
modifying the boot order, you can tell the computer to ignore the
default boot order temporarily and try to boot from the device
that you select.

For my Dell workstation, after I see the BIOS screen, I immediately
press the F2 function key to go into Setup or F12 to change the boot
order temporarily. The next sections explore what you can
troubleshoot from the Setup and Boot Order screens.

Troubleshooting BIOS setup
As I already noted, you can usually let the BIOS start without
interruption and have the system boot up to the default boot device
(probably the hard drive). However, here are some instances when you
may want to go into Setup mode and change something in the BIOS:

To see an overview of your hardware If your
troubleshooting problem is hardware related, the BIOS setup is a
great place to start examining your system. The Setup screen tells
you the type of system, its BIOS version, its processors, its
memory slots and types, whether it is 32-bit or 64-bit, which
devices are in each slot, and many details about the types of
devices attached to the system.

If you can't get an operating system booted at all, the BIOS Setup
screen may be the only way to determine the system model,
processor type, and other information you'll need to search for
help or call for support.

To disable/enable a device Most devices connected to your

computer are enabled and made available for use by the operating
system. To troubleshoot a problem, you may need to disable a
device.

For example, let's say that your computer has two network
interface cards (NICs). You want to use the second NIC to install
Linux over a network, but the installer keeps trying to use the
first NIC to connect to the network. You can disable the first NIC
so that the installer doesn't even see it when it tries to connect to
the network. Or, you can keep the NIC visible to the computer
but simply disable the NIC's ability to PXE boot.

Maybe you have an audio card, and you want to disable the
integrated audio on the motherboard. That can be done in the
BIOS as well.

Conversely, sometimes you want to enable a device that has been
disabled. Perhaps you were given a computer that had a device
disabled in the BIOS. From the operating system, for example, it
may look like you don't have front USB ports or a CD drive.
Looking at the BIOS tells you whether those devices are not
available simply because they have been disabled in the BIOS.

To change a device setting Sometimes, the default settings
that come in your BIOS don't work for your situation. You might
want to change the following settings in the BIOS:

NIC PXE boot settings Most modern NICs are capable of
booting from servers found on the network. If you need to do
that, and you find that the NIC doesn't come up as a bootable
device on your Boot Order screen, you may have to enable that
feature in the BIOS.

Virtualization settings If you want to run a Linux system as
a virtual host, the computer's CPU must include Intel Virtual
Technology or AMD Secure Virtual Machine (SVM) support. It
is possible, however, that even if your CPU comes with this
support, it may not be enabled in the BIOS. To enable it, go to
the BIOS Setup screen and look for a Virtualization selection
(possibly under the Performance category). Make sure that it

is set to On.

Troubleshooting boot order
Depending on the hardware attached to your computer, a typical boot
order might boot a CD/DVD drive first, then the hard drive, then a
USB device, and finally the network interface card. The BIOS would go
to each device, looking for a boot loader in the device's master boot
record. If the BIOS finds a boot loader, it starts it. If no boot loader is
located, the BIOS moves on to the next device until all are tried. If no
boot loader is found, the computer fails to boot.

One problem that could occur with the boot order is that the device
you want to boot may not appear in the boot order at all. In that case,
going to the Setup screen, as described in the previous section, either
to enable the device or change a setting to make it bootable, may be
the thing to do.

If the device from which you want to boot does appear in the boot
order, typically you just have to move the arrow key to highlight the
device you want and press Enter. The following are reasons for
selecting your own device to boot:

Rescue mode If Linux does not boot from the hard disk,
selecting the CD drive or a USB drive allows you to boot to a
rescue mode (described later in this chapter) that can help you
repair the hard disk on an unbootable system. See the section
“Troubleshooting in Rescue Mode” later in this chapter for further
information.

Fresh install Sometimes, the boot order has the hard disk listed
first. If you decide that you need to do a fresh install of the
operating system, you need to select the boot device that is
holding your installation medium (CD, DVD, USB drive, or NIC).

Assuming that you get past any problems you have with the BIOS, the
next step is for the BIOS to start the boot loader.

Troubleshooting the GRUB boot loader
Typically, the BIOS finds the master boot record on the first hard disk

and begins loading that boot loader in stages. Chapter 9, “Installing
Linux,” describes the GRUB boot loader that is used with most
modern Linux systems, including RHEL, Fedora, and Ubuntu. The
GRUB boot loader in RHEL 6, described here, is an earlier version
than the GRUB 2 boot loader included with RHEL 7 and later, Fedora
and Ubuntu. (Later in this chapter, I introduce you to the GRUB 2
boot loader as well.)

In this discussion, I am interested in the boot loader from the
perspective of what to do if the boot loader fails or what ways you
might want to interrupt the boot loader to change the behavior of the
boot process.

The GRUB Legacy boot loader
Here are a few ways in which the boot loader might fail in RHEL 6 and
some ways that you can overcome those failures:

Could not locate active partition When a boot loader is
installed on a storage medium, the partition is usually marked as
bootable. If you see this message, it means that no bootable
partition was found. If you feel sure that the boot loader is on the
disk, try using the fdisk command (probably from rescue media)
to make the partition bootable and try again. See the section
“Partitioning Hard Disks” of Chapter 12, “Managing Disks and
Filesystems,” for more information on the fdisk command.

Selected boot device not available You might see a message
like this when the master boot record has been deleted from the
hard drive, or it may just be that the contents of the hard disk
expect to be loaded from another boot loader, such as a boot CD.
First, try seeing if the system will boot from other media. If it
turns out that the master boot record was erased, you can try
booting rescue media to attempt to recover the contents of the
disk. However, if the master boot record is lost, it is possible that
other data on the disk either is also erased or would require disk
forensics to find it. If the master boot record was simply
overwritten (which could happen if you installed another
operating system on a different disk partition), it may be possible

to reinstall the master boot record from rescue mode (described
in the section “Troubleshooting in Rescue Mode” later in this
chapter).

Text-based GRUB prompt appears It is possible for the BIOS
to start GRUB and go straight to a GRUB prompt with no
operating system selections available. This probably means that
the master boot record portion of GRUB was found, but when
GRUB looked on the hard drive to find the next stage of the boot
process and a menu of operating systems to load, it could not find
them. Sometimes this happens when the BIOS detects the disks in
the wrong order and looks for the grub.conf file on the wrong
partition.

One workaround to this problem, assuming that grub.conf is on
the first partition of the first disk, is to list the contents of this file
and enter the root, kernel, and initrd lines manually. To list the
file, enter cat (hd0,0)/grub/grub.conf. If that doesn't work, try
hd0,1 to access the next partition on that disk (and so on) or
hd1,0 to try the first partition of the next disk (and so on). When
you find the lines representing the grub.conf file, manually type
the root, kernel, and initrd lines for the entry that you want
(replacing the location of the hard drive you found on the root
line), and then type boot. The system should start up, and you
can manually fix your boot loader files. See Chapter 9 for more
information on the GRUB boot loader.

If the BIOS finds the boot loader in the master boot record of the disk
and that boot loader finds the GRUB configuration files on the disk,
the boot loader starts a countdown of a few seconds, as determined by
the timeout value in /boot/grub/grub.conf (it's 5 seconds in RHEL 6).
During that countdown, you can interrupt the boot loader (before it
boots the default operating system) by pressing any key.

When you interrupt the boot loader, you should see a menu of
available entries to boot. Those entries can represent different
available kernels to boot. However, they may also represent totally
different operating systems (such as Windows, BSD, or Ubuntu).

Here are some reasons to interrupt the boot process from the boot

menu to troubleshoot Linux:

To start in a different runlevel RHEL 6 systems typically
start in runlevel 3 (boot to text prompt) or 5 (boot to graphical
interface). You can override the default runlevel by highlighting
the kernel line from the boot menu and putting a different
runlevel number at the end. To do this, highlight the operating
system entry you want, type e, highlight the kernel, type e, and
add the new runlevel to the end of the line (for example, add a
space and the number 1 to go into single-user mode). Then press
Enter, and type b to boot the new entry.

Why would you boot to different runlevels for troubleshooting?
Runlevel 1 bypasses authentication, so you boot directly to a root
prompt. This is good if you have forgotten the root password and
need to change it (type passwd to do that). Runlevel 3 bypasses
the start of your desktop interface. Go to runlevel 3 if you are
having problems with your video driver and want to try to debug
it without it trying to start up the graphical interface
automatically.

To select a different kernel When RHEL installs a new kernel,
it always keeps at least one older kernel around. If the new kernel
fails, you can always boot the previous, presumably working,
older kernel. To boot a different kernel from the GRUB menu, just
use the arrow key to highlight the one you want, and press Enter
to boot it.

To select a different operating system If you happen to have
another operating system installed on your hard drive, you can
select to boot that one instead of RHEL. For example, if you have
Fedora and RHEL on the same computer, and RHEL isn't
working, you can boot to Fedora, mount the RHEL filesystems
that you need, and try to fix the problem.

To change boot options On the kernel line, notice that there
are lots of options being passed to the kernel. At the very least,
those options must contain the name of the kernel (such as
vmlinuz-2.6.32.el6.x86_64) and the partition containing the root
filesystem (such as /dev/mapper/abc-root). If you want, you can

add other options to the kernel line.

You may want to add kernel options to add features to the kernel
or temporarily disable hardware support for a particular
component. For example, adding init=/bin/bash causes the
system to bypass the init process and go straight to a shell
(similar to running init 1). In RHEL 7, adding 1 as a kernel
option is not supported, so init=/bin/bash is the best way to get
into a sort of single-user mode. Adding nousb would temporarily
disable the USB ports (presumably to make sure that anything
connected to those ports would be disabled as well).

Assuming that you have selected the kernel you want, the boot loader
tries to run the kernel, including the content of the initial RAM disk
(which contains drivers and other software needed to boot your
particular hardware).

GRUB 2 Boot loader
Techniques for troubleshooting Linux from the GRUB 2 boot prompt
are similar to those in the legacy GRUB boot prompt. Follow these
instructions for interrupting the GRUB boot prompt for the most
recent Fedora, RHEL, and Ubuntu systems:

1. After you turn on your computer and just after you see the BIOS
screen, press any key (such as the up arrow). You should see
several menu items representing different kernels to boot.

2. From the available entries, the default is to boot the latest
available kernel, which should be highlighted and ready to boot.
However, you can choose a different entry if any of the following
applies:

The current kernel is broken, and you want to choose an
older kernel that you know is working.

You want to run an entry that represents a totally different
operating system that is installed on your disk.

You want to run a rescue kernel.

3. Assuming you want to run a Linux kernel, highlight the kernel you

want (using up and down arrows) and type e. You will see
commands that are run to start the system, as shown in Figure
21.1.

FIGURE 21.1 Interrupt the GRUB bootloader to modify the boot
process.

4. To add arguments to the kernel, move your cursor to the end of
the line beginning with "linux" and type the arguments you want.
See https://www.kernel.org/doc/Documentation/admin-
guide/kernel-parameters.txt for a list of kernel parameters. Here
are two examples:

selinux: If there is a problem with SELinux that makes your
system unusable, you can disable it as follows:

selinux=0

smt: Simultaneous Multithreading (smt) allows a single CPU
core to execute multiple threads. To fix some microprocessor
flaws, you need to turn off that feature. You can do that at
boot time by passing the smt=1 or nosmt argument on the
kernel command line.

5. Once you are done adding arguments, press Ctrl-x to boot the
system with the kernel arguments you added.

Starting the kernel
After the kernel starts, there isn't much to do except to watch out for
potential problems. For RHEL, you see a Red Hat Enterprise Linux

https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt

screen with a slow-spinning icon. If you want to watch messages
detailing the boot process scroll by, press the Esc key.

At this point, the kernel tries to load the drivers and modules needed
to use the hardware on the computer. The main things to look for at
this point (although they may scroll by quickly) are hardware failures
that may prevent some feature from working properly. Although much
rarer than it used to be, there may be no driver available for a piece of
hardware, or the wrong driver may get loaded and cause errors.

In addition to scrolling past on the screen, messages produced when
the kernel boots are copied to the kernel ring buffer. As its name
implies, the kernel ring buffer stores kernel messages in a buffer,
throwing out older messages after that buffer is full. After the
computer boots up completely, you can log into the system and enter
the following command to capture these kernel messages in a file
(then view them with the less command):

dmesg > /tmp/kernel_msg.txt

less /tmp/kernel_msg.txt

I like to direct the kernel messages into a file (choose any name you
like) so that the messages can be examined later or sent to someone
who can help debug any problems. The messages appear as
components are detected, such as your CPU, memory, network cards,
hard drives, and so on.

In Linux systems that support systemd, kernel messages are stored in
the systemd journal. So, besides the dmesg command, you can also run
journalctl to see kernel messages from boot time to the present. For
example, here are kernel messages output from a RHEL 7 system:

journalctl -k

-- Logs begin at Sat 2019-11-23 10:36:31 EST,

 end at Sun 2019-12-08 08:09:42 EST. --

Nov 23 10:36:31 rhel81 kernel: Linux version 4.18.0-

147.0.3.el8_1.x86_64

 (mockbuild@x86-vm-09.build.eng.bos.redhat.com)

 (gcc version 8.3.1 20190507 (Red Hat 8.3.1-4)

 (GCC)) #1 SMP Mon Nov 11 12:58:36 UTC 2019

Nov 23 10:36:31 rhel81 kernel: Command line:

 BOOT_IMAGE=(hd0,msdos1)/vmlinuz-4.18.0-

147.0.3.el8_1.x86_64

 root=/dev/mapper/rhel-root ro resume=/dev/mapper/rhel-

swap

 rd.lvm.lv=rhel/root rd.lvm.lv=rhel/swap rhgb quiet

…

Nov 23 10:36:31 rhel81 kernel: Hypervisor detected: KVM

Nov 23 10:36:31 rhel81 kernel: kvm-clock: Using msrs

4b564d01 …

What you want to look for are drivers that fail to load or messages that
show certain features of the hardware failing to be enabled. For
example, I once had a TV tuner card (for watching television on my
computer screen) that set the wrong tuner type for the card that was
detected. Using information about the TV card's model number and
the type of failure, I found that passing an option to the card's driver
allowed me to try different settings until I found the one that matched
my tuner card.

In describing how to view kernel startup messages, I have gotten
ahead of myself a bit. Before you can log in and see the kernel
messages, the kernel needs to finish bringing up the system. As soon
as the kernel is done initially detecting hardware and loading drivers,
it passes off control of everything else that needs to be done to boot the
system to the initialization system.

Troubleshooting the initialization system
The first process to run on a system where the kernel has just started
depends on the initialization facility that system is using. For System V
init, the first process to run is the init process. For systemd, the first
process is systemd. Depending on which you see running on your
system (type ps -ef | head to check), follow either the System V or
systemd descriptions below. RHEL 6, which contains a hybrid of
Upstart and System V init, is used in the example of System V
initialization.

Troubleshooting System V initialization
Up to a few years ago, most Linux systems used System V init to
initialize the services on the Linux system. In RHEL 6, when the
kernel hands off control of the boot process to the init process, the
init process checks the /etc/inittab file for directions on how to boot

the system.

The inittab file tells the init process what the default runlevel is and
then points to files in the /etc/init directory to do things such as
remap some keystrokes (such as Ctrl+Alt+Delete to reboot the
system), start virtual consoles, and identify the location of the script
for initializing basic services on the system: /etc/rc.sysinit.

When you're troubleshooting Linux problems that occur after the init
process takes over, two likely culprits are the processing by the
rc.sysinit file and the runlevel scripts.

Troubleshooting rc.sysinit
As the name implies, the /etc/rc.sysinit script initializes many basic
features on the system. When that file is run by init, rc.sysinit sets
the system's hostname, sets up the /proc and /sys filesystems, sets up
SELinux, sets kernel parameters, and performs dozens of other
actions.

One of the most critical functions of rc.sysinit is to get the storage set
up on the system. In fact, if the boot process fails during processing of
rc.sysinit, in all likelihood the script was unable to find, mount, or
decrypt the local or remote storage devices needed for the system to
run.

The following is a list of some common failures that can occur from
tasks run from the rc.sysinit file and ways of dealing with those
failures.

Local mounts fail: If an entry in the /etc/fstab fails to mount,
the boot process ends before runlevel services start. This typically
happens when you add an entry to the /etc/fstab that has a
mistake in it but you neglected to test it before you rebooted.
When the fstab file fails, you are dropped to a shell for the root
user with the root filesystem mounted read-only. To fix the
problem, you need to remount the root filesystem, correct the
fstab file, mount the filesystem entry to make sure that it now
works, and reboot. Here's what that sequence of commands looks
like:

 # mount -o remount,rw /

 # vim /etc/fstab

 # mount -a

 # reboot

NOTE
The vim command is used particularly when editing the
/etc/fstab file because it knows the format of that file. When
you use vim, the columns are in color and some error checking
is done. For example, entries in the Mount Options field turn
green when they are valid and black when they are not.

Hostname not set If your hostname is not set properly, you can
check through the processing of rc.sysinit to see what might
have gone wrong. To set the system's hostname, rc.sysinit uses
the value of the HOSTNAME= in the /etc/sysconfig/network file. If
that is not set, the name localhost is used instead. The hostname
value can also be acquired from the DHCP server.

Cannot decrypt filesystem The rc.sysinit script looks in the
/etc/crypttab file for information needed to decrypt encrypted
filesystems. If that file becomes corrupted, you may need to find a
backup of the file to be able to decrypt your filesystem. If you are
prompted for a password and you don't know what that is, you
might be out of luck.

Other features are set up by the rc.sysinit file as well. The rc.sysinit
script sets the SELinux mode and loads hardware modules. The script
constructs software RAID arrays and sets up Logical Volume
Management volume groups and volumes. Troubles occurring in any
of these areas are reflected in error messages that appear on the screen
after the kernel boots and before runlevel processes start up.

Troubleshooting runlevel processes
In Red Hat Enterprise Linux 6.x and earlier, when the system first
comes up, services are started based on the default runlevel. There are
seven different runlevels, from 0 to 6. The default runlevel is typically
3 (for a server) or 5 (for a desktop). Here are descriptions of the
runlevels in Linux systems up to RHEL 6:

0: Shutdown runlevel. All processes are stopped, and the
computer is powered down.

1: Single-user runlevel. Only those processes that are needed
to boot the computer (including mounting all filesystems) and
have the system available from the console are run. Networking
and network services are not started. This runlevel bypasses
normal authentication and boots up to a root user prompt (called
sulogin). If you boot up to this mode, you can use it to become
root user immediately in order to change a forgotten root
password. (You could also use the word single instead of 1 to get
to single-user runlevel. The difference between single and 1 is
that single does not start scripts in the /etc/rc1.d directory.)

2: Multiuser runlevel. This runlevel is rarely used today. The
original meaning of this runlevel has been lost. Early UNIX
systems used this runlevel to start tty processes for systems
where there were multiple dumb terminals connected to the
system for people to use. This allowed many people to access a
system simultaneously from character-based terminals (lots of
people working from a shell with no graphical interface). Network
interfaces were not started, usually because always-up network
interfaces were not common. These days, runlevel 2 usually starts
network interfaces, although not all network services are started.

3: Multiuser plus networking runlevel. This runlevel is
typically used on Linux servers that do not boot up to a graphical
interface but rather just a plain text prompt at the console. The
network is started, as are all network services. A graphical desktop
environment may or may not be installed (typically not) on
machines that boot to runlevel 3, but the graphical environments
must be started after boot time to be used.

4: Undefined. This runlevel tends to start the same services as
runlevel 3. It can be used if you want to have different services
available from runlevel 3 and runlevel 4. This runlevel is typically
not used. Instead, runlevel 3 or runlevel 5 is used to boot to, with
an administrator simply turning services on or off as required for
the running system.

5: Multiuser, networking, plus graphical interface
runlevel. This is the runlevel generally used with desktop Linux
systems. It generally starts networking and all networked services;
plus, it launches a graphical login prompt at the console. When
the users log in, they see a graphical desktop environment.

6: Reboot runlevel. This is like runlevel 0 in that it brings down
all services and stops all processes. However, runlevel 6 then
starts the system back up again.

Runlevels are meant to set the level of activity on a Linux system. A
default runlevel is set in the /etc/inittab file, but you can change the
runlevel anytime you like using the init command. For example, as
root, you might type init 0 to shut down, init 3 if you want to kill the
graphical interface (from runlevel 5) but leave all other services up, or
init 6 to reboot.

Normal default runlevels (in other words, the runlevel to which you
boot) are 3 (for a server) and 5 (for a desktop). Often, servers don't
have desktops installed, so they boot to runlevel 3 so that they don't
incur the processing overhead or the added security risks for having a
desktop running on their web servers or file servers.

You can go either up or down with runlevels. For example, an
administrator doing maintenance on a system may boot to runlevel 1
and then type init 3 to boot up to the full services needed on a server.
Someone debugging a desktop may boot to runlevel 5 and then go
down to runlevel 3 to try to fix the desktop (such as installing a new
driver or changing the screen resolution) before typing init 5 to
return to the desktop.

The level of services at each runlevel is determined by the runlevel
scripts that are set to start. There are rc directories for each runlevel:
/etc/rc0.d/, /etc/rc1.d/, /etc/rc2.d/, /etc/rc3.d/, and so on. When
an application has a startup script associated with it, that script is
placed in the /etc/init.d/ directory and then symbolically linked to a
file in each /etc/rc?.d/ directory.

Scripts linked to each /etc/rc?.d directory begin with either the letter
K or S, followed by two numbers and the service name. A script

beginning with K indicates that the service should be stopped, while
one beginning with an S indicates that it should be started. The two
numbers that follow indicate the order in which the service is started.
Here are a few files that you might find in the /etc/rc3.d/ directory,
which are set to start up (with a description of each to the right):

S01sysstat: Start gathering system statistics.

S08iptables: Start iptables firewall.

S10network: Start network interfaces.

S12rsyslog: Start system logging.

S28autofs: Start automounter.

S50bluetooth: Start Bluetooth service.

S55sshd: Start the secure shell service.

S58ntpd: Start NTP time synchronization service.

S85httpd: Start the Apache web service.

S90crond: Start the crond service.

S91smb: Start the Samba service.

S97rhnsd: Start the Red Hat Network service.

S99local: Start user-defined local commands.

This example of a few services started from the /etc/rc3.d directory
should give you a sense of the order in which processes boot up when
you enter runlevel 3. Notice that the sysstat service (which gathers
system statistics) and the iptables service (which creates the system's
firewall) are both started before the networking interfaces are started.
Those are followed by rsyslog (system logging service) and then the
various networked services.

By the time the runlevel scripts start, you should already have a system
that is basically up and running. Unlike some other Linux systems that
start all of the scripts for runlevel 1, then 2, then 3, and so on, RHEL
goes right to the directory that represents the runlevel, first stopping
all services that begin with K and starting all those that begin with S in
that directory.

As each S script runs, you should see a message saying whether the
service started. Here are some things that might go wrong during this
phase of system startup:

A service can fail. A service may require access to network
interfaces to start properly or access to a disk partition that is not
mounted. Most services time out, fail, and allow the next script to
run. After you are able to log in, you can debug the service. Some
techniques for debugging services include adding a debug option
to the daemon process so that it spews more data into a log file or
running the daemon process manually so that error messages
come straight to your screen. See Chapter 15, “Starting and
Stopping Services,” for further information on starting services
manually.

A service can hang. Some services that don't get what they
need to start can hang indefinitely, keeping you from logging in to
debug the problem. Some processes take longer to come up the
first time after a fresh install, so you might want to wait for a few
minutes to see if the script is still working and not just spinning
forever.

If you cannot get past a hanging service, you can reboot into an
interactive startup mode, where you are prompted before starting
each service. To enter interactive startup mode in RHEL, reboot and
interrupt the boot loader (press any key when you see the 5 second
countdown). Highlight the entry you want to boot, and type e.
Highlight the kernel line, and type e. Then add the word confirm to the
end of the kernel line, press Enter, and type b to boot the new kernel.

Figure 21.2 shows an example of the messages that appear when
RHEL boots up in interactive startup mode.

FIGURE 21.2 Confirm each service in RHEL interactive startup
mode.

Most messages shown in Figure 21.2 are generated from rc.sysinit.

After the Welcome message, udev starts (to watch for new hardware
that is attached to the system and load drivers as needed). The
hostname is set, Logical Volume Management (LVM) volumes are
activated, all filesystems are checked (with the added LVM volumes),
any filesystems not yet mounted are mounted, the root filesystem is
remounted read-write, and any LVM swaps are enabled. Refer to
Chapter 12, “Managing Disks and Filesystems,” for further
information on LVM and other partition and filesystem types.

The last “Entering interactive startup” message tells you that
rc.sysinit is finished and the services for the selected runlevel are
ready to start. Because the system is in interactive mode, a message
appears asking if you want to start the first service (sysstat). Type Y to
start that service and go to the next one. After you see the broken
service requesting to start, type N to keep that service from starting. If
at some point you feel that the rest of the services are safe to start, type
C to continue starting the rest of the services. After your system comes
up with the broken services not started, you can go back and try to
debug those individual services.

One last comment about startup scripts: The /etc/rc.local file is one

of the last services to run at each runlevel. In runlevel 5, it is linked to
/etc/rc5.d/S99local. Any command that you want to run every time
your system starts up can be put in the rc.local file.

You might use rc.local to send an email message or run a quick
iptables firewall rule when the system starts. In general, it's better to
use an existing startup script or create a new one yourself (so you can
manage the command or commands as a service). Know that the
rc.local file is a quick and easy way to get some commands to run
each time the system boots.

Troubleshooting systemd initialization
The latest versions of Fedora, RHEL, and Ubuntu use systemd instead
of System V init as their initialization system. Although systemd is
more complex than System V init, systemd also offers more ways to
analyze what is happening during initialization.

Understanding the systemd boot process
When the systemd daemon (/usr/lib/systemd/systemd) is started after
the kernel starts up, it sets in motion all of the other services that are
set to start up. In particular, it keys off of the contents of the
/etc/systemd/system/default.target file, as in this example:

cat /etc/systemd/system/default.target

…

[Unit]

Description=Graphical Interface

Documentation=man:systemd.special(7)

Requires=multi-user.target

Wants=display-manager.service

Conflicts=rescue.service rescue.target

After=multi-user.target rescue.service rescue.target

display-manager.service

AllowIsolate=yes

The default.target file is actually a symbolic link to a file in the
/lib/systemd/system directory. For a server, it may be linked to the
multi-user.target file; for a desktop, it is linked to the
graphical.target file (as is shown here).

Unlike with the System V init facility, which just runs service scripts

in alphanumeric order, the systemd service needs to work backward
from the default.target to determine which services and other targets
are run. In this example, default.target is a symbolic link to the
graphical.target file. When you list the contents of that file, you can
see the following:

The multi-user.target is required to start first.

The display-manager.service is started after that.

By continuing to discover what those two units require, you can find
what else is required. For example, multi-user.target requires the
basic.target (which starts a variety of basic services) and display-
manager.service (which starts up the display manager, gdm) to launch a
graphical login screen.

To see services the multi-user.target starts, list contents of the
/etc/systemd/system/multi-user.target.wants directory, as in this
example:

ls /etc/systemd/system/multi-user.target.wants/

atd.service ksm.service

rhsmcertd.service

auditd.service ksmtuned.service

rpcbind.service

avahi-daemon.service libstoragemgmt.service

rsyslog.service

chronyd.service libvirtd.service

smartd.service

crond.service mcelog.service sshd.service

cups.path mdmonitor.service sssd.service

dnf-makecache.timer ModemManager.service tuned.service

firewalld.service NetworkManager.service vdo.service

irqbalance.service nfs-client.target

vmtoolsd.service

kdump.service remote-fs.target

These files are symbolic links to files that define what starts for each of
those services. On your system, these may include remote shell (sshd),
printing (cups), auditing (auditd), networking (NetworkManager), and
others. Those links were added to that directory either when the
package for a service was installed or when the service was enabled
from a systemctl enable command.

Keep in mind that, unlike System V init, systemd can start, stop, and
otherwise manage unit files that represent more than just services. It
can manage devices, automounts, paths, sockets, and other things.
After systemd has started everything, you can log into the system to
investigate and troubleshoot any potential problems.

After you log in, running the systemctl command lets you see every
unit file that systemd tried to start up. Here is an example:

systemctl

UNIT LOAD ACTIVE SUB

 DESCRIPTION

proc-sys-fs-binfmt_misc.automount loaded active

waiting

 Arbitrary Executable File Formats File System

sys-devices-pc…:00:1b.0-sound-card0.device loaded active

plugged

 631xESB/632xESB High Definition Audio Control

sys-devices-pc…:00:1d.2-usb4-4\x2d2.device loaded active

plugged

 DeskJet 5550

…

-.mount loaded active mounted Root Mount

boot.mount loaded active mounted /boot

…

autofs.service loaded active running

 Automounts filesystems on demand

cups.service loaded active running

 CUPS Scheduler

httpd.service loaded failed failed

 The Apache HTTP Server

From the systemctl output, you can see whether any unit file failed. In
this case, you can see that the httpd.service (your web server) failed
to start. To investigate further, you can run journalctl -u for that
service to see whether any error messages were reported:

journalctl -u httpd.service

…

Dec 08 09:30:36 rhel81-bible systemd[1]: Starting The Apache

HTTP Server…

Dec 08 09:30:36 rhel81-bible httpd[16208]: httpd: Syntax

error

 on line 105 of /etc/httpd/conf/httpd.conf:

 /etc/httpd/conf/httpd.conf:105: <Directory> was not

closed.

Dec 08 09:30:36 rhel81-bible systemd[1]: httpd.service: Main

process exited,

 code=exited, status=1/FAILURE

Dec 08 09:30:36 rhel81-bible systemd[1]: httpd.service:

 Failed with result 'exit-code'.

Dec 08 09:30:36 rhel81-bible systemd[1]:

 Failed to start The Apache HTTP Server.

From the output, you can see that there was a mismatch of the
directives in the httpd.conf file (I failed to close a Directory section).
After that was corrected, I could start the service (systemctl start
httpd). If more unit files appear as failed, you can run the journalctl -
u command again, using those unit filenames as arguments.

Analyzing the systemd boot process
To see exactly what happened during the boot process for a system
using the systemd service, systemd provides the systemd-analyze tool. If
you want to see if there are services that are stalling, or you want to
look for a place to put in your own systemcd service, you can use this
command to analyze the entire startup process. Here are some
examples:

systemd-analyze time

Startup finished in 1.775s (kernel) + 21.860s (initrd)

 + 1min 42.414s (userspace) = 2min 6.051s

graphical.target reached after 1min 42.121s in userspace

The time option lets you see how long each phase of the startup
process took, from the start of the kernel to the end of the default
target. You can use plot to create an SVG graphic of each component
of the startup process (I show eog here to display the output):

systemd-analyze plot > /tmp/systemd-plot.svg

eog /tmp/systemd-plot.svg

Figure 21.3 shows a small snippet of output from the much larger
graphic.

FIGURE 21.3 Snippet from systemd-analyze startup plot

From this snippet, you can see services that start after the
NetworkManager.service starts up. Parts in dark red show the time in
which the service or target takes to start. If the service continues to
run, that is shown in light red. In this example, the httpd.service
failed after trying to start for 4.456 seconds. You can tell this because
the bar to the right is white, showing that the service is not running. At
this point, you could use the journalctl command, as described
earlier, to debug the problem.

The next section describes how to troubleshoot issues that can arise
with your software packages.

Troubleshooting Software Packages
Software packaging facilities (such as yum for RPM and apt-get for
DEB packages) are designed to make it easier for you to manage your
system software. (See Chapter 10, “Getting and Managing Software,”
for the basics on how to manage software packages.) Despite efforts to
make it all work, however, sometimes software packaging can break.

NOTE
The dnf facility has replaced yum in recent Fedora and RHEL
systems. This section often uses the yum command since it will
work on both older and newer Fedora and RHEL systems in most
cases, because yum is aliased to dnf. The dnf command is shown
when it is explicitly required.

The following sections describe some common problems that you can
encounter with RPM packages on a RHEL or Fedora system and how
you can overcome those problems.

Sometimes, when you try to install or upgrade a package using the yum
command, error messages tell you that the dependent packages that
you need to do the installation you want are not available. This can
happen on a small scale (when you try to install one package) or on a
grand scale (where you are trying to update or upgrade your entire
system).

Because of the short release cycles and larger repositories of Fedora
and Ubuntu, inconsistencies in package dependencies are more likely
to occur than they do in more stable, selective repositories (such as
those offered by Red Hat Enterprise Linux). To avoid dependency
failures, here are a few good practices that you can follow:

Use recent, well-tested repositories. There are thousands of
software packages in Fedora. If you use the main Fedora
repositories to install software from the current release, it is rare
to have dependency problems.

When packages are added to the repository, as long as the
repository maintainers run the right commands to set up the
repository (and you don't use outside repositories), everything
you need to install a selected package should be available.
However, when you start using third-party repositories, those
repositories may have dependencies on repositories that they
can't control. For example, if a repository creates a new version

of its own software that requires later versions of basic software
(such as libraries), the versions that they need might not be
available from the Fedora repository.

Consistently update your system. Running dnf update every
night (or yum update on older systems) makes it less likely that
you will encounter major dependency problems than if you
update your system only every few months. In systems with a
GNOME desktop, the Software window lets you check for and
apply updates to installed software packages. On Fedora 22 and
RHEL 8 (and later) systems, you can add AutoUpdates
(https://fedoraproject.org/wiki/AutoUpdates). AutoUpdates
automatically downloads updated packages when they are
available and, if configured, can install them as well. Another
approach is to build a cron job to check for or run nightly updates.
See the sidebar “Using cron for Software Updates” for details on
how to do that.

Occasionally upgrade your system. Fedora and Ubuntu have
new releases every 6 months. Fedora stops supplying updated
packages for each version, 13 months after it is released. So,
although you don't have to upgrade to the new release every 6
months, you should upgrade once a year or face possible
dependency and security problems when Fedora stops supplying
updates.

To get a whole new version of those distributions (such as Fedora
30 to Fedora 31), do the following:

1. Upgrade to the latest software for your current release:

 # dnf upgrade --refresh -y

2. Install the dnf-plugin-system-upgrade plug-in:

 # dnf install dnf-plugin-system-upgrade -y

3. Start upgrading to the new release:

 # dnf system-upgrade download --

releasever=31

https://fedoraproject.org/wiki/AutoUpdates

4. Reboot to the upgrade process:

 # dnf system-upgrade reboot

If you are looking for a stable system, Red Hat Enterprise Linux
is a better bet because it provides updates for each major release
for seven years or more.

NOTE
If you use the apt-get command in Ubuntu to update your
packages, keep in mind that there are different meanings to the
update and upgrade options in Ubuntu with apt-get than with the
dnf or yum command (Fedora and RHEL).

In Ubuntu, apt-get update causes the latest packaging metadata
(package names, version numbers, and so on) to be downloaded to
the local system. Running apt-get upgrade causes the system to
upgrade any installed packages that have new versions available,
based on the latest downloaded metadata.

In contrast, every time that you run a dnf or yum command in
Fedora or RHEL, the latest metadata about new packages for the
current release is downloaded. When you then run yum update, you
get the latest packages available for the current release of Fedora
or RHEL. To go to the next release, you must run dnf system-
upgrade, as described earlier.

If you encounter a dependency problem, here are a few things that you
can do to try to resolve the problem:

Use stable repositories. For recent releases of well-known
distributions (RHEL, Fedora, or Ubuntu, for example),
dependency problems are rare and often fixed quickly. However,
if you are relying on repositories for older releases or
development-oriented repositories (such as Fedora's Rawhide
repository), expect to find more dependency problems.
Reinstalling or upgrading can often fix dependency problems.

Only use third-party apps and repositories when
necessary. The further you are from the core of a Linux
distribution, the more likely you are to have dependency problems
someday. Always look in the main repositories for your
distribution before you look elsewhere for a package or try to
build one yourself.

Even if it works when you first install it, a package someone just
handed to you might not have a way to be upgraded. A package
from a third-party repository may break if the creators don't
provide a new version when dependent packages change.

Solve kernel-related dependencies. If you get third-party
RPM packages for such things as video cards or wireless network
cards that contain kernel drivers and you install a later kernel,
those drivers no longer work. The result might be that the
graphical login screen doesn't start when the system boots or your
network card fails to load, so you have no wireless networking.

Because most Linux systems keep the two most recent kernels,
you can reboot, interrupt GRUB, and select the previous (still
working) kernel from which you can boot. That gets your system
up and running, with the old kernel and working drivers, while
you look for a more permanent fix.

The longer-term solution is to get a new driver that has been
rebuilt for your current kernel. Sites such as rpmfusion.org build
third-party, non-open-source driver packages and upgrade those
drivers when a new kernel is available. With the rpmfusion.org
repository enabled, your system should pick up the new drivers
when the new kernel is added.

As an alternative to sites such as rpmfusion.org, you can go
straight to the website for the manufacturer and try to download
its Linux drivers (Nvidia offers Linux drivers for its video cards),
or if source code is available for the driver, you can try to build it
yourself.

Exclude some packages from update. If you are updating
lots of packages at once, you can exclude the packages that fail to
get the others to work as you pursue the problem with the broken
ones. Here's how to update all packages needing an upgrade,
except for a package named somepackage (replace somepackage
with the name of the package that you want to exclude):

 # yum -y --exclude=somepackage update

http://rpmfusion.org
http://rpmfusion.org
http://rpmfusion.org

Using cron for Software Updates
The cron facility provides a means of running commands at
predetermined times and intervals. You can set the exact minute,
hour, day, or month that a command runs. You can configure a
command to run every five minutes, every third hour, or at a
particular time on Friday afternoon.

If you want to use cron to set up nightly software updates, you can
do that as the root user by running the crontab -e command. That
opens a file using your default editor (vi command by default) that
you can configure as a crontab file. Here's an example of what the
crontab file you create might look like:

 # min hour day/month month day/week command

 59 23 * * * dnf -y

update | mail root@localhost

A crontab file consists of five fields, designating day and time, and
a sixth field, containing the command line to run. I added the
comment line to indicate the fields. Here, the dnf -y update
command is run, with its output mailed to the user root@localhost.
The command is run at 59 minutes after hour 23 (11:59 p.m.). The
asterisks (*) are required as placeholders, instructing cron to run
the command on every day of the month, month, and day of the
week.

When you create a cron entry, make sure that you either direct the
output to a file or pipe the output to a command that can deal with
the output. If you don't, any output is sent to the user that ran the
crontab -e command (in this case, root).

In a crontab file, you can have a range of numbers or a list of
numbers, or you can skip numbers. For example, 1, 5, or 17 in the
first field causes the command to be run 1, 5, and 17 minutes after
the hour. An */3 in the second field causes the command to run
every three hours (midnight, 3 a.m., 6 a.m., and so on). A 1-3 in the

fourth field tells cron to run the command in January, February,
and March. Days of the week and months can be entered as
numbers or words.

For more information on the format of a crontab file, type man 5
crontab. To read about the crontab command, type man 1 crontab.

Fixing RPM databases and cache
Information about all of the RPM packages on your system is stored in
your local RPM database. Although it happens much less often than it
did with earlier releases of Fedora and RHEL, it is possible for the
RPM database to become corrupted. This stops you from installing,
removing, or listing RPM packages.

If you find that your rpm and yum commands are hanging or failing and
returning an rpmdb open fails message, you can try rebuilding the
RPM database. To verify that there is a problem in your RPM
database, you can run the yum check command. Here is an example of
what the output of that command looks like with a corrupted database:

yum check

error: db4 error(11) from dbenv->open: Resource temporarily

unavailable

error: cannot open Packages index using db4 - Resource

temporarily

 unavailable (11)

error cannot open Packages database in /var/lib/rpm

CRITICAL:yum.main:

Error: rpmdb open fails

The RPM database and other information about your installed RPM
packages are stored in the /var/lib/rpm directory. You can remove the
database files that begin with __db* and rebuild them from the
metadata stored in other files in that directory.

Before you start, it's a good idea to back up the /var/lib/rpm directory.
Then you need to remove the old __db* files and rebuild them. Type
the following commands to do that:

cp -r /var/lib/rpm /tmp

cd /var/lib/rpm

rm __db*

rpm --initdb

New __db* files should appear after a few seconds in that directory. Try
a simple rpm or yum command to make sure that the databases are now
in order.

Just as RPM has databases of locally installed packages, the Yum
facility stored information associated with Yum repositories in the
local /var/cache/yum directory. With the introduction of dnf, the cache
directory is now /var/cache/dnf. Cached data includes metadata,
headers, packages, and yum plug-in data.

If there is ever a problem with the data cached by yum, you can clean it
out. The next time that you run a yum command, necessary data is
downloaded again. Here are a couple of reasons for cleaning out your
yum cache:

Metadata is obsolete. The first time that you connect to a Yum
repository (by downloading a package or querying the repository),
metadata is downloaded to your system. The metadata consists of
information on all of the available packages from the repository.

As packages are added and removed from the repository, the
metadata has to be updated or your system will be working from
old packaging information. By default, if you run a dnf command,
dnf checks for new metadata if the old metadata is more than 48
hours old (or by however many minutes metadata_expire= is set
to in the /etc/dnf/dnf.conf file).

If you suspect that the metadata is obsolete but the expire time has
not been reached, you can run dnf clean metadata to remove all
metadata, forcing new metadata to be uploaded with the next upload.
Alternatively, you could run dnf makecache to get metadata from all
repositories up to date.

You are running out of disk space. Normally, yum might
cache as much as a few hundred megabytes of data in
/var/cache/dnf directories. However, depending on the settings in
your /etc/dnf/dnf.conf file (such as keepcache=1, which keeps all

downloaded RPMs even after they are installed), the cache
directories can contain multiple gigabytes of data.

To clean out all packages, metadata, headers, and other data
stored in the /var/cache/dnf directory, type the following:

 # yum clean all

At this point, your system gets up-to-date information from
repositories the next time a yum command is run.

The next section covers information about network troubleshooting.

Troubleshooting Networking
With more and more of the information, images, video, and other
content that we use every day now available outside of our local
computers, a working network connection is required on almost every
computer system. So, if you drop your network connection or can't
reach the systems with which you wish to communicate, it's good to
know that there are many tools in Linux for looking at the problem.

For client computers (laptops, desktops, and handheld devices), you
want to connect to the network to reach other computer systems. On a
server, you want your clients to be able to reach you. The following
sections describe different tools for troubleshooting network
connectivity for Linux client and server systems.

Troubleshooting outgoing connections
Let's say that you open your web browser but are unable to get to any
website. You suspect that you are not connected to the network. Maybe
the problem is with name resolution, but it may be with the
connection outside of your local network.

To check whether your outgoing network connections are working, you
can use many of the commands described in Chapter 14,
“Administering Networking.” You can test connectivity using a simple
ping command. To see if name-to-address resolution is working, use
host and dig.

The following sections cover problems that you can encounter with
network connectivity for outgoing connections and what tools to use to
uncover the problems.

View network interfaces
To see the status of your network interfaces, use the ip command. The
following output shows that the loopback interface (lo) is up (so you
can run network commands on your local system), but eth0 (your first
wired network card) is down (state DOWN). If the interface had been
up, an inet line would show the IP address of the interface. Here, only

the loopback interface has an inet address (127.0.0.1).

ip addr show

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 16436 qdisc noqueue state

UNKNOWN

 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

 inet 127.0.0.1/8 scope host lo

 inet6 ::1/128 scope host

 valid_lft forever preferred_lft forever

2: eth0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 state

DOWN qlen 1000

 link/ether f0:de:f1:28:46:d9 brd ff:ff:ff:ff:ff:ff

By default in RHEL 8 and Fedora, network interfaces are now named
based on how they are connected to the physical hardware. For
example, in RHEL 8, you might see a network interface of enp11s0.
That would indicate that the NIC is a wired Ethernet card (en) on PCI
board 11 (p11) and slot 0 (s0). A wireless card would start with wl
instead of en. The intention is to make the NIC names more
predictable, because when the system is rebooted, it is not guaranteed
which interfaces would be named eth0, eth1, and so on by the
operating system.

Check physical connections
For a wired connection, make sure that your computer is plugged into
the port on your network switch. If you have multiple NICs, make sure
that the cable is plugged into the correct one. If you know the name of
a network interface (eth0, p4p1, or other), to find which NIC is
associated with the interface, enter ethtool -p eth0 at the command
line and look behind your computer to see which NIC is blinking
(Ctrl+C stops the blinking). Plug the cable into the correct port.

If instead of seeing an interface that is down, the ip command shows
no interface at all, check that the hardware isn't disabled. For a wired
NIC, the card may not be fully seated in its slot or the NIC may have
been disabled in the BIOS.

On a wireless connection, you may click the NetworkManager icon and
not see an available wireless interface. Again, it could be disabled in
the BIOS. However, on a laptop, check to see if there is a tiny switch
that disables the NIC. I've seen several people shred their networking

configurations only to find out that this tiny switch on the front or side
of their laptops had been switched to the off position.

Check routes
If your network interface is up but you still can't reach the host you
want to reach, try checking the route to that host. Start by checking
your default route. Then try to reach the local network's gateway
device to the next network. Finally, try to ping a system somewhere on
the Internet:

ip route show

default via 192.168.122.1 dev ens3 proto dhcp metric 100

192.168.122.0/24 dev ens3 proto kernel scope link src

192.168.122.194 metric 100

The default line shows that the default gateway is at address
192.168.122.1 and that the address can be reached over the ens3 card.
Because there is only the ens3 interface here and only a route to the
192.168.122.0 network is shown, all communication not addressed to a
host on the 192.168.122.0/24 network is sent through the default
gateway (192.168.122.1). The default gateway is more properly referred
to as a router.

To make sure that you can reach your router, try to ping it, as in this
example:

ping -c 2 192.168.122.1

PING 192.168.122.1 (192.168.122.1) 56(84) bytes of data.

64 bytes from 192.168.122.1: icmp_seq=1 ttl=64 time=0.757 ms

64 bytes from 192.168.122.1: icmp_seq=2 ttl=64 time=0.538 ms

--- 192.168.122.1 ping statistics ---

2 packets transmitted, 2 received, 0% packet loss, time 65ms

rtt min/avg/max/mdev = 0.538/0.647/0.757/0.112 ms

A “Destination Host Unreachable” message tells you that the router is
either turned off or not physically connected to you (maybe the router
isn't connected to the switch you share). If the ping succeeds and you
can reach the router, the next step is to try an address beyond your
router.

Try to ping a widely accessible IP address. For example, the IP address

for the Google public DNS server is 8.8.8.8. Try to ping that (ping -c2
8.8.8.8). If that ping succeeds, your network is probably fine, and it is
most likely your hostname-to-address resolution that is not working
properly.

If you can reach a remote system but the connection is very slow, you
can use the traceroute command to follow the route to the remote
host. For example, this command shows each hop taken en route to
http://www.google.com:

traceroute www.google.com

The output shows the time taken to make each hop along the way to
the Google site. Instead of traceroute, you can use the mtr command
(yum install mtr) to watch the route taken to a host. With mtr, the
route is queried continuously, so you can watch the performance of
each leg of the journey over time.

Check hostname resolution
If you cannot reach remote hosts by name, but you can reach them by
pinging IP addresses, your system is having a problem with hostname
resolution. Systems connected to the Internet do name-to-address
resolution by communicating to a domain name system (DNS) server
that can provide them with the IP addresses of the requested hosts.

The DNS server your system uses can be entered manually or picked
up automatically from a DHCP server when you start your network
interfaces. In either case, the names and IP addresses of one or more
DNS servers end up in your /etc/resolv.conf file. Here is an example
of that file:

search example.com

nameserver 192.168.0.254

nameserver 192.168.0.253

When you ask to connect to a hostname in Fedora or Red Hat
Enterprise Linux, the /etc/hosts file is searched; then the name server
entries in resolv.conf are queried in the order that they appear. Here
are some ways of debugging name-to-address resolution:

Check if DNS server can be reached. Knowing the name

http://www.google.com

server addresses, you can try to ping each name server's IP
address to see if it is accessible. For example: ping -c 2
192.168.0.254. If the IP address can be reached, it could be that
you were either assigned the wrong address for the DNS server or
it is currently down.

Check if DNS server is working. You specifically try to use
each DNS server with the host or dig command. For example,
either of these two commands can be used to see if the DNS server
at 192.168.0.254 can resolve the hostname www.google.com into an
IP address. Repeat this for each name server's IP address until
you find which ones work:

 # host www.google.com 192.168.0.254

 Using domain server:

 Name: 192.168.0.254

 Address: 192.168.0.254#53

 Aliases:

 www.google.com has address 172.217.13.228

 www.google.com has IPv6 address

2607:f8b0:4004:809::2004

 # dig @192.168.0.254 www.google.com

 …

 ;; QUESTION SECTION:

 ;www.google.com. IN A

 ;; ANSWER SECTION:

 www.google.com. 67 IN A 172.217.13.228

 …

Correct your DNS servers. If you determine that you have the
wrong IP addresses set for your DNS servers, changing them can
be a bit tricky. Search /var/log/messages or the output of
journalctl for your DNS servers’ IP addresses. If
NetworkManager is used to start your networking and connect to
a DHCP server, you should see name server lines with the IP
addresses being assigned. If the addresses are wrong, you can
override them.

With NetworkManager enabled, you can't just add name server
entries to the /etc/resolv.conf file because NetworkManager
overwrites that file with its own name server entries. Instead, add

http://www.google.com

a PEERDNS=no line to the ifcfg file for the network interface (for
example, ifcfg-eth0 in the /etc/sysconfig/network-scripts
directory). Then set DNS1=192.168.0.254 (or whatever is your
DNS server's IP address). The new address is used the next time
you restart your networking.

If you are using the network service, instead of NetworkManager,
you can still use PEERDNS=no to prevent the DHCP server from
overwriting your DNS addresses. However, in that case, you can
edit the resolv.conf file directly to set your DNS server
addresses.

The procedures just described for checking your outgoing network
connectivity apply to any type of system, whether it is a laptop,
desktop, or server. For the most part, incoming connections are not an
issue with laptops or desktops because most requests are simply
denied. However, for servers, the next section describes ways of
making your server accessible if clients are having trouble reaching the
services you provide from that server.

Troubleshooting incoming connections
If you are troubleshooting network interfaces on a server, there are
different considerations than on a desktop system. Because most
Linux systems are configured as servers, you should know how to
troubleshoot problems encountered by those who are trying to reach
your Linux servers.

I'll start with the idea of having an Apache web server (httpd) running
on your Linux system, but no web clients can reach it. The following
sections describe things that you can try to locate the problem.

Check if the client can reach your system at all
To be a public server, your system's hostname should be resolvable so
that any client on the Internet can reach it. That means locking down
your system to a particular, public IP address and registering that
address with a public DNS server. You can use a domain registrar
(such as http://www.networksolutions.com) to do that.

When clients cannot reach your website by name from their web

http://www.networksolutions.com

browsers, if the client is a Linux system, you can go through ping, host,
traceroute, and other commands described in the previous section to
track down the connectivity problem. Windows systems have their
own version of ping that you can use from those systems.

If the name-to-address resolution is working to reach your system and
you can ping your server from the outside, the next thing to try is the
availability of the service.

Check if the service is available to the client
From a Linux client, you can check if the service you are looking for (in
this case httpd) is available from the server. One way to do that is
using the nmap command.

The nmap command is a favorite tool for system administrators
checking for various kinds of information on networks. However, it is
a favorite cracker tool as well because it can scan servers, looking for
potential vulnerabilities. So, it is fine to use nmap to scan your own
systems to check for problems, but know that using nmap on another
system is like checking the doors and windows on someone's house to
see if you can get in. You look like an intruder.

Checking your own system to see what ports to your server are open to
the outside world (essentially, checking what services are running) is
perfectly legitimate and easy to do. After nmap is installed (yum install
nmap), use your system hostname or IP address to use nmap to scan your
system to see what is running on common ports:

nmap 192.168.0.119

Starting Nmap 6.40 (http://nmap.org) at 2019-12-08 13:28

EST

Nmap scan report for spike (192.168.0.119)

Host is up (0.0037s latency).

Not shown: 995 filtered ports

PORT STATE SERVICE

21/tcp open ftp

22/tcp open ssh

80/tcp open http

443/tcp open https

631/tcp open ipp

MAC Address: 00:1B:21:0A:E8:5E (Intel Corporate)

Nmap done: 1 IP address (1 host up) scanned in 4.77 seconds

The preceding output shows that TCP ports are open to the regular
(http) and secure (https) web services. When you see that the state is
open, it indicates that a service is listening on the port as well. If you
get to this point, it means that your network connection is fine, and
you should direct your troubleshooting efforts to how the service itself
is configured (for example, you might look in
/etc/httpd/conf/httpd.conf to see if specific hosts are allowed or
denied access).

If TCP ports 80 and/or 443 are not shown, it means that they are
being filtered. You need to check whether your firewall is blocking (not
accepting packets to) those ports. If the port is not filtered but the
state is closed, it means that the httpd service either isn't running or
isn't listening on those ports. The next step is to log in to the server
and check those issues.

Check the firewall on the server
From your server, you can use the iptables command to list the filter
table rules that are in place. Here is an example:

iptables -vnL

Chain INPUT (policy ACCEPT 0 packets, 0 bytes)

pkts bytes target prot opt in out source destination

…

 0 0 ACCEPT tcp -- * * 0.0.0.0/0 0.0.0.0/0

state NEW tcp dpt:80

 0 0 ACCEPT tcp -- * * 0.0.0.0/0 0.0.0.0/0

state NEW tcp dpt:443

…

For the RHEL 8 and Fedora 30 systems where the firewalld service is
enabled, you can use the Firewall configuration window to open the
ports needed. With the public Zone and Services tab selected, click the
check boxes for http and https to open those ports immediately for all
incoming traffic. If your system is using the basic iptables service,
there should be firewall rules like the two shown in the preceding code
among your other rules. If there aren't any, add those rules to the
/etc/sysconfig/iptables file. Here are examples of what those rules
might look like:

-A INPUT -m state --state NEW -m tcp -p tcp --dport 80 -j

ACCEPT

-A INPUT -m state --state NEW -m tcp -p tcp --dport 443 -j

ACCEPT

With the rules added to the file, clear out all of your firewall rules
(systemctl stop iptables.service or service iptables stop) and
then start them again (systemctl start iptables.service or service
iptables start).

If the firewall is still blocking client access to the web server ports,
here are a few things to check in your firewall:

Check rules order. Look at rules in /etc/sysconfig/iptables
and see if a DROP or REJECT rule comes before the rules opening
ports 80 and/or 443. Moving the rules to open those ports before
any final DROP or REJECT lines can solve the problem.

Look for denied hosts. Check whether any rules drop or reject
packets from particular hosts or networks. Look for rules that
include -s or --source followed by an IP address or address range
and then a -j DROP or ACCEPT. Modify the rule or add a rule prior
to your rules to make an exception for the host you want to allow
to access your service.

If the port is now open but the service itself is closed, check that the
service itself is running and listening on the appropriate interfaces.

Check the service on the server
If there seems to be nothing blocking client access to your server
through the actual ports providing the service that you want to share,
it is time to check the service itself. Assuming that the service is
running (depending on your system, type service httpd status or
systemctl status httpd.service to check), the next thing to check is
that it is listening on the proper ports and network interfaces.

The netstat command is a great general-purpose tool for checking
network services. The following command lists the names and process
IDs (p) for all processes that are listening (l) for TCP (t) and UDP (u)
services, along with the port number (n) on which they are listening.
The command line filters out all lines except those associated with the

httpd process:

netstat -tupln | grep httpd

tcp 0 0 :::80 :::* LISTEN 2567/httpd

tcp 0 0 :::443 :::* LISTEN 2567/httpd

The previous example shows that the httpd process is listening on port
80 and 443 for all interfaces. It is possible that the httpd process might
be listening on selected interfaces. For example, if the httpd process
were only listening on the local interface (127.0.0.1) for HTTP requests
(port 80), the entry would appear as follows:

tcp 0 0 127.0.0.1:80 :::* LISTEN 2567/httpd

For httpd, as well as for other network services that listen for requests
on network interfaces, you can edit the service's main configuration
file (in this case, /etc/httpd/conf/httpd.conf) to tell it to listen on port
80 for all addresses (Listen 80) or a specific address (Listen
192.168.0.100:80).

Troubleshooting Memory
Troubleshooting performance problems on your computer is one of
the most important, although often elusive, tasks you need to
complete. Maybe you have a system that was working fine, but it
begins to slow down to a point where it is practically unusable. Maybe
applications just begin to crash for no apparent reason. Finding and
fixing the problem may take some detective work.

Linux comes with many tools for watching activities on your system
and figuring out what is happening. Using a variety of Linux utilities,
you can do things such as finding out which processes are consuming
large amounts of memory or placing high demands on your
processors, disks, or network bandwidth. Solutions can include the
following:

Adding capacity Your computer may be trying to do what you
ask of it, but failures might occur because you don't have enough
memory, processing power, disk space, or network capacity to get
reasonable performance. Even nearing the boundaries of resource
exhaustion can cause performance problems. Improving your
computer hardware capacity is often the easiest way of solving
performance problems.

Tuning the system Linux comes with default settings that
define how it internally saves data, moves data around, and
protects data. System tunable parameters can be changed if the
default settings don't work well for the types of applications you
have on your system.

Uncovering problem applications or users Sometimes, a
system performs poorly because a user or an application is doing
something wrong. Misconfigured or broken applications can hang
or gobble up all of the resources they can find. An inexperienced
user might mistakenly start multiple instances of a program that
drain system resources. As a system administrator, you want to
know how to find and fix these problems.

To troubleshoot performance problems in Linux, you use some of the

basic tools for watching and manipulating processes running on your
system. Refer to Chapter 6, “Managing Running Processes,” if you
need details on commands such as ps, top, kill, and killall. In the
following sections, I add commands such as memstat to dig a little
deeper into what processes are doing and where things are going
wrong.

The most complex area of troubleshooting in Linux relates to
managing virtual memory. The next sections describe how to view and
manage virtual memory.

Uncovering memory issues
Computers have ways of storing data permanently (hard disks) and
temporarily (random access memory, or RAM, and swap space).
Think of yourself as a CPU, working at a desk trying to get your work
finished. You would put data that you want to keep permanently in a
filing cabinet across the room (that's like hard disk storage). You
would put information that you are currently using on your desk
(that's like RAM memory on a computer).

Swap space is a way of extending RAM. It is really just a place to put
temporary data that doesn't fit in RAM but is expected to be needed by
the CPU at some point. Although swap space is on the hard disk, it is
not a regular Linux filesystem in which data is stored permanently.

Compared to disk storage, random access memory has the following
attributes:

Nearer the processor Like the desk being near to you as you
work, memory is physically near the CPU on the computer's
motherboard. So, any data the CPU needs, it can just grab
immediately if the data is in RAM.

Faster Its proximity to the CPU and the way that it is accessed
(solid state versus mechanical hard disks) makes it much faster
for the CPU to get information from RAM than it can from a hard
disk. It's quicker to look at a piece of paper on your desk (a small,
close space) than to walk to a row of file cabinets and to start
searching for what you want.

Less capacity A new computer might have a 1TB or larger hard
drive but 8GB or 16GB of RAM. Although it would make the
computer run faster to put every file and every piece of data that
the processor may need into RAM, in most cases there just
wouldn't be enough room. Also, both the physical memory slots
on the computer and the computer system itself (64-bit
computers can address more RAM than 32-bit computers) can
limit how much RAM a computer is capable of having.

More expensive Although RAM is tremendously more
affordable than it was a decade or two ago, it is still much more
expensive (per GB) than hard disks.

Temporary RAM holds data and metadata that the CPU is using
now for the work it is doing (plus some content the Linux kernel is
keeping around because it suspects a process will need it before
long). When you turn off the computer, however, everything in
RAM is lost. When the CPU is done with data, that data is
discarded if it is no longer needed, left in RAM for possible later
use, or marked to be written to disk for permanent storage if it
needs to be saved.

It is important to understand the difference between temporary
(RAM) and permanent (hard disk) storage, but that doesn't tell the
whole story. If the demand for memory exceeds the supply of RAM,
the kernel can temporarily move data out of RAM to an area called
swap space.

If we revisit the desk analogy, this would be like saying, “There is no
room left on my desk, yet I have to add more papers to it for the
projects I'm currently working on. Instead of storing papers I'll need
soon in a permanent file cabinet, I'll have one special file cabinet (like
a desk drawer) to hold those papers that I'm still working with but that
I'm not ready to store permanently or throw away.”

Refer to Chapter 12, “Managing Disks and Filesystems,” for more
information on swap files and partitions and how to create them. For
the moment, however, there are a few things that you should know
about these kinds of swap areas and when they are used:

When data is swapped from RAM to a swap area (swapped out),
you get a performance hit. Remember, writing to disk is much
slower than writing to RAM.

When data is returned from swap to RAM because it is needed
again (swapped in), you get another performance hit.

When Linux runs out of space in RAM, swapping is like losing a
high gear on a car. The car might have to run in a lower gear, but
it would not stop altogether. In other words, all your processes
stay active, and they don't lose any data or fail completely, but the
system performance can significantly slow down.

If both RAM and swap are full and no data can be discarded or
written to disk, your system can reach an out-of-memory (OOM)
condition. When that happens, the kernel OOM killer kicks in and
begins killing off processes, one by one, to regain as much
memory as the kernel needs to begin functioning properly again.

The general rule has always been that swapping is bad and should be
avoided. However, some would argue that, in certain cases, more
aggressive swapping can actually improve performance.

Think of the case where you open a document in a text editor and then
minimize it on your desktop for several days as you work on different
tasks. If data from that document were swapped out to disk, more
RAM would be available for more active applications that could put
that space to better use. The performance hit would come the next
time you needed to access the data from the edited document and the
data was swapped in from disk to RAM. The settings that relate to how
aggressively a system swaps are referred to as swappiness.

As much as possible, Linux wants to make everything that an open
application needs immediately available. So, using the desk analogy, if
I am working on nine active projects and there is space on the desk to
hold the information I need for all nine projects, why not leave them
all within reach on the desk? Following that same way of thinking, the
kernel sometimes keeps libraries and other content in RAM that it
thinks you might eventually need—even if a process is not looking for
it immediately.

The fact that the kernel is inclined to store information in RAM that it
expects may be needed soon (even if it is not needed now) can cause
an inexperienced system administrator to think that the system is
almost out of RAM and that processes are about to start failing. That is
why it is important to know the different kinds of information being
held in memory—so that you can tell when real out-of-memory
situations can occur. The problem is not just running out of RAM; it is
running out of RAM when only non-swappable data is left.

Keep this general overview of virtual memory (RAM and swap) in
mind, as the next section describes ways to go about troubleshooting
issues related to virtual memory.

Checking for memory problems
Let's say that you are logged in to a Linux desktop, with lots of
applications running, and everything begins to slow down. To find out
if the performance problems have occurred because you have run out
of memory, you can try commands such as top and ps to begin looking
for memory consumption on your system.

To run the top command to watch for memory consumption, type top
and then type a capital M. Here is an example:

top

top - 22:48:24 up 3:59, 2 users, load average: 1.51,

1.37, 1.15

Tasks: 281 total, 2 running, 279 sleeping, 0 stopped,

0 zombie

Cpu(s): 16.6%us, 3.0%sy, 0.0%ni, 80.3%id, 0.0%wa,

0.0%hi, 0.2%si, 0.0%st

Mem: 3716196k total, 2684924k used, 1031272k free,

146172k buffers

Swap: 4194296k total, 0k used, 4194296k free,

784176k cached

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+

COMMAND

 6679 cnegus 20 0 1665m 937m 32m S 7.0 25.8 1:07.95

firefox

 6794 cnegus 20 0 743m 181m 30m R 64.8 5.0 1:22.82

npviewer.bin

 3327 cnegus 20 0 1145m 116m 66m S 0.0 3.2 0:39.25

soffice.bin

 6939 cnegus 20 0 145m 71m 23m S 0.0 2.0 0:00.97

acroread

 2440 root 20 0 183m 37m 26m S 1.3 1.0 1:04.81

Xorg

 2795 cnegus 20 0 1056m 22m 14m S 0.0 0.6 0:01.55

nautilus

There are two lines (Mem and Swap) and four columns of information
(VIRT, RES, SHR, and %MEM) relating to memory in the top output. In this
example, you can see that RAM is not exhausted from the Mem line
(only 2684924k of 3716196k is used) and that nothing is being
swapped to disk from the Swap line (0k used).

However, adding up just these first six lines of output in the VIRT
column, you would see that 4937MB of memory has been allocated for
those applications, which exceeds the 3629MB of total RAM
(3716196k) that is available. That's because the VIRT column shows
only the amount of memory that has been promised to the application.
The RES line shows the amount of non-swappable memory that is
actually being used, which totals only 1364MB.

Notice that, when you ask to sort by memory usage by typing a capital
M, top knows to sort on that RES column. The SHR column shows
memory that could potentially be shared by other applications (such as
libraries), and %MEM shows the percentage of total memory consumed
by each application.

If you think that the system is reaching an out-of-memory state, here
are a few things to look for:

The free space shown on the Mem line would be at or near zero.

The used space shown on the Swap line would be non-zero and
would continue to grow. That should be accompanied with a
slowdown of system performance.

As the top screen redraws every few seconds, if there is a process
with a memory leak (continuously asking for and using more
memory, but not giving any memory back), the amount of VIRT
memory grows, but more important, the RES memory continues to
grow for that process.

If the Swap space actually runs out, the kernel starts to kill off

processes to deal with this out-of-memory condition.

If you have Cockpit installed and enabled, you can watch memory
usage live from your Web browser. Open Cockpit and then select
System ➪ Memory & Swap. Figure 21.4 shows a system where the
memory is all being consumed by multiple video streams and has
begun swapping.

FIGURE 21.4 Monitor RAM and Swap usage in real time with
Cockpit.

Dealing with memory problems
In the short term, you can do several things to deal with this out-of-
memory condition:

Kill a process If the memory problem is due to one errant
process, you can simply kill that process. Assuming that you are
logged in as root or as the user who owns the runaway process,
type k from the top window, then enter the PID of the process that
you want to kill, and choose 15 or 9 as the signal to send.

Drop page caches If you just want to clear up some memory
right now as you otherwise deal with the problem, you can tell the
system to drop inactive page caches. When you do this, some
memory pages are written to disk; others are just discarded
(because they are stored permanently and can be gotten again

from disk when they are needed).

This action is the equivalent of cleaning your desk and putting all
but the most critical information into the trash or into a file
cabinet. You may need to retrieve information again shortly from
a file cabinet, but you almost surely don't need it all immediately.
Keep top running in one Terminal window to see the Mem line
change as you type the following (as root) into another Terminal
window:

 # echo 3> /proc/sys/vm/drop_caches

Kill an out-of-memory process Sometimes, memory
exhaustion has made the system so unusable that you may not be
able to get a response from a shell or GUI. In those cases, you
might be able to use Alt+SysRq keystrokes to kill an out-of-
memory process. The reason you can use Alt+SysRq keystrokes
on an otherwise unresponsive system is that the kernel processes
Alt+SysRq requests ahead of other requests.

To enable Alt+SysRq keystrokes, the system must have already
set /proc/sys/kernel/sysrq to 1. An easy way to do this is to add
kernel.sysrq = 1 to the /etc/sysctl.conf file. Also, you must
run the Alt+SysRq keystrokes from a text-based interface (such
as the virtual console you see when you press Ctrl+Alt+F2).

With kernel.sysrq set to 1, you can kill the process on your
system with the highest OOM score by pressing Alt+SysRq+f
from a text-based interface. A listing of all processes running on
your system appears on the screen with the name of the process
that was killed listed at the end. You can repeat those keystrokes
until you have killed enough processes to be able to access the
system normally from the shell again.

NOTE
There are many other Alt+SysRq keystrokes that you can use to
deal with an unresponsive system. For example, Alt+SysRq+e
terminates all processes except for the init process. Alt+SysRq+t
dumps a list of all current tasks and information about those tasks
to the console. To reboot the system, press Alt+SysRq+b. See the
sysrq.txt file in the /usr/share/doc/kernel-doc*/Documentation
directory for more information about Alt+SysRq keystrokes.

Troubleshooting in Rescue Mode
If your Linux system becomes unbootable, your best option for fixing
it is probably to go into rescue mode. To go into rescue mode, you
bypass the Linux system installed on your hard disk and boot some
rescue medium (such as a bootable USB key or boot CD). After the
rescue medium boots, it tries to mount any filesystems that it can find
from your Linux system so that you can repair any problems.

For many Linux distributions, the installation CD or DVD can serve as
boot media for going into rescue mode. Here's an example of how to
use a RHEL installation DVD to go into rescue mode to fix a broken
Linux system (burn the image to a USB drive if your computer doesn't
have a DVD drive):

1. Get the installation CD or DVD image that you want to use and
burn it to the appropriate medium (CD or DVD). See Appendix A,
“Media,” for information on burning CDs and DVDs. (For my
example, I used a Red Hat Enterprise Linux 8 installation DVD.)

2. Insert the CD or DVD into the drive on the computer that has the
broken Linux system installed and reboot.

3. The moment you see the BIOS screen, press the function key
noted on that screen for selecting the boot device (possibly the
F12 or F2 function key).

4. Choose the drive (CD or DVD) from the list of bootable devices,
and press Enter.

5. When the RHEL 8 boot menu appears, use the arrow keys to
highlight the word Troubleshooting and press Enter. In other
Linux boot media, the selection could say Rescue Mode or
something similar. On the next screen that appears, select Rescue
a Red Hat Enterprise Linux system and press Enter.

6. After a few moments, the Linux system on the rescue medium
boots up. When prompted, select your language and keyboard.
You are asked if you want to start network interfaces on the
system.

7. If you think that you might need to get something from another
system on your network (such as RPM packages or debugging
tools), select Yes and try to configure your network interfaces. You
are then asked if you want to try to mount filesystems from your
installed Linux system under /mnt/sysimage.

8. Select Continue to have your filesystems mounted (if possible)
under the /mnt/sysimage directory. If this is successful, a Rescue
message appears, telling you that your filesystems have been
mounted under /mnt/sysimage.

9. Select OK to continue. You should see a shell prompt for the root
user (#). You are ready to begin troubleshooting from rescue
mode. After you are in rescue mode, the portion of your filesystem
that is not damaged is mounted under the /mnt/sysimage
directory. Type ls /mnt/sysimage to check that the files and
directories from the hard disk are there.

Right now, the root of the filesystem (/) is from the filesystem that
comes on the rescue medium. To troubleshoot your installed Linux
system, however, you can type the following command:

chroot /mnt/sysimage

Now the /mnt/sysimage directory becomes the root of your filesystem
(/) so that it looks like the filesystem installed on your hard disk. Here
are some things that you can do to repair your system while you are in
rescue mode:

Fix /etc/fstab. If your filesystems couldn't mount because of an
error in your /etc/fstab file, you could try to correct any entries
that might have problems (such as wrong device names or a
mount point directory that doesn't exist). Type mount -a to make
sure that all of the filesystems mount.

Reinstall missing components. It might be that the
filesystems are fine, but the system failed to boot because some
critical command or configuration file is missing. You might be
able to fix the problem by reinstalling the package with the
missing components. For example, if someone had deleted
/bin/mount by mistake, the system would have no command to

mount filesystems. Reinstalling the util-linux package would
replace the missing mount command.

Check the filesystems. If your booting problems stem from
corrupt filesystems, you can try running the fsck command
(filesystem check) to see if there is any corruption on the disk
partition. If there is, fsck attempts to correct problems it
encounters.

When you are finished fixing your system, type exit to exit the chroot
environment, and return to the filesystem layout that the live medium
sees. If you are completely finished, type reboot to restart your system.
Be sure to pop out the medium before the system restarts.

Summary
Troubleshooting problems in Linux can start from the moment you
turn on your computer. Problems can occur with your computer BIOS,
boot loader, or other parts of the boot process that you can correct by
intercepting them at different stages of the boot process.

After the system has started, you can troubleshoot problems with
software packages, network interfaces, or memory exhaustion. Linux
comes with many tools for finding and correcting any part of the Linux
system that might break down and need fixing.

The next chapter covers the topic of Linux security. Using the tools
described in that chapter, you can provide access to those services that
you and your users need while blocking access to system resources
that you want to protect from harm.

Exercises
The exercises in this section enable you to try out useful
troubleshooting techniques in Linux. Because some of the techniques
described here can potentially damage your system, I recommend that
you do not use a production system that you cannot risk damaging.
See Appendix B for suggested solutions.

These exercises relate to troubleshooting topics in Linux. They assume
that you are booting a PC with standard BIOS. To do these exercises,
you need to be able to reboot your computer and interrupt any work it
may be doing.

1. Boot your computer, and as soon as you see the BIOS screen, go
into Setup mode as instructed on the BIOS screen.

2. From the BIOS Setup screen, determine if your computer is 32-bit
or 64-bit, if it includes virtualization support, and if your network
interface card is capable of PXE booting.

3. Reboot, and just after the BIOS screen disappears, when you see
the countdown to booting the Linux system, press any key to get
to the GRUB boot loader.

4. From the GRUB boot loader, add an option to boot up to runlevel
1 so that you can do some system maintenance.

5. After the system boots up, look at the messages that were
produced in the kernel ring buffer that show the activity of the
kernel as it booted up.

6. In Fedora or RHEL, run a trial yum update and exclude any kernel
package that is available.

7. Check to see what processes are listening for incoming
connections on your system.

8. Check to see what ports are open on your external network
interface.

9. Run the top command in a Terminal window. Open a second

Terminal window, clear your page cache, and note on the top
screen if more RES memory is now available.

10. With Cockpit enabled on your system, access Cockpit to view
details on the system's ongoing memory and swap usage.

Part V
Learning Linux Security
Techniques

IN THIS PART
Chapter 22 Understanding Basic Linux Security

Chapter 23 Understanding Advanced Linux Security

Chapter 24 Enhancing Linux Security with SELinux

Chapter 25 Securing Linux on a Network

CHAPTER 22
Understanding Basic Linux Security

IN THIS CHAPTER
Implementing basic security

Monitoring security

Auditing and reviewing security

At its most basic level, securing a Linux system starts with physical
security, data security, user accounts protection, and software security.
Over time, you need to monitor that system to make sure it remains
safe.

Some of the questions that you need to ask yourself include the
following:

Who can get to the system physically?

Are backup copies of data being made in case of disaster?

How well are user accounts secured?

Does the software come from a secure Linux distribution, and are
security patches up to date?

Have you been monitoring the system to make sure that it has not
been cracked or corrupted?

This chapter starts by covering basic Linux security topics. Subsequent
chapters go deeper into advanced security mechanisms.

Implementing Physical Security
A lock on the computer server room door is the first line of defense.
Although a very simple concept, it is often ignored. Access to the
physical server means access to all of the data that it contains. No
security software can fully protect your systems if someone with
malicious intent has physical access to the Linux server.

Basic server room physical security includes items such as these:

A lock or security alarm on the server room door

Access controls that allow only authorized access and that identify
who accessed the room and when the access occurred, such as a
card key entry system

A sign stating “no unauthorized access allowed” on the door

Policies on who can access the room and when that access may
occur for groups such as the cleaning crew, server administrators,
and others

Physical security includes environmental controls. Appropriate fire
suppression systems and proper ventilation for your server room must
be implemented.

Implementing disaster recovery
Disaster recovery plans should include these things:

What data is to be included in backups

Where backups are to be stored

How long backups are maintained

How backup media is rotated through storage

Backup data, media, and software should be included in your Access
Control Matrix checklist.

CAUTION
It is important to determine how many backup copies of each
object should be maintained. While you may need only three
backup copies of one particular object, another object may be
important enough to require maintaining more copies.

Backup utilities on a Linux system include the following:

amanda (Advanced Maryland Automatic Network Disk Archiver)

cpio

dump/restore

tar

rsync

The cpio, dump/restore, and tar utilities are typically pre-installed on a
Linux distribution. A simple, yet effective tool for backing up data over
networks is the rsync utility. With rsync, you can set up a cron job to
keep copies of all data in selected directories or mirror exact copies of
directories on remote machines.

Of the tools just mentioned, only amanda is not typically installed by
default. However, amanda is extremely popular because it comes with a
great deal of flexibility and can even back up a Windows system. If you
need more information on the amanda backup utility, see amanda.org.
Ultimately, the utility you select must meet your organization's
particular security needs for backup.

Securing user accounts
User accounts are part of the authentication process allowing users
into the Linux system. Proper user account management enhances a
system's security. Setting up user accounts was covered in Chapter 11,
“Managing User Accounts.” However, a few additional rules are
necessary to increase security through user account management:

http://amanda.org

One user per user account.

Limit access to the root user account.

Set expiration dates on temporary accounts.

Remove unused user accounts.

One user per user account
Accounts should enforce accountability. Thus, multiple people should
not be logging in to one account. When multiple people share an
account, there is no way to prove a particular individual completed a
particular action.

Limiting access to the root user account
If multiple people can log in to the root account, you have another
repudiation situation. You cannot track individual use of the root
account. To allow tracking of the root account use by individuals, a
policy for using sudo (see Chapter 8, “Learning System
Administration”) instead of logging into root should be instituted.

Instead of giving multiple people root permission on a Linux system,
you can grant root access on a per-command basis with the sudo
command. Using sudo provides the following security benefits:

The root password does not have to be given out.

You can fine-tune command access.

All sudo use (who, what, when) is recorded in /var/log/secure,
including any failed sudo access attempts. Recent Linux systems
store all sudo access in the systemd journal (type journalctl -f to
watch live sudo access attempts, along with other system
messages).

After you grant someone sudo permission, you can try to restrict
root access to certain commands in the /etc/sudoers file (with the
visudo command). However, after you grant root permission to a
user, even in a limited way, it is difficult to be sure that a
determined user can't find ways to gain full root access to your
system and do what they want to it.

One way to keep a misbehaving administrator in check is to have
security messages intended for the /var/log/secure file sent to a
remote log server to which none of the local administrators have
access. In that way, any misuse of root privilege is attached to a
particular user and is logged in a way that the user can't cover their
tracks.

Setting expiration dates on temporary accounts
If you have consultants, interns, or temporary employees who need
access to your Linux systems, it is important to set up their user
accounts with expiration dates. The expiration date is a safeguard, in
case you forget to remove their accounts when they no longer need
access to your organization's systems.

To set a user account with an expiration date, use the usermod
command. The format is usermod -e yyyy-mm-dd user_name. In the
following code, the account tim has been set to expire on January 1,
2021.

usermod -e 2021-01-01 tim

To verify that the account has been properly set to expire, double-
check yourself by using the chage command. The chage command is
primarily used to view and change a user account's password aging
information. However, it also can access account expiration
information. The -l option allows you to list various information to
which chage has access. To keep it simple, pipe the output from the
chage command into grep and search for the word Account. This
produces only the user account's expiration date.

chage -l tim | grep Account

Account expires : Jan

01, 2021

As you can see, the account expiration date was successfully changed
for tim to January 1, 2021.

TIP
If you do not use the /etc/shadow file for storing your account
passwords, the chage utility doesn't work. In most cases, this is not
a problem because the /etc/shadow file is configured to store
password information by default on most Linux systems.

Set account expiration dates for all transitory employees. In addition,
consider reviewing all user account expiration dates as part of your
security monitoring activities. These activities help to eliminate any
potential backdoors to your Linux system.

Removing unused user accounts
Keeping old expired accounts around is asking for trouble. After a user
has left an organization, it is best to perform a series of steps to
remove their account along with data:

1. Find files on the system owned by the account, using the find / -
user username command.

2. Expire or disable the account.

3. Back up the files.

4. Remove the files or reassign them to a new owner.

5. Delete the account from the system.

Problems occur when step 5 is forgotten and expired or disabled
accounts are still on the system. A malicious user gaining access to
your system could renew the account and then masquerade as a
legitimate user.

To find these accounts, search through the /etc/shadow file. The
account's expiration date is in the eighth field of each record. It would
be convenient if a date format were used. Instead, this field shows the
account's expiration date as the number of days since January 1, 1970.

You can use a two-step process to find expired accounts in the

/etc/shadow file automatically. First, set up a shell variable (see
Chapter 7, “Writing Simple Shell Scripts”) with today's date in “days
since January 1, 1970” format. Then, using the gawk command, you can
obtain and format the information needed from the /etc/shadow file.

Setting up a shell variable with the current date converted to the
number of days since January 1, 1970 is not particularly difficult. The
date command can produce the number of seconds since January 1,
1970. To get what you need, divide the result from the date command
by the number of seconds in a day: 86,400. The following
demonstrates how to set up the shell variable TODAY.

TODAY=$(echo $(($(date --utc --date "$1" +%s)/86400)))

echo $TODAY

16373

Next, the accounts and their expiration dates are pulled from the
/etc/shadow file using gawk. The gawk command is the GNU version of
the awk program used in UNIX. The command's output is shown in the
code that follows. As you would expect, many of the accounts do not
have an expiration date. However, two accounts, Consultant and
Intern, show an expiration date in the “days since January 1, 1970”
format. Note that you can skip this step. It is just for demonstration
purposes.

gawk -F: '{print $1,$8}' /etc/shadow

…

chrony

tcpdump

johndoe

Consultant 13819

Intern 13911

The $1 and $8 in the gawk command represent the username and
expiration date fields in the /etc/shadow file records. To check those
accounts’ expiration dates and see if they are expired, a more refined
version of the gawk command is needed.

gawk -F: '{if (($8 > 0) && ($TODAY > $8)) print $1}'

/etc/shadow

Consultant

Intern

Only accounts with an expiration date are collected by the ($8 > 0)
portion of the gawk command. To make sure that these expiration
dates are past the current date, the TODAY variable is compared with the
expiration date field, $8. If TODAY is greater than the account's
expiration date, the account is listed. As you can see in the preceding
example, two expired accounts still exist on the system and need to be
removed.

That is all you need to do. Set up your TODAY variable and execute the
gawk command. All of the expired accounts in the /etc/shadow file are
listed for you. To remove these accounts, use the userdel command.

User accounts are only a portion of the authentication process
allowing users into the Linux system. User account passwords also
play an important role in the process.

Securing passwords
Passwords are the most basic security tool of any modern operating
system and, consequently, the most commonly attacked security
feature. It is natural for users to want to choose a password that is easy
to remember, but often this means that they choose a password that is
also easy to guess.

Brute force methods are commonly employed to gain access to a
computer system. Trying the popular passwords often yields results.
Some of the most common passwords are as follows:

123456

Password

princess

rockyou

abc123

Just use your favorite Internet search engine and look for “common
passwords.” If you can find these lists, then malicious attackers can
too. Obviously, choosing good passwords is critical to having a secure
system.

Choosing good passwords
In general, a password must not be easy to guess, be common or
popular, or be linked to you in any way. Here are some rules to follow
when choosing a password:

Do not use any variation of your login name or your full name.

Do not use a dictionary word.

Do not use proper names of any kind.

Do not use your phone number, address, family, or pet names.

Do not use website names.

Do not use any contiguous line of letters or numbers on the
keyboard (such as “qwerty” or “asdfg”).

Do not use any of the above with added numbers or punctuation
at the front or end or typed backward.

So now that you know what not to do, look at the two primary items
that make a strong password:

1. A password should be at least 15 to 25 characters in length.

2. A password should contain all of the following:

Lowercase letters

Uppercase letters

Numbers

Special characters, such as : ! $ % * () - + =, < > : : ″ '

Twenty-five characters is a long password. However, the longer the
password, the more secure it is. What your organization chooses as the
minimum password length depends on its security needs.

TIP
Gibson Research Center has some excellent material on strong
passwords, including an article called “How big is your haystack…
and how well hidden is your needle?” at grc.com/haystack.htm.

Choosing a good password can be difficult. It has to be hard enough
not to be guessed and easy enough for you to remember. A good way to
choose a strong password is to take the first letter from each word of
an easily remembered sentence. Be sure to add numbers, special
characters, and varied case. The sentence you choose should have
meaning only to you and should not be publicly available. Table 22.1
lists examples of strong passwords and the tricks used to remember
them.

TABLE 22.1 Ideas for Good Passwords

Password How to Remember It
Mrci7yo! My rusty car is 7 years old!
2emBp1ib 2 elephants make BAD pets, 1 is better
ItMc?Gib Is that MY coat? Give it back

The passwords look like nonsense but are actually rather easy to
remember. Of course, be sure not to use the passwords listed here.
Now that they are public, they will be added to malicious attackers’
dictionaries.

Setting and changing passwords
You set your own password using the passwd command. Type the
passwd command and it allows you to change your password. First, it
prompts you to enter your old password. To protect against someone
shoulder surfing and learning your password, the password is not
displayed as you type.

Assuming that you type your old password correctly, the passwd
command prompts you for the new password. When you type your

http://grc.com/haystack.htm

new password, it is checked using a utility called cracklib to
determine whether it is a good or bad password. Non-root users are
required to try a different password if the one they have chosen is not
a good password.

The root user is the only user who is permitted to assign bad
passwords. After the password has been accepted by cracklib, the
passwd command asks you to enter the new password a second time to
make sure that there are no typos (which are hard to detect when you
can't see what you are typing).

When running as root, changing a user's password is possible by
supplying that user's login name as a parameter of the passwd
command, as in this example:

passwd joe

Changing password for user joe.

New UNIX password: ********

Retype new UNIX password: ********

passwd: all authentication tokens updated successfully.

Here, the passwd command prompts you twice to enter a new password
for joe. It does not prompt for his old password in this case.

Enforcing best password practices
Now you know what a good password looks like and how to change a
password, but how do you enforce it on your Linux system? One place
to start is with the PAM facility. With PAM, you can define exact
requirements that passwords must meet. For example, to ensure that
passwords must be 12 characters long, with at least 2 numbers, 3
uppercase letters, and 2 lowercase letters, and are different than the
previous passwords, you can add the following line to either the
/etc/pam.d/common-password or /etc/pam.d/common-auth file:

password requisite pam_cracklib.so minlen=12, dcredit=2,

ucredit=3, lcredit=2, difok=4

The next question is, How can you make people change passwords? It
can become tiresome to come up with new, strong passwords every 30
days! That is why some enforcing techniques are often necessary.

TIP
If users are having a difficult time creating secure and unique
passwords, consider installing the pwgen utility on your Linux
system. This open source password generating utility creates
passwords that are made to be pronounceable and memorable. You
can use these generated words as a starting point for creating
account passwords.

Default values in the /etc/login.defs file for new accounts were
covered in Chapter 11. Within the login.defs file are some settings
affecting password aging and length:

PASS_MAX_DAYS 30

PASS_MIN_DAYS 5PASS_MIN_LEN 16PASS_WARN_AGE 7

In this example, the maximum number of days, PASS_MAX_DAYS, until
the password must be changed is 30. The number that you set here is
dependent upon your particular account setup. For organizations that
practice one person to one account, this number can be much larger
than 30. If you do have shared accounts or multiple people know the
root password, it is imperative that you change the password often.
This practice effectively refreshes the list of those who know the
password.

To keep users from changing their password to a new password and
then immediately changing it right back, you need to set the
PASS_MIN_DAYS to a number larger than 0. In the preceding example,
the soonest a user could change their password again is 5 days.

The PASS_WARN_AGE setting is the number of days a user is warned
before being forced to change their password. People tend to need lots
of warnings and prodding, so the preceding example sets the warning
time to 7 days.

Earlier in the chapter, I mentioned that a strong password is between
15 and 25 characters long. With the PASS_MIN_LEN setting, you can force
users to use a certain minimum number of characters in their

passwords. The setting you choose should be based upon your
organization's security life cycle plans.

NOTE
Ubuntu does not have the PASS_MIN_LEN setting in its login.defs
file. Instead, this setting is handled by the PAM utility. PAM is
covered in Chapter 23, “Understanding Advanced Linux Security.”

For accounts that have already been created, you need to control
password aging via the chage command. The options needed to control
password aging with chage are listed in Table 22.2. Notice that there is
not a password length setting in the chage utility.

TABLE 22.2 chage Options

Option Description
-M Sets the maximum number of days before a password needs

to be changed. Equivalent to PASS_MAX_DAYS in
/etc/login.defs.

-m Sets the minimum number of days before a password can be
changed again. Equivalent to PASS_MIN_DAYS in
/etc/login.defs.

-W Sets the number of days a user is warned before being forced
to change the account password. Equivalent to
PASS_WARN_AGE in /etc/login.defs.

The example that follows uses the chage command to set password
aging parameters for the tim account. All three options are used at
once.

chage -l tim | grep days

Minimum number of days between password change : 0

Maximum number of days between password change :

99999

Number of days of warning before password expires : 7

chage -M 30 -m 5 -W 7 tim

chage -l tim | grep days

Minimum number of days between password change : 5

Maximum number of days between password change : 30

Number of days of warning before password expires : 7

You can also use the chage command as another method of account
expiration, which is based upon the account's password expiring.
Earlier, the usermod utility was used for account expiration. Use the
chage command with the -M and the -I options to lock the account. In
the code that follows, the tim account is viewed using chage -l. Only
the information for tim's password settings are extracted.

chage -l tim | grep Password

Password expires : never

Password inactive : never

You can see that there are no settings for password expiration
(Password expires) or password inactivity (Password inactive). In the
following code, the account is set to be locked 5 days after tim's
password expires by using only the -I option.

chage -I 5 tim

chage -l tim | grep Password

Password expires : never

Password inactive : never

Notice that no settings changed! Without a password expiration set,
the -I option has no effect. Thus, using the -M option, the maximum
number of days is set before the password expires and the setting for
the password inactivity time should take hold.

chage -M 30 -I 5 tim

chage -l tim | grep Password

Password expires : Mar 03, 2017

Password inactive : Mar 08, 2017

Now, tim's account will be locked 5 days after his password expires.
This is helpful in situations where an employee has left the company
but their user account has not yet been removed. Depending upon
your organization's security needs, consider setting all accounts to lock
a certain number of days after passwords have expired.

Understanding the password files and password hashes
Early Linux systems stored their passwords in the /etc/passwd file.
The passwords were hashed. A hashed password is created using a
one-way mathematical process. After you create the hash, you cannot

re-create the original characters from the hash. Here's how it works.

When a user enters the account password, the Linux system rehashes
the password and then compares the hash result to the original hash in
/etc/passwd. If they match, the user is authenticated and allowed into
the system.

The problem with storing these password hashes in the /etc/passwd
file has to do with the filesystem security settings (see Chapter 4,
“Moving Around the Filesystem”). The filesystem security settings for
the /etc/passwd file are listed here:

ls -l /etc/passwd

-rw-r--r--. 1 root root 1644 Feb 2 02:30 /etc/passwd

As you can see, everyone can read the password file. You might think
that this is not a problem because the passwords are all hashed.
However, individuals with malicious intent have created files called
rainbow tables. A rainbow table is simply a dictionary of potential
passwords that have been hashed. For instance, the rainbow table
would contain the hash for the popular password “Password,” which is
as follows:

6dhN5ZMUj$CNghjYIteau5xl8yX.f6PTOpendJwTOcXjlTDQUQZhhy

V8hKzQ6Hxx6Egj8P3VsHJ8Qrkv.VSR5dxcK3QhyMc.

Because of the ease of access to the password hashes in the
/etc/passwd file, it is only a matter of time before a hashed password is
matched in a rainbow table and the plain-text password is uncovered.

NOTE
Security experts will tell you that the passwords are not just hashed
but also salted. Salting a hash means that a randomly generated
value is added to the original password before it is hashed. This
makes it even more difficult for the hashed password to be
matched to its original password. However, in Linux, the hash salt
is also stored with the hashed passwords. Thus, read access to the
/etc/passwd file means that you have the hash value and its salt.

Thus, the hashed passwords were moved to a new configuration file,
/etc/shadow, many years ago. This file has the following security
settings:

ls -l /etc/shadow

----------. 1 root root 1049 Feb 2 09:45 /etc/shadow

Despite having no permissions open, root, but no other user, can view
this file. Thus, the hashed passwords are protected. Here is the tail end
of a /etc/shadow file. You can see that there are long, nonsensical
character strings in each user's record. Those are the hashed
passwords.

tail -2 /etc/shadow

johndoe:6jJjdRN9/qELmb8xWM1LgOYGhEIxc/:15364:0:99999:7:::

Tim:6z760AJ42$QXdhFyndpbVPVM5oVtNHs4B/:15372:5:30:7:16436::

CAUTION
You may inherit a Linux system that still uses the old method of
keeping the hashed passwords in the /etc/passwd file. It is easy to
fix. Just use the pwconv command, and the /etc/shadow file is
created and hashed passwords moved to it.

The following are also stored in the /etc/shadow file, in addition to the
account name and hashed password:

Number of days (since January 1, 1970) since the password was
changed

Number of days before the password can be changed

Number of days before a password must be changed

Number of days to warn a user before a password must be
changed

Number of days after a password expires that an account is
disabled

Number of days (since January 1, 1970) that an account has been
disabled

This should sound familiar, as they are the settings for password aging
covered earlier in the chapter. Remember that the chage command
does not work if you do not have an /etc/shadow file set up or if the
/etc/login.defs file is not available.

Obviously, filesystem security settings are very important for keeping
your Linux system secure. This is especially true with all Linux
systems’ configuration files and others.

Securing the filesystem
Another important part of securing your Linux system is setting
proper filesystem security. The basics for security settings were
covered in Chapter 4 and Access Control Lists (ACLs) in Chapter 11.

However, there are a few additional points that need to be added to
your knowledge base.

Managing dangerous filesystem permissions
If you gave full rwxrwxrwx (777) access to every file on the Linux
system, you can imagine the chaos that would follow. In many ways,
similar chaos can occur by not closely managing the set UID (SUID)
and the set GID (SGID) permissions (see Chapter 4 and Chapter 11).

Files with the SUID permission in the Owner category and execute
permission in the Other category allow anyone to become the file's
owner temporarily while the file is being executed in memory. The
riskiest case is if the file's owner is root.

Similarly, files with the SGID permission in the Group category and
execute permission in the Other category allow anyone temporarily to
become a group member of the file's group while the file is being
executed in memory. SGID can also be set on directories. This sets the
group ID of any files created in the directory to the group ID of the
directory.

Executable files with SUID or SGID are favorites of malicious users.
Thus, it is best to use them sparingly. However, some files do need to
keep these settings. Two examples are the passwd and the sudo
commands that follow. Each of these files should maintain their SUID
permissions.

$ ls -l /usr/bin/passwd

-rwsr-xr-x. 1 root root 28804 Aug 17 20:50 /usr/bin/passwd

$ ls -l /usr/bin/sudo

---s--x--x. 2 root root 77364 Nov 3 08:10 /usr/bin/sudo

Commands such as passwd and sudo are designed to be used as SUID
programs. Even though those commands run as root user, as a regular
user you can only change your own password with passwd and can only
escalate to root permission with sudo if you were given permission in
the /etc/sudoers file. A more dangerous situation would be if a hacker
created a SUID bash command; anyone running that command could
effectively change everything on the system that had root access.

Using the find command, you can search your system to see if there

are any hidden or otherwise inappropriate SUID and SGID commands
on your system. Here is an example:

find / -perm /6000 -ls

4597316 52 -rwxr-sr-x 1 root games 51952 Dec 21 2013

/usr/bin/atc

4589119 20 -rwxr-sr-x 1 root tty 19552 Nov 18 2013

/usr/bin/write

4587931 60 -rwsr-xr-x 1 root root 57888 Aug 2 2013

/usr/bin/at

4588045 60 -rwsr-xr-x 1 root root 57536 Sep 25 2013

/usr/bin/crontab

4588961 32 -rwsr-xr-x 1 root root 32024 Nov 18 2013

/usr/bin/su

…

5767487 85 -rwsrwsr-x 1 root root 68928 Sep 13 11:52

/var/.bin/myvi

…

Notice that find uncovers SUID and SGID commands that regular users
can run to escalate their permission for particular reasons. In this
example, there is also a file that a user tried to hide (myvi). This is a
copy of the vi command that, because of permission and ownership,
can change files owned by root. This is obviously a user doing
something that they should not be doing.

Securing the password files
The /etc/passwd file is the file the Linux system uses to check user
account information and was covered earlier in the chapter. The
/etc/passwd file should have the following permission settings:

Owner: root

Group: root

Permissions: (644) Owner: rw- Group: r-- Other: r--

The example that follows shows that the /etc/passwd file has the
appropriate settings:

ls -l /etc/passwd

-rw-r--r--. 1 root root 1644 Feb 2 02:30 /etc/passwd

These settings are needed so that users can log in to the system and

see usernames associated with user ID and group ID numbers.
However, users should not be able to modify the /etc/passwd directly.
For example, a malicious user could add a new account to the file if
write access were granted to Other.

The next file is the /etc/shadow file. Of course, it is closely related to
the /etc/passwd file because it is also used during the login
authentication process. This /etc/shadow file should have the following
permissions settings:

Owner: root

Group: root

Permissions: (000) Owner: --- Group: --- Other: ---

The code that follows shows that the /etc/shadow file has the
appropriate settings.

ls -l /etc/shadow

----------. 1 root root 1049 Feb 2 09:45 /etc/shadow

The /etc/passwd file has read access for the owner, group, and other.
Notice how much more the /etc/shadow file is restricted than the
/etc/passwd file. For the /etc/shadow file, there is no access permission
on, although the root user can still access the file. So, if only root can
view this file, how can users change their passwords, which are stored
in /etc/shadow? The passwd utility, /usr/bin/passwd, uses the special
permission SUID. This permission setting is shown here:

ls -l /usr/bin/passwd

-rwsr-xr-x. 1 root root 28804 Aug 17 20:50 /usr/bin/passwd

Thus, the user running the passwd command temporarily becomes root
while the command is executing in memory and can then write to the
/etc/shadow file, but only to change the user's own password-related
information.

NOTE
The root user does not have write access to the /etc/shadow
permissions, so how does root write to the /etc/shadow file? The
root user is all-powerful and has complete access to all files,
whether the permissions are listed or not.

The /etc/group file (see Chapter 11) contains all of the groups on the
Linux system. Its file permissions should be set exactly as the
/etc/passwd file:

Owner: root

Group: root

Permissions: (644) Owner: rw- Group: r-- Other: r--

Also, the group password file, /etc/gshadow, needs to be properly
secured. As you would expect, the file permission should be set exactly
as the /etc/shadow file:

Owner: root

Group: root

Permissions: (000) Owner: --- Group: --- Other: ---

Locking down the filesystem
The filesystem table (see Chapter 12, “Managing Disks and
Filesystems”), /etc/fstab, needs some special attention too. The
/etc/fstab file is used at boot time to mount storage devices on
filesystems. It is also used by the mount command, the dump command,
and the fsck command. The /etc/fstab file should have the following
permission settings:

Owner: root

Group: root

Permissions: (644) Owner: rw- Group: r-- Other: r--

Within the filesystem table, there are some important security settings
that need to be reviewed. Besides your root, boot, and swap partitions,
filesystem options are fairly secure by default. However, you may want
to also consider the following:

Typically, you put the /home subdirectory, where user directories
are located, on its own partition. When you add mount options to
mount that directory in /etc/fstab, you can set the nosuid option
to prevent SUID and SGID permission-enabled executable programs
from running from there. Programs that need SUID and SGID
permissions should not be stored in /home and are most likely
malicious. You can set the nodev option so that no device file
located there will be recognized. Device files should be stored in
/dev and not in /home. You can set the noexec option so that no
executable programs, which are stored in /home, can be run.

You can put the /tmp subdirectory, where temporary files are
located, on its own partition and use the same options settings as
for /home:

nosuid

nodev

noexec

You can put the /usr subdirectory, where user programs and data
are located, on its own partition and set the nodev option so that
no device file located there is recognized. After software is
installed, the /usr directory often has little or no change
(sometimes, it is even mounted read-only for security reasons).

If the system is configured as a server, you probably want to put
the /var directory on its own partition. The /var directory is
meant to grow, as log messages and content for web, FTP, and
other servers are added. You can use the same mount options with
the /var partition as you do for /home:

nosuid

nodev

noexec

Putting the preceding mount options into your /etc/fstab would look
similar to the following:

/dev/sdb1 /home ext4 defaults,nodev,noexec,nosuid

1 2

/dev/sdc1 /tmp ext4 defaults,nodev,noexec,nosuid

1 1

/dev/sdb2 /usr ext4 defaults,nodev

1 2

/dev/sdb3 /var ext4 defaults,nodev,noexec,nosuid

1 2

These mount options will help to lock down your filesystem further and
add another layer of protection from those with malicious intent.
Again, managing the various file permissions and fstab options should
be part of your security policy. The items you choose to implement
must be determined by your organization's security needs.

Managing software and services
Often, the administrator's focus is on making sure that the needed
software and services are on a Linux system. From a security
standpoint, you need to take the opposite viewpoint and make sure
that the unneeded software and services are not on a Linux system.

Updating software packages
In addition to removing unnecessary services and software, keeping
current software up to date is critical for security. The latest bug fixes
and security patches are obtained via software updates. Software
package updates were covered in Chapter 9, “Installing Linux,” and
Chapter 10, “Getting and Managing Software.”

Software updates need to be done on a regular basis. How often and
when you do it, of course, depends upon your organization's security
needs.

You can easily automate software updates, but like removing services
and software, it would be wise to test the updates in a test
environment first. When updated software shows no problems, you
can then update the software on your production Linux systems.

Keeping up with security advisories
As security flaws are found in Linux software, the Common
Vulnerabilities and Exposures (CVE) project tracks them and helps to
quickly get fixes for those flaws worked on by the Linux community.

Companies such as Red Hat provide updated packages to fix the
security flaws and deliver them in what is referred to as errata. Errata
may consist of a single updated package or multiple updated packages.
If you are running Red Hat Enterprise Linux, you search for, identify,
and install the RPM (RPM Package Manager) packages associated
with a particular CVE and delivered in errata.

As new forms of software packaging become available, make sure that
the software in those packages is being checked for vulnerabilities. For
example, the Red Hat Container Catalog
(https://access.redhat.com/containers) lists Red Hat–supported
container images along with associated errata and health indexes for
each image.

For more information on how security updates are handled in Red Hat
Enterprise Linux, refer to the Security Updates page on the Red Hat
customer portal (https://access.redhat.com/security/updates/). The
site contains a wealth of knowledge related to security vulnerabilities
and how they are being handled. Being able to get timely security
updates is one of the primary reasons companies subscribe critical
systems to Red Hat Enterprise Linux.

Advanced implementation
You should be aware of several other important security topics as you
are planning your deployments. They include cryptography, Pluggable
Authentication Modules (PAM), and SELinux. These advanced and
detailed topics have been put into separate chapters—Chapter 23 and
Chapter 24.

https://access.redhat.com/containers
https://access.redhat.com/security/updates/

Monitoring Your Systems
If you do a good job of planning and implementing your system's
security, most malicious attacks will be stopped. However, if an attack
should occur, you need to be able to recognize it. Monitoring is an
activity that needs to be going on continuously.

Monitoring your system includes watching over log files, user
accounts, and the filesystem itself. In addition, you need some tools to
help you detect intrusions and other types of malware.

Monitoring log files
Understanding how message logging is done is critical to maintaining
and troubleshooting a Linux system. Before the systemd facility was
used to gather messages in what is referred to as the systemd journal,
messages generated by the kernel and system services were directed to
file in the /var/log directory. While that is still true to a great extent
with systemd, you can now also view log messages directly from the
systemd journal using the journalctl command.

The log files for your Linux system are primarily located in the
/var/log directory. Most of the files in the /var/log directory are
directed there from the systemd journal through the rsyslogd service
(see Chapter 13, “Understanding Server Administration”). Table 22.3
contains a list of /var/log files and a brief description of each.

TABLE 22.3 Log Files in the /var/log Directory

System
Log
Name

Filename Description

Apache
Access
Log

/var/log/httpd/access_log Logs requests for information
from your Apache web server.

Apache
Error Log

/var/log/httpd/error_log Logs errors encountered from
clients trying to access data on
your Apache web server.

Bad
Logins
Log

btmp Logs bad login attempts.

Boot Log boot.log Contains messages indicating
which system services have
started and shut down
successfully and which (if any)
have failed to start or stop.
The most recent bootup
messages are listed near the
end of the file.

Kernel
Log

dmesg Records messages printed by
the kernel when the system
boots.

Cron Log cron Contains status messages from
the crond daemon.

dpkg Log dpkg.log Contains information
concerning installed Debian
packages.

FTP Log vsftpd.log Contains messages relating to
transfers made using the
vsftpd daemon (FTP server).

FTP
Transfer
Log

xferlog Contains information about
files transferred using the FTP
service.

GNOME
Display
Manager
Log

/var/log/gdm/:0.log Holds messages related to the
login screen (GNOME display
manager). Yes, there really is a
colon in the filename.

LastLog lastlog Records the last time an
account logs in to the system.

Login/out
Log

wtmp Contains a history of logins
and logouts on the system.

Mail Log maillog Contains information about
addresses to which and from
which email was sent. Useful
for detecting spamming.

MySQL
Server
Log

mysqld.log Includes information related
to activities of the MySQL
database server (mysqld).

News Log spooler Provides a directory
containing logs of messages
from the Usenet News server
if you are running one.

Samba
Log

/var/log/samba/smbd.log
/var/log/samba/nmbd.log

Shows messages from the
Samba SMB file service
daemon.

Security
Log

secure Records the date, time, and
duration of login attempts and
sessions.

Sendmail
Log

sendmail Shows error messages
recorded by the sendmail
daemon.

Squid Log /var/log/squid/access.log Contains messages related to
the squid proxy/caching
server.

System
Log

messages Provides a general-purpose
log file where many programs
record messages.

UUCP
Log

uucp Shows status messages from
the UNIX to UNIX Copy
Protocol daemon.

YUM Log yum.log Shows messages related to
RPM software packages.

X.Org X11
Log

Xorg.0.log Includes messages output by
the X.Org X server.

The log files that are in your system's /var/log directory depend upon
what services you are running. Also, some log files are distribution
dependent. For example, if you use Fedora, you would not have the
dpkg log file.

Most of the log files are displayed using the commands cat, head, tail,
more, or less. However, a few of them have special commands for
viewing (see Table 22.4).

TABLE 22.4 Viewing Log Files That Need Special Commands

Filename View Command
btmp dump-utmp btmp

dmesg dmesg

lastlog lastlog

wtmp dump-utmp wtmp

With the change in Fedora, RHEL, Ubuntu, and other Linux
distributions to systemd (which manages the boot process and
services), as noted earlier, the mechanism for gathering and displaying
log messages associated with the kernel and system services has
changed as well. Those messages are directed to the systemd journal
and can be displayed with the journalctl command.

You can view journal messages directly from the systemd journal
instead of simply listing the contents of /var/log files. In fact, the
/var/log/messages file, to which many services direct log messages by
default, does not even exist in the latest Fedora release. Instead, you
can use the journalctl command to display log messages in various
ways.

To page through kernel messages, type the following command:

journalctl -k

Logs begin at Sun 2019-06-09 18:59:23 EDT, end at

 Sun 2019-10-20 18:11:06 EDT.

Oct 19 11:43:04 localhost.localdomain kernel:

 Linux version 5.0.9-301.fc30.x86_64

 (mockbuild@bkernel04.phx2.fedoraproject.org)

 (gcc version 9.0.1 20190312 (Red Hat 9.0.1-0.10) (GCC))

 #1 SMP Tue Apr 23 23:57:35 UTC 2019

Oct 19 11:43:04 localhost.localdomain kernel: Command line:

 BOOT_IMAGE=(hd0,msdos1)/vmlinuz-5.0.9-

301.fc30.x86_64

 root=/dev/mapper/fedora_localhost--live-root ro

 resume=/dev/mapper/fedora_localhost--live-swap

 rd.lvm.lv=fedora_localhost-live/root

 rd.lvm.lv=fedora_localhost-live/swap rhgb quiet

…

To view messages associated with a particular service, use the -u
option followed by the service name to see log messages for any
service, as in this example:

journalctl -u NetworkManager.service

journalctl -u httpd.service

journalctl -u avahi-daemon.service

If you think that a security breach is in progress, you can watch all or
selected messages as they come in by following messages. For
example, to follow kernel messages or httpd messages as they come in,
add the -f option (press Ctrl+C when you are finished):

journalctl -k -f

journalctl -f -u NetworkManager.service

To check just boot messages, you can list the boot IDs for all system
boots and then boot the particular boot instance that interests you.
The following examples display boot IDs and then shows boot
messages for a selected boot ID:

journalctl --list-boots

-3 6b968e820df345a781cb6935d483374c

 Sun 2019-08-25 12:42:08 EDT—Mon 2019-08-26 14:30:53 EDT

-2 f2c5a74fbe9b4cb1ae1c06ac1c24e89b

 Mon 2019-09-02 15:49:03 EDT—Thu 2019-09-12 13:08:26 EDT

-1 5d26bee1cfb7481a9e4da3dd7f8a80a0

 Sun 2019-10-13 12:30:27 EDT—Thu 2019-10-17 13:37:22 EDT

 0 c848e7442932488d91a3a467e8d92fcf

 Sat 2019-10-19 11:43:04 EDT—Sun 2019-10-20 18:11:06 EDT

journalctl -b c848e7442932488d91a3a467e8d92fcf

-- Logs begin at Sun 2019-06-09 18:59:23 EDT,

 end at Sun 2019-10-20 18:21:18 EDT. --

Oct 19 11:43:04 localhost.localdomain kernel: Linux version

5.0.9-301.fc30.x86_64

(mockbuild@bkernel04.phx2.fedoraproject.org) …

Oct 19 11:43:04 localhost.localdomain kernel: Command line:

 BOOT_IMAGE=(hd0,msdos1)/vmlinuz-5.0.9-301.fc30.x86_64

 root=/dev/mapper/fedora_local>

…

Oct 19 11:43:04 localhost.localdomain kernel:

 DMI: Red Hat KVM, BIOS 1.9.1-5.el7_3.3 04/01/2014

Oct 19 11:43:04 localhost.localdomain kernel: Hypervisor

detected: KVM

Monitoring user accounts
User accounts are often used in malicious attacks on a system by
gaining unauthorized access to a current account, by creating new
bogus accounts, or by leaving an account behind to access later. To
avoid such security issues, watching over user accounts is an
important activity.

Detecting counterfeit new accounts and privileges
Accounts created without going through the appropriate authorization
should be considered counterfeit. Also, modifying an account in any
way that gives it a different unauthorized user identification (UID)
number or adds unauthorized group memberships is a form of rights
escalation. Keeping an eye on the /etc/passwd and /etc/group files will
monitor these potential breaches.

To help you monitor the /etc/passwd and /etc/group files, you can use
the audit daemon. The audit daemon is an extremely powerful
auditing tool that allows you to select system events to track and
record them, and it provides reporting capabilities.

To begin auditing the /etc/passwd and /etc/group files, you need to
use the auditctl command. Two options at a minimum are required to
start this process:

-w filename: Place a watch on filename. The audit daemon tracks
the file by its inode number. An inode number is a data structure
that contains information concerning a file, including its location.

-p trigger(s—): If one of these access types occurs (r=read,
w=write, x=execute, a=attribute change) to filename, then trigger
an audit record.

In the following example, a watch has been placed on the /etc/passwd

file using the auditctl command. The audit daemon will monitor
access, which consists of any reads, writes, or file attribute changes:

auditctl -w /etc/passwd -p rwa

After you have started a file audit, you may want to turn it off at some
point. To turn off an audit, use the command

auditctl -W filename -p trigger(s)

To see a list of current audited files and their watch settings, type
auditctl -l at the command line.

To review the audit logs, use the audit daemon's ausearch command.
The only option needed here is the -f option, which specifies which
records you want to view from the audit log. The following is an
example of the /etc/passwd audit information:

ausearch -f /etc/passwd

time->Fri Feb 7 04:27:01 2020

type=PATH msg=audit(1328261221.365:572):

item=0 name="/etc/passwd" inode=170549

dev=fd:01 mode=0100644 ouid=0 ogid=0

rdev=00:00 obj=system_u:object_r:etc_t:s0

type=CWD msg=audit(1328261221.365:572): cwd="/"

…

time->Fri Feb 7 04:27:14 2020

type=PATH msg=audit(1328261234.558:574):

item=0 name="/etc/passwd" inode=170549

dev=fd:01 mode=0100644 ouid=0 ogid=0

rdev=00:00 obj=system_u:object_r:etc_t:s0

type=CWD msg=audit(1328261234.558:574):

cwd="/home/johndoe"

type=SYSCALL msg=audit(1328261234.558:574):

arch=40000003 syscall=5 success=yes exit=3

a0=3b22d9 a1=80000 a2=1b6 a3=0 items=1 ppid=3891

pid=21696 auid=1000 uid=1000 gid=1000 euid=1000

suid=1000 fsuid=1000 egid=1000 sgid=1000 fsgid=1000

tty=pts1 ses=2 comm="vi" exe="/bin/vi"

 subj=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023"

This is a lot of information to review. A few items will help you see
what audit event happened to trigger the bottom record:

time: The time stamp of the activity

name: The filename, /etc/passwd, being watched

inode: The /etc/passwd's inode number on this filesystem

uid: The user ID, 1000, of the user running the program

exe: The program, /bin/vi, used on the /etc/passwd file

To determine what user account is assigned the UID of 1000, look at
the /etc/passwrd file. In this case, the UID of 1000 belongs to the user
johndoe. Thus, from the audit event record displayed above, you can
determine that account johndoe has attempted to use the vi editor on
the /etc/passwd file. It is doubtful that this was an innocent action,
and it requires more investigation.

NOTE
The ausearch command returns nothing if no watch events on a file
have been triggered.

The audit daemon and its associated tools are extremely rich. To learn
more about it, look at the man pages for the following audit daemon
utilities and configuration files:

auditd: The audit daemon

auditd.conf: The audit daemon configuration file

autditctl: Controls the auditing system

audit.rule: Configuration rules loaded at boot

ausearch: Searches the audit logs for specified items

aureport: Report creator for the audit logs

audispd: Sends audit information to other programs

The audit daemon is one way to keep an eye on important files. You
should also review your account and group files on a regular basis with
a “human eye” to see if anything looks irregular.

Important files, such as /etc/passwd, do need to be monitored for
unauthorized account creation. However, just as bad as a new
unauthorized user account is an authorized user account with a bad
password.

Detecting bad account passwords
Even with all your good efforts, bad passwords will slip in. Therefore,
you do need to monitor user account passwords to ensure they that are
strong enough to withstand an attack.

One password strength monitoring tool that you can use is the same
one malicious users use to crack accounts, John the Ripper. John the
Ripper is a free, open source tool that you can use at the Linux

command line. It's not installed by default. For a Fedora distribution,
you need to issue the command yum install john to install it.

TIP
To install John the Ripper on Ubuntu, use the command sudo apt-
get install john.

In order to use John the Ripper to test user passwords, you must first
extract account names and passwords using the unshadow command.
This information needs to be redirected into a file for use by john, as
shown here:

unshadow /etc/passwd /etc/shadow > password.file

Now edit the password.file using your favorite text editor to remove
any accounts without passwords. Because it is wise to limit John the
Ripper to testing a few accounts at a time, remove any account names
that you do not wish to test presently.

CAUTION
The john utility is extremely CPU-intensive. It does set its nice
value to 19 in order to lower its priority. However, it would be wise
to run it on a non-production system or during off-peak hours and
for only a few accounts at a time.

Now use the john command to attempt password cracks. To run john
against the created password file, issue the command john filename. In
the following code snippet, you can see the output from running john
against the sample password.file. For demonstration purposes, only
one account was left in the sample file. Further, the account, Samantha,
was given the bad password of password. You can see how little time it
took for John the Ripper to crack the password.

john password.file

Loaded 1 password hash (generic crypt(3) [?/32])

password (Samantha)

guesses: 1 time: 0:00:00:44 100% (2) c/s: 20.87

 trying: 12345 - missy

Use the "--show" option to display all of the

 cracked passwords reliably

To demonstrate how strong passwords are vital, consider what
happens when the Samantha account's password is changed from
password to Password1234. Even though Password1234 is still a weak
password, it takes longer than 7 days of CPU time to crack it. In the
code that follows, john was finally aborted to end the cracking attempt.

passwd Samantha

Changing password for user Samantha.

…

john password.file

Loaded 1 password hash (generic crypt(3) [?/32])

…

time: 0:07:21:55 (3) c/s: 119 trying: tth675 - tth787

Session aborted

As soon as passwords cracking attempts have been completed, the
password.file should be removed from the system. To learn more

about John the Ripper, visit www.openwall.com/john.

Monitoring the filesystem
Malicious programs often modify files. They also can try to cover their
tracks by posing as ordinary files and programs. However, there are
ways to uncover them through the various monitoring tactics covered
in the following sections.

Verifying software packages
Typically, if you install a software package from a standard repository
or download a reputable site's package, you won't have any problems.
But it is always good to double-check your installed software packages
to see if they have been compromised. The command to accomplish
this is rpm -V package_name.

When you verify the software, information from the installed package
files is compared against the package metadata (see Chapter 10,
“Getting and Managing Software”) in the rpm database. If no problems
are found, the rpm -V command returns nothing. However, if there are
discrepancies, you get a coded listing. Table 22.5 shows the codes used
and a description of the discrepancy.

TABLE 22.5 Package Verification Discrepancies

Code Discrepancy
S File size
M File permissions and type
5 MD5 check sum
D Device file's major and minor numbers
L Symbolic links
U User ownership
G Group ownership
T File modified times (mtime)
P Other installed packages this package is dependent upon (aka

capabilities)

http://www.openwall.com/john

In the partial list that follows, all of the installed packages are given a
verification check. You can see that the codes 5, S, and T were returned,
indicating some potential problems.

rpm -qaV

5S.T..... c /etc/hba.conf

...

...T..... /lib/modules/3.2.1-3.fc16.i686/modules.devname

...T..... /lib/modules/3.2.1-3.fc16.i686/modules.softdep

You do not have to verify all of your packages at once. You can verify
just one package at a time. For example, if you want to verify your nmap
package, you simply enter rpm -V nmap.

NOTE
To verify packages on Ubuntu, you need the debsums utility. It is
not installed by default. To install debsums, use the command sudo
apt-get install debsums. To check all installed packages, use the
debsums -a command. To check one package, type debsums
packagename.

Scanning the filesystem
Unless you have recently updated your system, binary files should not
have been modified for any reason. Commands such as find and rpm -
V can help you determine if a binary file has been tampered with.

To check for binary file modification, find can use the file's modify
time, or mtime. The file mtime is the time when the contents of a file
were last modified. Also, find can monitor the file's create/change
time, or ctime.

If you suspect malicious activity, you can quickly scan your filesystem
to see if any binaries were modified or changed today (or yesterday,
depending upon when you think the intrusion took place). To do this
scan, use the find command.

In the example that follows, a scan is made of the /sbin directory. To
see if any binary files were modified less than 24 hours ago, the
command find /sbin -mtime -1 is used. In the example, several files
are displayed, showing that they were modified recently. This indicates
that malicious activity is taking place on the system. To investigate
further, review each individual file's times, using the stat filename
command, as shown here:

find /sbin -mtime -1

/sbin

/sbin/init

/sbin/reboot

/sbin/halt

#

stat /sbin/init

 File: '/sbin/init' -> '../bin/systemd'

 Size: 14 Blocks: 0 IO Block: 4096 symbolic link

Device: fd01h/64769d Inode: 9551 Links: 1

Access: (0777/lrwxrwxrwx)

Uid: (0/ root) Gid: (0/ root)

Context: system_u:object_r:bin_t:s0

Access: 2016-02-03 03:34:57.276589176 -0500

Modify: 2016-02-02 23:40:39.139872288 -0500

Change: 2016-02-02 23:40:39.140872415 -0500

 Birth: -

You could create a database of all of the binary's original mtimes and
ctimes and then run a script to find current mtimes and ctimes,
compare them against the database, and note any discrepancies.
However, this type of program has already been created and works
well. It's called an Intrusion Detection System, and it is covered later
in this chapter.

You need to perform several other filesystem scans on a regular basis.
Favorite files or file settings of malicious attackers are listed in Table
22.6. The table also lists the commands to perform the scans and why
the file or file setting is potentially problematic.

TABLE 22.6 Additional Filesystem Scans

File or
Setting

Scan
Command

Problem with File or Setting

SUID
permission

find / -

perm -4000

Allows anyone to become the file's owner
temporarily while the file is being executed
in memory.

SGID
permission

find / -

perm -2000

Allows anyone to become a group member of
the file's group temporarily while the file is
being executed in memory.

rhost files find /home

-name

.rhosts

Allows a system to trust another system
completely. It should not be in /home
directories.

Ownerless
files

find / -

nouser

Indicates files that are not associated with
any username.

Groupless find / -

nogroup

Indicates files that are not associated with

files any group name.

The rpm -V package command can tell you information about changes
that have occurred to a file after it has been installed from an RPM
package. For each file that has changed from the selected package
since it was installed, you can see the following information:

 S Size of the file differs

 M Permissions or file type (Mode) of the file

differs

 5 Digest differs (formerly MD5 sum)

 D Device major/minor number is mismatched

 L The readLink(2) path is mismatch

 U User ownership differs

 G Group ownership differs

 T mTime differs

 P caPabilities differ

By default, only changed files appear. Add -v (verbose) to also show
files that have not changed. Here is an example:

rpm -V samba

S.5….T. /usr/sbin/eventlogadm

In this example, I echoed a few characters into the eventlogadm binary.
The S shows the size of the file changes, 5 shows the digest no longer
matches the original digest, and T says the modification time on the
file has changed.

These filesystem scans help monitor what is going on in your system
and help detect malicious attacks. However, other types of attacks can
occur to your files, including viruses and rootkits.

Detecting viruses and rootkits
Two popular malicious attack tools are viruses and rootkits because
they stay hidden while performing their malicious activities. Linux
systems need to be monitored for both such intrusions.

Monitoring for viruses
A computer virus is malicious software that can attach itself to already
installed system software, and it has the ability to spread through

media or networks. It is a misconception that there are no Linux
viruses. The malicious creators of viruses do often focus on the more
popular desktop operating systems, such as Windows. However, that
does not mean that viruses are not created for the Linux systems.

Even more important, Linux systems are often used to handle services,
such as mail servers, for Windows desktop systems. Therefore, Linux
systems used for such purposes need to be scanned for Windows
viruses as well.

Antivirus software scans files using virus signatures. A virus signature
is a hash created from a virus's binary code. The hash will positively
identify that virus. Antivirus programs have a virus signature database
that is used to compare against files to see if there is a signature
match. Depending upon the number of new threats, a virus signature
database can be updated often to provide protection from these new
threats.

A good antivirus software choice for your Linux system, which is open
source and free, is ClamAV. To install ClamAV on a Fedora or RHEL
system, type the command dnf install clamav. You can find out more
about ClamAV at clamav.net, where there is documentation on how to
set up and run the antivirus software.

http://clamav.net

TIP
You can review the packages available for Ubuntu installation by
entering the command apt-cache search clamav. A couple of
different packages are available for Ubuntu, so review the ClamAV
website information before you choose a package.

Monitoring for rootkits
A rootkit is a little more insidious than a virus. A rootkit is a malicious
program that does the following:

Hides itself, often by replacing system commands or programs

Maintains high-level access to a system

Is able to circumvent software created to locate it

The purpose of a rootkit is to get and maintain root-level access to a
system. The term was created by putting together root, which means
that it has to have administrator access, and kit, which means it is
usually several programs that operate in concert.

A rootkit detector that can be used on a Linux system is chkrootkit. To
install chkrootkit on a Fedora or RHEL system, issue the command
yum install chkrootkit. To install chkrookit on an Ubuntu system,
use the command sudo apt-get install chkrootkit.

TIP
It is best to use a Live CD or flash drive to run chkrootkit so that
the results are not circumvented by a rootkit. The Fedora Security
Spin has chkrootkit on its Live CD. You can get this distribution at
labs.fedoraproject.org/en/security.

Finding a rootkit with chkrootkit is simple. After installing the
package or booting up the Live CD, type in chkrootkit at the command
line. It searches the entire file structure denoting any infected files.

The code that follows shows a run of chkrootkit on an infected system.
The grep command was used to search for the keyword INFECTED.
Notice that many of the files listed as “infected” are bash shell
command files. This is typical of a rootkit.

chkrootkit | grep INFECTED

Checking 'du'… INFECTED

Checking 'find'… INFECTED

Checking 'ls'… INFECTED

Checking 'lsof'… INFECTED

Checking 'pstree'… INFECTED

Searching for Suckit rootkit… Warning: /sbin/init INFECTED

In the last line of the preceding chkrootkit code is an indication that
the system has been infected with the Suckit rootkit. It actually is not
infected with this rootkit. When running utilities, such as antivirus
and rootkit-detecting software, you often get a number of false
positives. A false positive is an indication of a virus, rootkit, or other
malicious activity that does not really exist. In this particular case, this
false positive is caused by a known bug.

The chkrootkit utility should have regularly scheduled runs and, of
course, should be run whenever a rootkit infection is suspected. To
find more information on chkrootkit, go to chkrootkit.org.

http://labs.fedoraproject.org/en/security
http://chkrootkit.org

TIP
Another rootkit detector that might interest you is called Rootkit
Hunter (rkhunter). Run the rkhunter script to check your system
for malware and known rootkits. Configure rkhunter in the
/etc/rkhunter.conf file. For a simple example, run rkhunter -c to
check the filesystem for a variety of rootkits and vulnerabilities.

Detecting an intrusion
Intrusion Detection System (IDS) software—a software package that
monitors a system's activities (or its network) for potential malicious
activities and reports these activities—can help you monitor your
system for potential intrusions. Closely related to Intrusion Detection
System software is a software package that prevents an intrusion,
called Intrusion Prevention System software. Some of these packages
are bundled together to provide Intrusion Detection and Prevention.

Several Intrusion Detection System software packages are available for
a Linux system. A few of the more popular utilities are listed in Table
22.7. You should know that tripwire is no longer open source.
However, the original tripwire code is still available. See the tripwire
website listed in Table 22.7 for more details.

TABLE 22.7 Popular Linux Intrusion Detection Systems

IDS
Name

Installation Website

aide yum install aide
apt-get install aide

http://aide.sourceforge.net

Snort rpm or tarball packages
from website

http://snort.org

tripwire yum install tripwire
apt-get install tripwire

http://tripwire.org

The Advanced Intrusion Detection Environment (aide) IDS uses a

http://aide.sourceforge.net
http://snort.org
http://tripwire.org

method of comparison to detect intrusions. When you were a child,
you may have played the game of comparing two pictures and finding
what was different between them. The aide utility uses a similar
method. A “first picture” database is created. At some time later,
another database “second picture” is created, and aide compares the
two databases and reports what is different.

To begin, you need to take that “first picture.” The best time to create
this picture is when the system has been freshly installed. The
command to create the initial database is aide -i and it takes a long
time to run. Some of its output follows. Notice that aide tells you
where it is creating its initial “first picture” database.

aide -i

AIDE, version 0.16.11

AIDE database at /var/lib/aide/aide.db.new.gz

initialized.

The next step is to move the initial “first picture” database to a new
location. This protects the original database from being overwritten.
Plus, the comparison does not work unless the database is moved. The
command to move the database to its new location and give it a new
name is as follows:

cp /var/lib/aide/aide.db.new.gz /var/lib/aide/aide.db.gz

When you are ready to check whether your files have been tampered
with, you need to create a new database, “second picture,” and
compare it to the original database, “first picture.” The check option
on the aide command, -c, creates a new database and runs a
comparison against the old database. The output shown next
illustrates this comparison being done and the aide command
reporting on some problems.

aide -C

…

Detailed information about changes:

File: /bin/find

Size : 189736 , 4620

Ctime : 2020-02-10 13:00:44 , 2020-02-11 03:05:52

MD5 : <NONE> , rUJj8NtNa1v4nmV5zfoOjg==

RMD160 : <NONE> , 0CwkiYhqNnfwPUPM12HdKuUSFUE=

SHA256 : <NONE> , jg60Soawj4S/UZXm5h4aEGJ+xZgGwCmN

File: /bin/ls

Size : 112704 , 6122

Ctime : 2020-02-10 13:04:57 , 2020-02-11 03:05:52

MD5 : POeOop46MvRx9qfEoYTXOQ== , IShMBpbSOY8axhw1Kj8Wdw==

RMD160 : N3V3Joe5Vo+cOSSnedf9PCDXYkI= ,

 e0ZneB7CrWHV42hAEgT2lwrVfP4=

SHA256 : vuOFe6FUgoAyNgIxYghOo6+SxR/zxS1s ,

 Z6nEMMBQyYm8486yFSIbKBuMUi/+jrUi

…

File: /bin/ps

Size : 76684 , 4828

Ctime : 2020-02-10 13:05:45 , 2020-02-11 03:05:52

MD5 : 1pCVAWbpeXINiBQWSUEJfQ== , 4ElJhyWkyMtm24vNLya6CA==

RMD160 : xwICWNtQH242jHsH2E8rV5kgSkU= ,

 AZlI2QNlKrWH45i3/V54H+1QQZk=

SHA256 : ffUDesbfxx3YsLDhD0bLTW0c6nykc3m0 ,

 w1qXvGWPFzFir5yxN+n6t3eOWw1TtNC/

…

File: /usr/bin/du

Size : 104224 , 4619

Ctime : 2020-02-10 13:04:58 , 2020-02-11 03:05:53

MD5 : 5DUMKWj6LodWj4C0xfPBIw== , nzn7vrwfBawAeL8nkayICg==

RMD160 : Zlbm0f/bUWRLgi1B5nVjhanuX9Q= ,

 2e5S00lBWqLq4Tnac4b6QIXRCwY=

SHA256 : P/jVAKr/SO0epBBxvGP900nLXrRY9tnw ,

 HhTqWgDyIkUDxA1X232ijmQ/OMA/kRgl

File: /usr/bin/pstree

Size : 20296 , 7030

Ctime : 2020-02-10 13:02:18 , 2020-02-11 03:05:53

MD5 : <NONE> , ry/MUZ7XvU4L2QfWJ4GXxg==

RMD160 : <NONE> , tFZer6As9EoOi58K7/LgmeiExjU=

SHA256 : <NONE> , iAsMkqNShagD4qe7dL/EwcgKTRzvKRSe

…

The files listed by the aide check in this example are infected.
However, aide can also display many false positives.

Where aide databases are created, what comparisons are made, and
several other configuration settings are handled in the /etc/aide.conf
file. The following is a partial display of the file. You can see the names
of the database file and the log file directories set here:

cat /etc/aide.conf

Example configuration file for AIDE.

@@define DBDIR /var/lib/aide

@@define LOGDIR /var/log/aide

The location of the database to be read.

database=file:@@{DBDIR}/aide.db.gz

The location of the database to be written.

#database_out=sql:host:port:database:login_name:passwd:table

#database_out=file:aide.db.new

database_out=file:@@{DBDIR}/aide.db.new.gz

…

An Intrusion Detection System can be a big help in monitoring the
system. When potential intrusions are detected, comparing the output
to information from other commands (such as rpm -V) and log files can
help you better understand and correct any attacks on your system.

Auditing and Reviewing Linux
You must understand two important terms when you are auditing the
health of your Linux system. A compliance review is an audit of the
overall computer system environment to ensure that the policies and
procedures you have set for the system are being carried out correctly.
A security review is an audit of current policies and procedures to
ensure that they follow accepted best security practices.

Conducting compliance reviews
Similar to audits in other fields, such as accounting, audits can be
conducted internally or by external personnel. These reviews can be as
simple as someone sitting down and comparing implemented security
to your company's stated policies. However, more popular is
conducting audits using penetration testing.

Penetration testing is an evaluation method used to test a computer
system's security by simulating malicious attacks. It is also called pen
testing and ethical hacking. No longer do you have to gather tools and
the local neighborhood hacker to help you conduct these tests.

Kali Linux (https://www.kali.org/) is a distribution created
specifically for penetration testing. It can be used from a live DVD or a
flash drive. Training on the use of Kali Linux is offered by Offensive
Security (https://www.offensive-security.com/information-security-
training/).

While penetration testing is lots of fun, for a thorough compliance
review, a little more is needed. You should also use checklists from
industry security sites.

Conducting security reviews
Conducting a security review requires that you know current best
security practices. There are several ways to stay informed about best
security practices. The following is a brief list of organizations that can
help you.

https://www.kali.org/
https://www.offensive-security.com/information-security-training/

United States Cybersecurity and Infrastructure Security Agency
(CISA)

URL: www.us-cert.gov

Offers the National Cyber Alert System

Offers RSS feeds on the latest security threats

The SANS Institute

URL: www.sans.org/security-resources

Offers Computer Security Research newsletters

Offers RSS feeds on the latest security threats

Gibson Research Corporation

URL: www.grc.com

Offers the Security Now! security netcast

Information from these sites will assist you in creating stronger
policies and procedures. Given how fast the best security practices
change, it would be wise to conduct security reviews often, depending
upon your organization's security needs.

Now you understand a lot more about basic Linux security. The hard
part is actually putting all of these concepts into practice.

http://www.us-cert.gov
http://www.sans.org/security-resources
http://www.grc.com

Summary
Basic Linux security practices, such as managing user accounts,
securing passwords, and managing software and services, form the
foundation for all other security on your Linux system. With that
foundation in place, ongoing monitoring of your system includes
watching over system log files, checking for malicious intrusions, and
monitoring the filesystem.

Reviews of your security policies are also important to keep up on a
regular basis. Audits assist in ensuring that your Linux system is
secured and the proper security policies and practices are in place.

You have completed your first step of gathering basic security
procedures and principles knowledge. It is not enough just to know the
basics. You need to add advanced Linux security tools to your security
toolbox. In the next chapter, advanced security topics of cryptography
and authentication modules are covered.

Exercises
Refer to the material in this chapter to complete the tasks that follow.
If you are stuck, solutions to the tasks are shown in Appendix B
(although in Linux, there are often multiple ways to complete a task).
Try each of the exercises before referring to the answers. These tasks
assume that you are running a Fedora or Red Hat Enterprise Linux
system (although some tasks will work on other Linux systems as
well).

1. Check log messages from the systemd journal for the following
services: NetworkManager.service, sshd.service, and
auditd.service.

2. List the permissions of the file containing your system's user
passwords and determine if they are appropriate.

3. Determine your account's password aging and if it will expire
using a single command.

4. Start auditing writes to the /etc/shadow with the auditd daemon
and then check your audit settings.

5. Create a report from the auditd daemon on the /etc/shadow file,
and then turn off auditing on that file.

6. Install the lemon package, damage the /usr/bin/lemon file
(perhaps copy /etc/services there), verify that the file has been
tampered with, and remove the lemon package.

7. You suspect that you have had a malicious attack on your system
today and important binary files have been modified. What
command should you use to find these modified files?

8. Install and run chkrootkit to see if the malicious attack from the
exercise above installed a rootkit.

9. Find files with the SUID or SGID permission set.

10. Install the aide package, run the aide command to initialize the
aide database, copy the database to the correct location, and run

the aide command to check if any important files on your system
have been modified.

CHAPTER 23
Understanding Advanced Linux Security

IN THIS CHAPTER
Understanding hashing and encryption

Checking file integrity

Encrypting files, directories, and filesystems

Understanding pluggable authentication modules

Managing Linux security with PAM

Due to ever-changing and growing threats, implementing basic
computer security is no longer enough. As malicious users gain access
to and knowledge of advanced tools, so must a Linux system
administrator. Understanding advanced computer security topics and
tools must be part of your preparation.

In this chapter, you will learn about cryptography basics, such as
ciphers and encryption. You will also learn how the authentication
module utility can simplify your administrative duties, even though it
is an advanced security topic.

Implementing Linux Security with
Cryptography
Using cryptography enhances the security of your Linux system and its
network communications. Cryptography is the science of concealing
information. It has a long and rich history that goes back far before
computers were around. Because of its heavy use of mathematical
algorithms, cryptography has easily transitioned to computers. Linux
comes with many cryptographic tools ready for you to use.

To understand cryptographic concepts and the various Linux tools,
you should know a few cryptography terms:

Plain text: Text that a human or machine can read and
comprehend

Ciphertext: Text that a human or machine cannot read and
comprehend

Encryption: The process of converting plain text into ciphertext
using an algorithm

Decryption: The process of converting cipher text into plain text
using an algorithm

Cipher: The algorithm used to encrypt plain text into ciphertext
and decrypt ciphertext into plain text

Block cipher: A cipher that breaks data into blocks before
encrypting

Stream cipher: A cipher that encrypts the data without breaking
it up

Key: A piece of data required by the cipher to encrypt or decrypt
data successfully

Parents of young children often use a form of cryptography. They spell
words instead of speaking them. A parent may take the plain-text word
“candy” and turn it into ciphertext by saying to the other parent “C-A-
N-D-Y.” The other parent decrypts the word by using the same spelling

cipher and recognizes that the word is “candy.” Unfortunately, it does
not take children long to learn how to decrypt via the spelling cipher.

You may have noticed that hashing was not included in the preceding
cryptography definition list. Hashing needs some special attention
because it is often confused with encryption.

Understanding hashing
Hashing is not encryption, but it is a form of cryptography. Remember
from Chapter 22, “Understanding Basic Linux Security,” that hashing
is a one-way mathematical process used to create ciphertext. However,
unlike encryption, after you create a hash, you cannot de-hash it back
to its original plain text.

In order for a hashing algorithm to be used in computer security, it
needs to be collision-free, which means that the hashing algorithm
does not output the same hash for two totally different inputs. Each
input must have a unique hashed output. Thus, cryptographic
hashing is a one-way mathematical process that is collision-free.

By default, cryptography is already in use on a Linux system. For
example, the /etc/shadow file contains hashed passwords. Hashing is
used on Linux systems for the following:

Passwords (Chapter 22)

Verifying files

Digital signatures

Virus signatures (Chapter 22)

A hash is also called a message digest, checksum, fingerprint, or
signature. One Linux utility that produces message digests is the
sha256sum utility. In Chapter 10, “Getting and Managing Software,” you
learned about getting software for your Linux system. When you
download a software file, you can make sure that the file was not
corrupted on download.

Figure 23.1 shows the website for downloading the Fedora distribution
software (stored as a file in the form that is referred to as an ISO
image). The web page describes how to get and use the sha256sum

utility to ensure that the ISO image you downloaded was not corrupted
during the download.

FIGURE 23.1 The Fedora ISO security page tells how to get and
check with sha256sum.

A hash is made up of a software file at its original location, using the
SHA-256 hash algorithm. The hash results can be posted in public, as
was done in Figure 23.1. To ensure the integrity of your downloaded
software file, you create an sha256sum hash of the software file at your
location. You then compare the results of your hash to the posted hash
results. If they match, the software file was not corrupted upon
download.

To create your hash, run the sha256sum command on the ISO image
after you download that image. The sha256sum hash results for the
downloaded software file are shown in the code that follows:

$ sha256sum Fedora-Workstation-Live-x86_64-30-1.2.iso

a4e2c49368860887f1cc1166b0613232d4d5de6b46f29c9756bc7cfd5e13f39f

 Fedora-Workstation-Live-x86_64-30-1.2.iso

The resulting hash does match the one available from the website in
Figure 23.1. This means that the downloaded ISO file has not been
corrupted and is ready for use.

You can implement even more cryptography besides hashing on your
Linux system. The Linux utilities to do so are very easy to use.
However, first you need to understand a few more underlying
cryptography concepts.

Understanding encryption/decryption
The primary use of cryptography on a Linux system is to encode data
to hide it (encryption) from unauthorized eyes and then decode the
data (decryption) for authorized eyes. On a Linux system, you can
encrypt the following:

Individual files

Partitions and volumes

Web page connections

Network connections

Backups

Zip files

These encryption/decryption processes use special math algorithms to
accomplish their task. The algorithms are called cryptographic
ciphers.

Understanding cryptographic ciphers
One of the original ciphers, called the Caesar Cipher, was created and
used by Julius Caesar. It was terribly easy to crack, however. Today,
many more secure ciphers are available. Understanding how each
cipher works is important because the strength of the cipher you
choose should directly relate to the security needs of your data. Table
23.1 lists a few modern ciphers.

TABLE 23.1 Cryptography Ciphers

Method Description

AES (Advanced
Encryption
Standard), also
called Rijndael

Symmetric cryptography.
Block cipher, encrypting data in 128-, 192-,
256-, 512-bit blocks using a 128-, 192-, 256, or
512-bit key for encrypting/decrypting.

Blowfish Symmetric cryptography.
Block cipher, encrypting data in 64-bit blocks
using the same 32-bit to 448-bit keys for
encrypting/decrypting.

CAST5 Symmetric cryptography.
Block cipher, encrypting data in 64-bit blocks
using the same up to 128-bit key for
encrypting/decrypting.

DES (Data
Encryption
Standard)

No longer considered secure.
Symmetric cryptography.
Block cipher, encrypting data in 64-bit blocks
using the same 56-bit key for
encrypting/decrypting.

3DES Improved DES cipher.
Symmetric cryptography.
Data is encrypted up to 48 times with three
different 56-bit keys before the encryption
process is completed.

El Gamal Asymmetric cryptography.
Uses two keys derived from a logarithm
algorithm.

Elliptic Curve
Cryptosystems

Asymmetric cryptography.
Uses two keys derived from an algorithm
containing two randomly chosen points on an
elliptic curve.

IDEA Symmetric cryptography.
Block cipher, encrypting data in 64-bit blocks
using the same 128-bit key for
encrypting/decrypting.

RC4 also called Stream cipher, encrypting data in 64-bit blocks

ArcFour or ARC4 using a variable key size for
encrypting/decrypting.

RC5 Symmetric cryptography.
Block cipher, encrypting data in 32-, 64-, or
128-bit blocks using the same up to 2,048-bit
keys for encrypting/decrypting.

RC6 Symmetric cryptography.
Same as RC5, but slightly faster.

Rijndael also called
AES

Symmetric cryptography.
Block cipher, encrypting data in 128-, 192-,
256-, 512-bit blocks using a 128-, 192-, 256-, or
512-bit key for encrypting/decrypting.

RSA Most popular asymmetric cryptography.
Uses two keys derived from an algorithm
containing a multiple of two randomly
generated prime numbers.

Understanding cryptographic cipher keys
Cryptographic ciphers require a piece of data, called a key, to complete
their mathematical process of encryption/decryption. The key can be
either a single key or a pair of keys.

Notice the different cipher key sizes listed in Table 23.1. The key size is
directly related to how easily the cipher is cracked. The bigger the key
size, the less the chance of cracking the cipher. For example, DES is no
longer considered secure because of its small 56-bit key size. However,
a cipher with a key size of 256 bits or 512 bits is considered secure
because it would take trillions of years to brute-force crack such a
keyed cipher.

Symmetric key cryptography
Symmetric cryptography, also called secret key or private key
cryptography, encrypts plain text using a single keyed cipher. The
same key is needed in order to decrypt the data. The advantage of
symmetric key cryptography is speed. The disadvantage is the need to

share the single key if the encrypted data is to be decrypted by another
person.

An example of symmetric key cryptography on a Linux system is
accomplished using the OpenPGP utility, GNU Privacy Guard, gpg2.
The gnupg2 package is installed by default in Fedora and RHEL. For
Ubuntu, you need to install the gnupg2 package to get the gpg2
command.

Encrypting and decrypting a tar archive file
The example that follows shows the tar command used to create a
compressed tar archive (backup.tar.gz) and the gpg2 utility used to
encrypt the file. With the -c option, gpg2 encrypts the file with a
symmetric key. The original file is kept and a new encrypted file,
backup.tar.gz.gpg, is created.

tar -cvzf /tmp/backup.tar.gz /etc

gpg2 -c --force-mdc \

 -o /tmp/backup.tar.gz.gpg /tmp/backup.tar.gz

Enter passphrase: ******

Repeat passphrase: ******

cd /tmp ; file backup*

/tmp/enc/backup.tar.gz: gzip compressed data, last

modified: Thu

 Jan 30 02:36:48 2020, from Unix, original size modulo

2^32 49121280

/tmp/enc/backup.tar.gz.gpg: GPG symmetrically encrypted data

(CAST5 cipher)

The single key used to encrypt the file is protected by a passphrase.
This passphrase is simply a password or phrase chosen by the user at
the time of encryption.

To decrypt the file, use the gpg2 utility again. For example, if you were
to hand the file to another user, that user could run gpg2 with the -d
option and provide the passphrase for the secret key.

$ gpg2 -d --force-mdc /tmp/backup.tar.gz.gpg >

/tmp/backup.tar.gz

<A pop-up window asks for your passphrase>

gpg: CAST5 encrypted data

gpg: encrypted with 1 passphrase

…

The result here is that the original tar file is decrypted and copied to
/tmp/backup.tar.gz. If the gpg-agent daemon is running on the
system, that passphrase is cached so that file could be decrypted again
without entering the passphrase again.

Symmetric key cryptography is rather simple and easy to understand.
Asymmetric cryptography is much more complicated and often is a
point of confusion in cryptography.

Asymmetric key cryptography
Asymmetric cryptography, also called private/public key
cryptography, uses two keys, called a key pair. A key pair consists of a
public key and a private key. The public key is just that—public. There
is no need to keep it secret. The private key needs to be kept secret.

The general idea of asymmetric key cryptography is shown in Figure
23.2. A plain-text file is encrypted using a public key of a key pair. The
encrypted file then can be securely transmitted to another person. To
decrypt the file, the private key is used. This private key must be from
the public/private key pair. Thus, data that has been encrypted with
the public key can only be decrypted with its private key. The
advantage of asymmetric cryptography is heightened security. The
disadvantage is speed and key management.

FIGURE 23.2 Basic asymmetric key cryptography

Generating a key pair
You can perform asymmetric encryption on your Linux system using
gpg2. It is a very versatile cryptographic utility. Before you can encrypt
a file, you must first create your key pair and a “key ring.” In the
example that follows, the gpg2 --gen-key command was used. This
command creates a public/private key pair for the user johndoe,
according to his desired specifications. It also generates a key ring to
store his keys.

$ gpg2 --gen-key

gpg (GnuPG) 2.2.9; Copyright (C)

 2018 Free Software Foundation, Inc.

…

GnuPG needs to construct a user ID to identify your key.

Real name: John Doe

Email address: jdoe@example.com

You selected this USER-ID:

 "John Doe <jdoe@gmail.com>"

Change (N)ame, (E)mail or (O)kay/(Q)uit? O

You need a Passphrase to protect your secret key.

<A pop-up window prompts you for a passphrase>

Enter passphrase: **********

Repeat passphrase: **********

…

gpg: /home/jdoe/.gnupg/trustdb.gpg: trustdb created

gpg: key 383D645D9798C173 marked as ultimately trusted

gpg: directory '/home/jdoe/.gnupg/openpgp-revocs.d' created

gpg: revocation certificate stored as

'/home/jdoe/.gnupg/openpgp-revocs.d/7469BCD3D05A4

3130F1786E0383D645D9798C173.rev'

public and secret key created and signed.

pub rsa2048 2019-10-27 [SC] [expires: 2021-10-26]

 7469BCD3D05A43130F1786E0383D645D9798C173

uid John Doe <jdoe@example.com>

sub rsa2048 2019-10-27 [E] [expires: 2021-10-26]

In the preceding example, the gpg2 utility asks for several
specifications to generate the desired public/private keys:

User ID: This identifies the public key portion of the
public/private key pair.

Email Address: This is the email address associated with the
key.

Passphrase: This is used to identify and protect the private key
portion of the public/private key pair.

The user johndoe can check his key ring by using the gpg2 --list-keys
command, as shown in the code that follows. Notice the User ID (UID)
of the public key is displayed just as it was created, containing
johndoe's real name, comment, and email address.

$ gpg2 --list-keys

/home/jdoe/.gnupg/pubring.kbx

pub rsa2048 2019-10-27 [SC] [expires: 2021-10-26]

 7469BCD3D05A43130F1786E0383D645D9798C173

uid [ultimate] John Doe <jdoe@example.com>

sub rsa2048 2019-10-27 [E] [expires: 2021-10-26]

After the key pair and key ring are generated, files can be encrypted
and decrypted. First, the public key must be extracted from the key
ring so that it can be shared. In the example that follows, the gpg2
utility is used to extract the public key from johndoe's key ring. The
extracted key is put into a file to be shared. The filename can be any
name you wish it to be. In this case, the user johndoe chose the
filename JohnDoe.pub.

$ gpg2 --export John Doe > JohnDoe.pub

$ ls *.pub

JohnDoe.pub

$ file JohnDoe.pub

JohnDoe.pub: PGP/GPG key public ring (v4) created Sun Oct 27

16:24:27 2019 RSA (Encrypt or Sign) 2048 bits

MPI=0xc57a29a6151b3e8d…

Sharing a public key
The file containing the public key can be shared in any number of
ways. It can be sent as an attachment via email or even posted on a
web page. The public key is considered public, so there is no need to
hide it. In the example that follows, johndoe has given the file
containing his public key to the user jill. She adds johndoe's public
key to her key ring using the gpg2 --import command. The user jill

verifies that johndoe's public key is added using the gpg2 --list-keys
command to view her key ring.

$ ls *.pub

JohnDoe.pub

$ gpg2 --import JohnDoe.pub

gpg: directory '/home/jill/.gnupg' created

…

gpg: directory '/home/jill/.gnupg' created

gpg: keybox '/home/jill/.gnupg/pubring.kbx' created

gpg: /home/jill/.gnupg/trustdb.gpg: trustdb created

gpg: key 383D645D9798C173: public key "John Doe

<jdoe@example.com>" imported

gpg: Total number processed: 1

gpg: imported: 1

$ gpg2 --list-keys

/home/jill/.gnupg/pubring.gpg

pub rsa2048 2019-10-27 [SC] [expires: 2021-10-26]

 7469BCD3D05A43130F1786E0383D645D9798C173

uid [unknown] John Doe <jdoe@example.com>

sub rsa2048 2019-10-27 [E] [expires: 2021-10-26]

Encrypting an email message
After the key is added to the key ring, that public key can be used to
encrypt data for the public key's original owner. In the example code
that follows, note that jill has created a text file, MessageForJohn.txt,
for user johndoe.

She encrypts the file using his public key.

The encrypted file, MessageForJohn, is created by the --out option.

The option --recipient identifies johndoe's public key using only
the real name portion of his public key's UID in quotation marks,
″John Doe″.

$ gpg2 --out MessageForJohn --recipient "John Doe" \

 --encrypt MessageForJohn.txt

…

$ ls

JohnDoe.pub MessageForJohn MessageForJohn.txt

The encrypted message file, MessageForJohn, created from the plain-
text file, MessageForJohn.txt, can be securely sent to the user johndoe.

In order to decrypt this message, johndoe uses his private key,
identified and protected by the secret passphrase used to create the
key originally. After johndoe provides the proper passphrase, gpg2
decrypts the message file and puts it into the file JillsMessage,
designated by the --out option. Once it's decrypted, he can read the
plaintext message.

$ ls MessageForJohn

MessageForJohn

$ gpg2 --out JillsMessage --decrypt MessageForJohn

<A pop-up window prompts you for a passphrase>

gpg: encrypted with 2048-bit RSA key, ID D9EBC5F7317D3830,

created 2019-10-27

 "John Doe <jdoe@example.com>"

$ cat JillsMessage

I know you are not the real John Doe.

To review, the steps needed for encryption/decryption of files using
asymmetric keys include the following:

1. Generate the key pair and the key ring.

2. Export a copy of your public key to a file.

3. Share the public key file.

4. Individuals who want to send you encrypted files add your public
key to their key ring.

5. A file is encrypted using your public key.

6. The encrypted file is sent to you.

7. You decrypt the file using your private key.

You can see why asymmetric keys can cause confusion! Remember
that in asymmetric cryptography, each public and private key is a
paired set that works together.

Understanding digital signatures
A digital signature is an electronic originator used for authentication
and data verification. A digital signature is not a scan of your physical
signature. Instead, it is a cryptographic token sent with a file, so the
file's receiver can be assured that the file came from you and has not

been modified in any way.

When you create a digital signature, the following steps occur:

1. You create a file or message.

2. Using the gpg2 utility, you create a hash or message-digest of the
file.

3. The gpg2 utility then encrypts the hash and the file, using an
asymmetric key cipher. For the encryption, the private key of the
public/private key pair is used. This is now a digitally signed
encrypted file.

4. You send the encrypted hash (aka digital signature) and file to the
receiver.

5. The receiver re-creates the hash or message digest of the received
encrypted file.

6. Using the gpg2 utility, the receiver decrypts the received digital
signature using the public key, to obtain the original hash or
message digest.

7. The gpg2 utility compares the original hash to the re-created hash
to see if they match. If they match, the receiver is told the digital
signature is good.

8. The receiver can now read the decrypted file.

Notice in step 3 that the private key is used first. In the description of
asymmetric key cryptography, the public key was used first.
Asymmetric key cryptography is flexible enough to allow you to use
your private key to encrypt and the receiver to use your public key to
decrypt.

NOTE
Digital signatures have their own special ciphers. While several
ciphers can handle both encryption and creating signatures, there
are a few whose only job is to create digital signatures. Previously,
the most popular cryptographic ciphers to use in creating
signatures were RSA and Digital Signature Algorithm (DSA). The
RSA algorithm can be used for both encryption and creating
signatures, while DSA can be used only for creating digital
signatures. Today, Ed25519 is considered to be more secure and
faster than RSA, and ECDSA provides better protection than DSA.

As you can see, a digital signature contains both cryptographic hashing
and asymmetric key cryptography. This complicated process is often
handled by an application that has been configured to do so, instead of
being directly handled by Linux system users. However, you can
manually add your own digital signatures to documents.

Signing a file with a digital signature
Let's say that user johndoe is going to send a message to the user
christineb, along with his digital signature. He has created a file
containing the plain-text message to send. He uses the gpg2 utility to
create the signature file and encrypt the message file. The --sign
option tells the gpg2 utility that MessageForChristine.txt is the file to
encrypt and use to create the digital signature. In response, the gpg2
utility does the following:

Creates a message digest (aka hash) of the message file

Encrypts the message digest, which creates the digital signature

Encrypts the message file

Places the encrypted contents into the file specified by the --
output option, JohnDoe.DS

The file JohnDoe.DS now contains an encrypted and digitally signed
message. The following code demonstrates this process:

$ gpg2 --output JohnDoe.DS --sign MessageForJill.txt

After the user jill receives the signed and encrypted file, she can use
the gpg2 utility to check the digital signature and decrypt the file in one
step. In the code that follows, the --decrypt option is used along with
the name of the digitally signed file, JohnDoe.DS. The file's message is
decrypted and shown. The digital signature of the file is checked and
found to be valid.

$ gpg2 --decrypt JohnDoe.DS

I am the real John Doe!

gpg: Signature made Sun 27 Oct 2019 07:03:21 PM EDT

gpg: using RSA key

7469BCD3D05A43130F1786E0383D645D9798C173

gpg: Good signature from "John Doe <jdoe@example.com>"

[unknown]

…

Without johndoe's public key on her key ring, jill would not be able to
decrypt this message and check the digital signature.

TIP
The previous example of digitally signing a document allows
anyone with the public key the ability to decrypt the document. In
order to keep it truly private, use the public key of the recipient to
encrypt with the gpg2 options: --sign and --encrypt. The recipient
can decrypt with their private key.

Understanding a few cryptography basics will help you get started on
securing your Linux system with encryption. Keep in mind that we've
covered just the basics in this chapter. There are many more
cryptography topics, such as digital certificates and public key
infrastructure, that would be worth your time to learn.

Implementing Linux cryptography
Many cryptography tools are available on your Linux system. Which
ones you choose to use depend upon your organization's security
requirements. The following is a brief review of some of the Linux
cryptography tools available.

Ensuring file integrity
Earlier in this chapter, an ISO's file integrity was checked using the
message digest utility sha256sum.

Related message digest utilities include the following:

sha224sum

sha256sum

sha384sum

sha512sum

These tools work just like the sha1sum command, except, of course,
they use the SHA-2 cryptographic hash standard. The only difference
between the various SHA-2 tools is the key length they use. The
sha224sum command uses a key length of 224 bits, the sha256sum

command uses a key length of 256 bits, and so on. Remember that the
longer the key length, the less the chance of cracking the cipher.

The SHA-2 cryptographic hash standard was created by the National
Security Agency (NSA). SHA-3 is another cryptographic hash
standard, which was released by NIST in August 2015.

Encrypting a Linux filesystem at installation
You may need to encrypt an entire filesystem on your Linux server.
This can be done in a number of different ways, including using a Free
and Open Source Software (FOSS) third-party tool such as Linux
Unified Key Setup (LUKS)
(https://gitlab.com/cryptsetup/cryptsetup).

One of your options in Linux is to encrypt your root partition upon
installation (see Chapter 9, “Installing Linux”). Many Linux
distributions include an encryption option during their installation
process. Figure 23.3 shows the encryption option during a Red Hat
Enterprise Linux installation.

After you select this option during installation, you are asked for a
password. This is symmetric key cryptography with a password
protecting the single key. Figure 23.4 shows the installation asking for
the key's password. The password must be at least eight characters
long.

FIGURE 23.3 Red Hat Enterprise Linux installation encryption
option

https://gitlab.com/cryptsetup/cryptsetup

FIGURE 23.4 Linux Fedora encryption symmetric key password

FIGURE 23.5 Asking for the encryption symmetric key password at
boot

If you select this encryption option, whenever you boot the system,
you are asked for the symmetric key password. Figure 23.5 shows what
this looks like. This protects the root partition, should the disk it

resides on be stolen.

If you inherit a system with an encrypted disk, using root privileges,
you can use the lvs and cryptsetup commands and the /etc/crypttab
file to help. In the following example, the lvs command shows all of
the logical volumes currently on the system and their underlying
device names. See Chapter 12, “Managing Disks and Filesystems,” for
a review of different LVM commands.

lvs -o devices

 Devices

 /dev/mapper/luks-b099fbbe-0e56-425f-91a6-44f129db9f4b(56)

 /dev/mapper/luks-b099fbbe-0e56-425f-91a6-44f129db9f4b(0)

On this system, notice that the underlying device names start with
luks. This indicates that the Linux Unified Key Setup (LUKS) standard
for hard disk encryption has been used.

NOTE
Ubuntu does not have the lvs command installed by default. To
install it, type sudo apt-get install lvm2 at the command line.

The encrypted logical volumes are mounted at boot time using the
information from the /etc/fstab file. However, contents of the
/etc/crypttab file, which are used to trigger the capture of the
password at boot time, will decrypt the /etc/fstab entries as they are
mounted. This is shown in the following code. Notice that the luks
names are the same as those listed by the lvs command in the
previous example.

cat /etc/crypttab

luks-b099fbbe-0e56-425f-91a6-44f129db9f4b

 UUID=b099fbbe-0e56-425f-91a6-44f129db9f4b none

You can also use the cryptsetup command to help you uncover more
information about your Linux system's encrypted volumes. In the
example that follows, the status option is used along with the luks
device name to determine further information.

cryptsetup status luks-b099fbbe-0e56-425f-91a6-

44f129db9f4b

/dev/mapper/luks-b099fbbe-0e56-425f-91a6-44f129db9f4b

 is active and is in use.

 type: LUKS1

 cipher: aes-xts-plain64

 keysize: 512 bits

 device: /dev/sda3

 offset: 4096 sectors

 size: 493819904 sectors

 mode: read/write

Encrypting a Linux directory
You can also use the ecryptfs utility to encrypt on a Linux system. The
ecryptfs utility is not a filesystem type, as the name would imply.
Instead, it is a POSIX-compliant utility that allows you to create an
encryption layer on top of any filesystem.

The ecryptfs utility is not installed by default on Fedora and not
available in RHEL. To install that utility in Fedora, you use the
command dnf install ecryptfs-utils. If it is not installed on a
Debian system, use the command sudo apt-get install ecrypt-utils.

TIP
Because the ecryptfs utility is used for encryption, it is a common
mistake to put the letter n after the letter e in the syntax ecryptfs.
If you get an error while using the ecryptfs utilities, make sure that
you did not use the syntax encryptfs by mistake.

In the example that follows, the user johndoe will have a subdirectory
encrypted using the ecryptfs utility. First, there should be no files
currently residing in the directory before it is encrypted. If there are
files located there, move them to a safe place until after the encryption
has been completed. If you do not move them, you cannot access them
while the directory is encrypted.

Now, to encrypt the directory /home/johndoe/Secret, use the mount
command. You must have root privileges to mount and unmount the
encrypted directory in this method. Look at the mount command used
in the example that follows. It is somewhat similar to the regular mount
command, except that the partition type used is ecryptfs. The item to
mount and its mount point are the same directory! You are literally
encrypting the directory and mounting it upon itself. The other
unusual item about this mount command is that it kicks off the
ecryptfs utility, which asks a few interactive questions.

mount -t ecryptfs /home/johndoe/Secret

/home/johndoe/Secret

Select key type to use for newly created files:

 1) tspi

 2) passphrase

 3) pkcs11-helper

 4) openssl

Selection: 2

Passphrase: **********

Select cipher:

 1) aes: blocksize = 16;

 min keysize = 16; max keysize = 32 (loaded)

 2) blowfish: blocksize = 16;

 min keysize = 16; max keysize = 56 (not loaded)

 3) des3_ede: blocksize = 8;

 min keysize = 24; max keysize = 24 (not loaded)

 4) twofish: blocksize = 16;

 min keysize = 16; max keysize = 32 (not loaded)

 5) cast6: blocksize = 16;

 min keysize = 16; max keysize = 32 (not loaded)

 6) cast5: blocksize = 8;

 min keysize = 5; max keysize = 16 (not loaded)

Selection [aes]: 1

Select key bytes:

 1) 16

 2) 32

 3) 24

Selection [16]: 16

Enable plaintext passthrough (y/n) [n]: n

Enable filename encryption (y/n) [n]: n

Attempting to mount with the following options:

 ecryptfs_unlink_sigs

 ecryptfs_key_bytes=16

 ecryptfs_cipher=aes

 ecryptfs_sig=70993b8d49610e67

WARNING: Based on the contents of [/root/.ecryptfs/sig-

cache.txt]

it looks like you have never mounted with this key

before. This could mean that you have typed your

passphrase wrong.

Would you like to proceed with the mount (yes/no)? : yes

Would you like to append sig [70993b8d49610e67] to

[/root/.ecryptfs/sig-cache.txt]

in order to avoid this warning in the future (yes/no)? : yes

Successfully appended new sig to user sig cache file

Mounted eCryptfs

The ecryptfs utility allows you to choose the following:

Key type

Passphrase

Cipher

Key size (in bytes)

To enable or disable plain text to pass through

To enable or disable filename encryption

It also warns you when you are first mounting this encrypted directory

because the key has not been used before. The utility allows you to
apply a digital signature to the mounted directory so that if you mount
it again, it just mounts the directory and does not require a
passphrase.

TIP
Write down the selections you make when you mount an ecryptfs
folder for the first time. You need the exact selections you chose
the next time you remount the folder.

To verify that the encrypted directory is now mounted, you can use the
mount command again. In the example that follows, the mount
command is used and then piped into grep to search for the
/home/johndoe/Secret directory. As you can see, the directory is
mounted with an ecryptfs type.

mount | grep /home/johndoe/Secret

/home/johndoe/Secret on /home/johndoe/Secret type ecryptfs

(rw,relatime,ecryptfs_sig=70993b8d49610e67,ecryptfs_cipher=aes,

ecryptfs_key_bytes=16,ecryptfs_unlink_sigs)

So far, you have not seen the effects of this mounted and encrypted
directory. In the text that follows, the file my_secret_file is copied to
the encrypted directory. User johndoe can still use the cat command to
display the file in plain text. The file is automatically decrypted by the
ecryptfs layer.

$ cp my_secret_file Secret

$ cat /home/johndoe/Secret/my_secret_file

Shh… It's a secret.

The root user also can use the cat command to display the file in plain
text.

cat /home/johndoe/Secret/my_secret_file

Shh… It's a secret.

However, after the encrypted directory is unmounted using the umount
command, the files are no longer automatically decrypted. The file
my_secret_file is now gibberish and cannot be read, even by the root
user.

umount /home/johndoe/Secret

Thus, the ecryptfs utility allows you to create a location on the
filesystem to encrypt and decrypt files quickly. However, after that
directory is no longer mounted as an ecryptfs type, the files are secure
and cannot be decrypted.

TIP
As a non-root user, you could use the ecryptfs-setup-private and
ecryptfs-mount-private commands to configure a private
cryptographic mountpoint as a non-root user.

Encrypting a Linux file
The most popular tool for file encryption on a Linux system is the
OpenPGP utility GNU Privacy Guard, gpg. Its flexibility and variety of
options, along with the fact that it is installed by default on most Linux
distributions, add to its appeal.

CAUTION
If your organization uses a third-party cloud storage company, you
need to know that some of these companies, such as Dropbox, do
not encrypt the files until they are received. This means that the
company has the keys required to decrypt your files and can leave
your organization's data vulnerable. Encrypting files on your Linux
system before they are sent to the cloud adds the extra layer of
protection needed.

However, you can use several other cryptography tools on a Linux
system to encrypt files. Just like gpg, many of these tools allow you to
do much more than merely file encryption. The following are some of
the popular Linux cryptography tools that you can use to encrypt files:

aescrypt: It uses the symmetric key cipher Rijndael, also called
AES. This third-party FOSS tool is available for download from
www.aescriypt.com.

bcrypt: This tool uses the symmetric key cipher blowfish. It is not
installed by default. After bcrypt is installed, man pages are
available.

For Fedora (not available in RHEL): yum install bcrypt

For Ubuntu: sudo apt-get install bcrypt

ccrypt: This tool uses the symmetric key cipher Rijndael, also
called AES. It was created to replace the standard Unix crypt
utility and is not installed by default. After ccrypt is installed,
man pages are available.

For Fedora (not available in RHEL): yum install ccrypt

For Ubuntu: sudo apt-get install ccrypt

gpg: This utility can use either asymmetric key pairs or a
symmetric key. It is installed by default, and it is the cryptography
tool of choice for Linux servers. The default cipher to use is set in
the gpg.conf file. There are man pages available as well as info

http://www.aescriypt.com

gnupg.

Keep in mind that this list covers only the more popular tools. Also,
remember that many of these tools can be used for more than just file
cryptography.

Encrypting Linux with miscellaneous tools
You can apply cryptography, defined as the act of writing or
generating codes meant to keep secrets, to just about everything in
Linux. Besides filesystems, directories, and files, you can also encrypt
backups, Zip files, network connections, and more.

TABLE 23.2 Linux Miscellaneous Cryptography Tools

Tool Description
Duplicity Encrypts backups. To install on Fedora, type yum install

duplicity. To install on Ubuntu, type sudo apt-get install
duplicity at the command line.

gpg-zip Uses GNU Privacy Guard to encrypt or sign files into an
archive. Installed by default.

Openssl A toolkit that implements Secure Sockets Layer (SSL) and
Transport Layer Security (TLS) protocols. These protocols
require encryption. Installed by default.

Seahorse A GNU Privacy Guard encryption key manager. Installed by
default on Ubuntu. To install on Fedora and RHEL, type
yum install seahorse at the command line.

Ssh Encrypts remote access across a network. Installed by
default.

Zipcloak Encrypts entries in a Zip file. Installed by default.

Table 23.2 lists some of the miscellaneous Linux cryptography tools
and what they do. If you want to see a full list of installed cryptography
tools on your current Linux distribution, type man -k crypt at the
command line.

Like many other items on a Linux system, the available cryptography
tools are rich and plentiful. This gives you the flexibility and variety

that you need in order to implement the cryptography standards your
particular organization requires.

Using Encryption from the Desktop
The Passwords and Keys window provides a means of viewing and
managing keys and passwords from the GNOME desktop. This
window can be launched by selecting the Passwords and Keys icon
from the Activities screen or by running the seahorse command. With
the window that appears, you can work with the following:

Passwords: When you access a website, from a Chromium or
Chrome web browser, and enter a username and password (and
you select to save that password), it is stored on your system for
the next time that you visit that site. Select the Login entry under
the Passwords heading to see each of these saved usernames and
passwords.

Certificates: You can view certificates associated with the
Gnome2 Key Storage, User Key Storage, System Trust, and
Default Trust.

PGP keys: You can view the GPG keys that you create by
selecting the GnuPG keys entry.

Secure Shell: You can create public and private OpenSSH keys
that let you log in to remote systems using those keys instead of
passwords for authentication with ssh, scp, rsync, sftp, and
related commands. Select OpenSSH keys to view any keys that
you have created for this purpose. (See the section “Using key-
based passwordless authentication” in Chapter 13 for information
on creating these types of keys.)

Another extremely powerful security tool available on Linux is PAM.
The next sections in this chapter cover basic PAM concepts and how
you can use this tool to enhance even further your Linux system's
security.

Implementing Linux Security with PAM
Pluggable Authentication Modules (PAM) was invented by Sun
Microsystems and originally implemented in the Solaris operating
system. The Linux-PAM project began in 1997. Today, most Linux
distributions use PAM.

PAM simplifies the authentication management process. Remember
that authentication (see Chapter 22, “Understanding Basic Linux
Security”) is the process of determining that a subject (aka user or
process) is who they say they are. This process is sometimes called
“identification and authentication.” PAM is a centralized method of
providing authentication for the Linux system and applications.

Applications can be written to use PAM; such applications are called
“PAM-aware.” A PAM-aware application does not have to be rewritten
and recompiled to have its authentication settings changed. Any
required changes are made within a PAM configuration file for the
PAM-aware applications. Thus, authentication management for these
applications is centralized and simplified.

You can see whether a particular Linux application or utility is PAM-
aware. Check whether it is compiled with the PAM library, libpam.so.
In the example that follows, the crontab application is being checked
for PAM awareness. The ldd command checks a file's shared library
dependencies. To keep it simple, grep is used to search for the PAM
library. As you can see, crontab on this particular Linux system is
PAM-aware.

ldd /usr/bin/crontab | grep pam

libpam.so.0 => /lib64/libpam.so.0 (0x00007fbee19ce000)

The benefits of using PAM on your Linux system include the following:

Simplified and centralized authentication management from the
administrator viewpoint

Simplified application development, because developers can write
applications using the documented PAM library instead of writing
their own authentication routines

Flexibility in authentication:

Allow or deny access to resources based on traditional criteria,
such as identification

Allow or deny access based on additional criteria, such as
time-of-day restrictions

Set subject limitations, such as resource usage

Although the benefits of PAM simplify authentication management,
the way that PAM actually works is not so simple.

Understanding the PAM authentication process
When a subject (user or process) requests access to a PAM-aware
application or utility, two primary components are used to complete
the subject authentication process:

The PAM-aware application's configuration file

The PAM modules the configuration file uses

Each PAM-aware application configuration file is at the center of the
process. The PAM configuration files call upon particular PAM
modules to perform the needed authentication. PAM modules
authenticate subjects from system authorization data, such as a
centralized user account using LDAP (see Chapter 11, “Managing User
Accounts”).

Linux comes with many applications that are PAM-aware, with their
needed configuration files and PAM modules already installed. If you
have any special authentication needs, you can most likely find a PAM
module that has already been written for that need. However, before
you start tweaking PAM, you need to understand more about how
PAM operates.

A series of steps is taken by PAM using the modules and configuration
files in order to ensure that proper application authentication occurs:

1. A subject (user or process) requests access to an application.

2. The application's PAM configuration file, which contains an
access policy, is open and read.

The access policy is set via a list of all the PAM modules to be
used in the authentication process. This PAM module(s) list is
called a stack.

3. The PAM modules in the stack are invoked in the order in which
they are listed.

4. Each PAM module returns either a success or failure status.

5. The stack continues to be read in order, and it is not necessarily
stopped by a single returned failure status.

6. The status results of all of the PAM modules are combined into a
single overall result of authentication success or failure.

Typically, if a single PAM module returns a failure status, access to the
application is denied. However, this is dependent upon the
configuration file settings. Most PAM configuration files are located in
/etc/pam.d. The general format of a PAM configuration file is

context control flag PAM module [module options]

Understanding PAM contexts
PAM modules have standard functions that provide different
authentication services. These standard functions within a PAM
module can be divided into function types called contexts. Contexts
can also be called module interfaces or types. In Table 23.3, the
different PAM contexts are listed along with what type of
authentication service they provide.

TABLE 23.3 PAM Contexts

Context Service Description
auth Provides authentication management services, such as

verifying account passwords
account Provides account validation services, such as time-of-day

access restrictions
password Manages account passwords, such as password length

restrictions

Understanding PAM control flags
In a PAM configuration file, control flags are used to determine the
overall status, which are returned to the application. A control flag is
either of the following:

Simple keyword: The only concern here is if the corresponding
PAM module returns a response of either “failed” or “success.”
See Table 23.4 for how these statuses are handled.

TABLE 23.4 PAM Configuration Control Flags and
Response Handling

required If failed, returns a failure status to the application,
after the rest of the contexts have been run in the
stack.
For example, a requisite control might cause a login
to fail if someone types in an invalid user. But the
user might not be told of the failure until after
entering a password, hiding the fact that it was the
bad username that caused the failure.

requisite If failed, returns a failure status to the application
immediately without running the rest of the stack.
(Be careful where you place this control in the stack.)
For example, a requisite control might require key-
based authentication and fail immediately when a
valid key is not provided. In that case, it could fail
before even prompting for a username/password.

sufficient If failed, the module status is ignored. If successful,
then a success status is immediately returned to the
application without running the rest of the stack. (Be
careful where you place this control in the stack.)

optional This control flag is important only for the final
overall return status of success or failure. Think of it
as a tiebreaker. When the other modules in the
configuration file stack return statuses that are
neither clear-cut failure nor success statuses, this
optional module's status is used to determine the

final status or break the tie. In cases where the other
modules in the stack are returning a clear-cut path of
failure or success, this status is ignored.

include Get all the return statuses from this particular PAM
configuration file's stack to include in this stack's
overall return status. It's as if the entire stack from
the named configuration file is now in this
configuration file.

substack Similar to the include control flag, except for how
certain errors and evaluations affect the main stack.
This forces the included configuration file stack to act
as a substack to the main stack. Thus, certain errors
and evaluations affect only the substack and not the
main stack.

Series of actions: The returned module status is handled
through the series of actions listed in the file.

Table 23.4 shows the various keyword control flags and their
responses to the returned module status. Notice that a few of the
control flags need to be carefully placed within the configuration file's
stack. Some control flags cause the authentication process to stop
immediately, and the rest of the PAM modules are not called. The
control flags simply control how the PAM module status results are
combined into a single overall result. Table 23.4 demonstrates how the
status results are combined.

You should know that the PAM modules return many more status
result codes than just “success” or “failure.” For example, a module
may return the status code of PAM_ACCT_EXPIRED, which means that the
user account has expired. This would be deemed a “failure.”

Understanding PAM modules
A PAM module is actually a suite of shared library modules (DLL files)
stored in /usr/lib64/security (64-bit). You can see a list of the
various installed PAM modules on your system by entering ls
/usr/lib64/security/pam*.so at the command line.

NOTE
On Ubuntu, to find your PAM modules, type the command sudo
find / -name pam*.so at the command line.

Your Linux system comes with many of the PAM modules needed
already installed. If you do need a module not already installed, most
likely someone else has already written it. Check out sources such as
these:

http://www.openwall.com/pam/

http://puszcza.gnu.org.ua/software/pam-modules/download.html

Understanding PAM system event configuration files

So far, the focus has been on PAM-aware applications and their
configuration files. However, other system events, such as logging into
the Linux system, also use PAM. Thus, these events also have
configuration files.

The following is a partial directory listing of the PAM configuration file
directory. Notice that there are PAM-aware application configuration
files, such as crond, and system event configuration files, such as
postlogin-ac.

ls -l /etc/pam.d

total 204

-rw-r--r--. 1 root root 272 Nov 15 10:06 atd

…

-rw-r--r--. 1 root root 232 Jan 31 12:35 config-util

-rw-r--r--. 1 root root 293 Oct 26 23:10 crond

…

-rw-r--r--. 1 root root 109 Feb 28 01:33 postlogin

…

-rw-r--r--. 1 root root 981 Feb 28 01:33 system-auth

…

You can modify these system event configuration files to implement
your organization's specific security needs. For example, the system-

http://www.openwall.com/pam/
http://puszcza.gnu.org.ua/software/pam-modules/download.html

auth file can be modified to force certain password restrictions.

CAUTION
Modifying or deleting PAM system event configuration files
incorrectly can lock you out of your own system. Make sure that
you test any changes in a virtual or test environment before
modifying your production Linux servers.

These PAM system event configuration files operate in exactly the
same way as the PAM-aware application configuration files. They have
the same format, use the same syntax, and call upon PAM modules.
However, many of these files are symbolically linked (see Chapter 4,
“Moving Around the Filesystem”). Therefore, these configuration files
require a few extra steps when changes are made to them. The “how-
tos” are covered later in this chapter.

TIP
Many of the PAM configuration files have a man page associated
with them. For example, to find out more information on the
pam_unix module, type man pam_unix at the command line of your
Fedora and RHEL distribution. There are also module
documentation files in the /usr/share/doc/pam-*/txts/ directory.

Even though Linux comes with many PAM-aware applications, various
configuration files, and PAM modules already installed, you cannot
just hope that PAM will take care of itself. Certain administrative steps
are needed to manage PAM.

Administering PAM on your Linux system
The task of administering PAM on your Linux system is rather
minimal. You need to verify that PAM is properly implemented and
make adjustments to meet your particular organization's security
needs.

Also, PAM does a little more than just the application authentication
steps described previously. PAM can also limit resources, restrict
access times, enforce good password selection, and so on.

Managing PAM-aware application configuration files
You should review PAM configuration files for your PAM-aware
applications and utilities in order to ensure that their authentication
process matches your organization's desired authentication process.
Your Access Control Matrix (see Chapter 22, “Understanding Basic
Linux Security”) and the information on understanding PAM provided
in this chapter should help you conduct an audit of the PAM
configuration files.

Each PAM-aware application should have its very own PAM
configuration file. Each configuration file defines what particular PAM
modules are used for that application. If no configuration file exists, a

security hole may be created for that application. This hole could be
used for malicious intent. As a safety precaution, PAM comes with the
“other” configuration file. If a PAM-aware application does not have a
PAM configuration file, it defaults to using the “other” PAM
configuration file.

You can verify whether your Linux system has the /etc/pam.d/other
configuration file by using the ls command. The example that follows
shows that the /etc/pam.d/other PAM configuration file does exist on
this system.

$ ls /etc/pam.d/other

/etc/pam.d/other

The PAM /etc/pam.d/other configuration file should deny all access,
which in terms of security is referred to as Implicit Deny. In computer
security access control, Implicit Deny means that if certain criteria are
not clearly met, access must be denied. In this case, if no configuration
file exists for a PAM-aware application, all access to it is denied. The
following shows an /etc/pam.d/other file's contents:

$ cat /etc/pam.d/other

#%PAM-1.0

auth required pam_deny.so

account required pam_deny.so

password required pam_deny.so

session required pam_deny.so

Notice that all four PAM contexts—auth, account, password, and
session—are listed. Each context uses the required control flag and the
pam_deny.so module. The pam_deny.so PAM module is used to deny
access.

Even with the “other” configuration file in place, if a PAM
configuration file for a PAM-aware application is not there, it must be
created. Add this item to your PAM audit checklist. You should also
review your PAM “other” configuration file on your Linux system to
ensure that it enforces Implicit Deny.

Managing PAM system event configuration files
Similar to PAM-aware application and utility configuration files, your

PAM system event configuration files need to be audited with your
organization's Access Control Matrix. However, for any needed
modifications to these files, there are extra steps that must be taken.

In the material that follows, you will learn how to set up special
security requirements via PAM on your Linux system, such as account
login time restrictions. Many of the special requirements require you
to make a change to PAM system event configuration files, such as
/etc/pam.d/system-auth.

The problem with making changes to some of these PAM system event
configuration files is that the utility authselect can rewrite these files
and remove any locally made changes. Fortunately, each PAM
configuration file that runs this risk has it documented in a comment
line within. Using grep, you can quickly find which PAM configuration
files have this potential problem.

grep "authselect" /etc/pam.d/*

fingerprint-auth:# Generated by authselect on Mon Oct 21

19:24:36 2019

password-auth:# Generated by authselect on Mon Oct 21

19:24:36 2019

postlogin:# Generated by authselect on Mon Oct 21 19:24:36

2019

smartcard-auth:# Generated by authselect on Mon Oct 21

19:24:36 2019

system-auth:# Generated by authselect on Mon Oct 21 19:24:36

2019

These PAM system event configuration files use symbolic links (see
Chapter 4, “Moving Around the Filesystem”). For example, in Fedora
you can see that the file system-auth is actually a symbolic link
pointing to the file /etc/authselect/system-auth. The first character in
the file's security is an l. This indicates that the file is linked. The ->
symbol shows that the file is symbolically linked.

ls -l system-auth

lrwxrwxrwx. 1 root root 27 Oct 1 15:24 system-auth ->

/etc/authselect/system-auth

NOTE
On some Linux distributions, the utility pam-auth-config is similar
to the authselect utility in its ability to overwrite configuration
files. This can happen if the command pam-auth-config --force is
entered at the command line. Read the man pam-auth-config man
page to learn more about this utility if it is installed on your
system.

Implementing resources limits with PAM

Managing resources is not just a system administrative task. It is also a
security administrative task. Setting resource limitations helps you
avoid many adverse problems on your Linux system. Problems such as
fork bombs can be averted by limiting the number of processes a single
user can create. A fork bomb occurs when a process spawns one
process after another in a recursive manner until system resources are
consumed. Fork bombs can be malicious or just accidental; that is,
created simply by poor program code development.

The PAM module pam-limits uses a special configuration file to set
these resources limits: /etc/security/limits.conf. By default, this file
has no resource limits set within it. Therefore, you need to review the
file and set resources limits to match your organization's security
needs.

NOTE
PAM configuration files are in the /etc/pam.d directory and the
/etc/security directory.

The following snippet shows the /etc/security/limits.conf file. The
file is well documented. You should read through the contents of that
file for a thorough format description and examples of limits that can
be set.

$ cat /etc/security/limits.conf

/etc/security/limits.conf

#

#This file sets the resource limits for the users logged in

via PAM.

#It does not affect resource limits of the system services.

#

#Also note that configuration files in

/etc/security/limits.d directory,

#which are read in alphabetical order, override the settings

in this

#file in case the domain is the same or more specific.

…

#Each line describes a limit for a user in the form:

#

#<domain> <type> <item> <value>

…

#* soft core 0

#* hard rss 10000

#@student hard nproc 20

#@faculty soft nproc 20

#@faculty hard nproc 50

#ftp hard nproc 0

#@student - maxlogins 4

End of file

The format items domain and type need some further explanation
than what is documented in the configuration file:

domain: The limit applies to the listed user or group. If the domain
is *, it applies to all users.

type: A hard limit cannot be exceeded. A soft limit can be
exceeded, but only temporarily.

Look at the limits.conf file setting example that follows. The group
faculty is listed, but what you should notice is nproc. The nproc limit
sets the maximum number of processes a user can start. This setting is
what prevents a fork bomb. Notice that the type selected is hard; thus,
the limit of 50 processes cannot be exceeded. Of course, this limit is
not enforced because the line is commented out with a # symbol.

#@faculty hard nproc 50

Limit settings are set per login and only last for the duration of the
login session. A malicious user could log in several times to create a
fork bomb. Thus, setting the maximum number of logins for these user
accounts is a good idea too.

Limiting the maximum number of logins may have to be done on a
per-user basis. For example, johndoe needs to log in to the Linux
system only once. To prevent others from using johndoe's account, set
his account's maxlogins to 1.

johndoe hard maxlogins 1

To override any settings in the limits.conf file, add files named *.conf
to the /etc/security/limits.d directory. This is a convenient way to
have an RPM file or other method to add and remove limits without
needing to edit the limits.conf file directly.

The final step in limiting this resource is to ensure that the PAM
module using limits.conf is included in one of the PAM system event
configuration files. The PAM module using limits.conf is pam_limits.
In the partial listing that follows, grep is used to verify that the PAM
module is used within the system event configuration files.

grep "pam_limits" /etc/pam.d/*

/etc/pam.d/fingerprint-auth:session required

pam_limits.so

/etc/pam.d/password-auth:session required

pam_limits.so

/etc/pam.d/runuser:session required

pam_limits.so

/etc/pam.d/system-auth:session required

pam_limits.so

Time limits for access to services and accounts are not handled by the
PAM /etc/security/limits.conf configuration file. Instead, it is
handled by the time.conf file.

Implementing time restrictions with PAM
PAM can make your entire Linux system operate on “PAM time.” Time
restrictions such as access to particular applications during certain
times of the day, or allowing logins only during specified days of the
week, are all handled by PAM.

The PAM configuration file that handles these restrictions is located in
the /etc/security directory. The following code shows the well-
documented /etc/security/time.conf PAM configuration file.

$ cat /etc/security/time.conf

this is an example configuration file for the pam_time

module. Its syntax

was initially based heavily on that of the shadow package

(shadow-960129).

#

the syntax of the lines is as follows:

#

services;ttys;users;times

…

I recommend that you read through the contents of the time.conf file.
Note that the format for each valid entry follows this syntax:
services;ttys;users;times. Fields are separated by semicolons. The
valid field values are documented in the time.conf configuration file.

While time.conf is well-documented, an example is always helpful. For
instance, you have decided that regular users should be allowed to log
in on terminals on weekdays only (Monday through Friday). They can
log in from 7 a.m. to 7 p.m. on these weekdays. The following list
describes what elements need to be set:

services: Login

ttys—*: Indicates that all terminals are to be included

users: Everyone but root (!root)

times: Allowed on weekdays (Wd) from 7 a.m. (0700) to 7 p.m.
(1900)

The entry in time.conf would look like the following:

login; * ; !root ; Wd0700-1900

The final step in implementing this example time restriction is to
ensure that the PAM module using time.conf is included in one of the
PAM system event configuration files. The PAM module using
time.conf is pam_time. In the partial listing that follows, grep shows the
PAM module; pam_time is not used within any of the system event
configuration files.

grep "pam_time" /etc/pam.d/*

config-util:auth sufficient pam_timestamp.so

config-util:session optional pam_timestamp.so

Because pam_time is not listed, you must modify the
/etc/pam.d/system-auth file in order for PAM to enforce the time
restrictions. The PAM configuration file system-auth is used by PAM at
system login and during password modifications. This configuration
file checks many items, such as time restrictions.

Add the following near the top of the “account” section of the
configuration file. Now the pam_time module checks the login
restrictions you set within the /etc/security/time.conf file.

account required pam_time.so

NOTE
On Ubuntu, you need to modify the /etc/pam.d/common-auth file
instead of the system-auth configuration file.

Remember that system-auth is a symbolically linked file. If you modify
this file, you must take extra steps to preserve the modifications from
the authselect utility. You can employ additional PAM modules and
configuration files to set even more restrictions on subjects. One
important security module is pam_cracklib.

Enforcing good passwords with PAM
When a password is modified, the PAM module pam_cracklib is
involved in the process. The module prompts the user for a password
and checks its strength against a system dictionary and a set of rules
for identifying poor choices.

NOTE
The pam_cracklib module is installed by default on Fedora and
RHEL. For Ubuntu Linux systems, it is not installed by default.
Therefore, to get access to the pam_cracklib module on Ubuntu,
issue the command sudo apt-get install libpam-cracklib.

Using pam_cracklib, you can check a newly chosen password for the
following:

Is it a dictionary word?

Is it a palindrome?

Is it the old password with the case changed?

Is it too much like the old password?

Is it too short?

Is it a rotated version of the old password?

Does it use the same consecutive characters?

Does it contain the username in some form?

You can change the rules pam_cracklib uses for checking new
passwords by making modifications to the /etc/pam.d/system-auth
file. You may think that the changes should be made in the PAM-
aware passwd configuration file. However, /etc/pam.d/passwd includes
the system-auth file in its stack.

cat /etc/pam.d/passwd

#%PAM-1.0

This tool only uses the password stack.

password substack system-auth

-password optional pam_gnome_keyring.so use_authtok

password substack postlogin

NOTE
On Ubuntu, you need to modify the /etc/pam.d/common-password
file instead of the system-auth configuration file.

The current settings of the system-auth file are shown here. Currently,
one entry calls the pam_cracklib PAM module.

cat /etc/pam.d/system-auth

#%PAM-1.0

Generated by authselect on Mon Oct 21 19:24:36 2019

Do not modify this file manually.

auth required pam_env.so

auth required pam_faildelay.so delay=2000000

auth sufficient pam_fprintd.so

…

auth sufficient pam_unix.so nullok try_first_pass

auth requisite pam_succeed_if.so uid>= 1000

quiet_success

auth required pam_deny.so

auth sufficient pam_sss.so forward_pass

auth required pam_deny.so

account required pam_unix.so

account sufficient pam_localuser.so

account sufficient pam_succeed_if.so uid < 1000 quiet

account [default=bad success=ok user_unknown=ignore]

pam_sss.so

account required pam_permit.so

password requisite pam_cracklib.so try_first_pass

retry=3

…

The pam_cracklib entry in the preceding listing uses the keyword
retry. The following keywords are available for cracklib:

debug

Causes module to write information to syslog.
authtok_type=XXX

Defaults to using New UNIX password: and Retype UNIX
password: to request passwords.

Replace XXX with a word to use instead of UNIX.
retry=N

Default = 1

Prompt user at most N times before returning with an error.
difok=N

Default = 5

The number of characters in the new password that must not
be present in the old password.

Exception 1: If half of the characters in the new password are
different, then the new password is accepted.

Exception 2: See difignore.
difignore=N

Default = 23

The number of characters that the password has before the
difok setting is ignored.

minlen=N

Default = 9

The minimum acceptable size for the new password.

See dcredit, ucredit, lcredit, and ocredit for how their
settings affect minlen.

dcredit=N

Default =1

If (N >= 0): The maximum credit for having digits in the new
password. If you have fewer than or N digits, each digit counts
+1 toward meeting the current minlen value.

If (N < 0): The minimum number of digits that must be met
for a new password.

ucredit=N

Default = 1

If (N >= 0): The maximum credit for having uppercase letters
in the new password. If you have fewer than or N uppercase
letters, each letter counts +1 toward meeting the current
minlen value.

If (N < 0): The minimum number of uppercase letters that
must be met for a new password.

lcredit=N

Default = 1

If (N >= 0): The maximum credit for having lowercase letters
in the new password. If you have fewer than or N lowercase
letters, each letter counts +1 toward meeting the current
minlen value.

If (N < 0): The minimum number of lowercase letters that
must be met for a new password.

ocredit=N

Default = 1

If (N >= 0): The maximum credit for having other characters
in the new password. If you have fewer than or N other
characters, each character counts +1 toward meeting the
current minlen value.

If (N < 0): The minimum number of other characters that
must be met for a new password.

minclass=N

Default = 0

N out of four character classes is required for the new
password. The four classes are digits, uppercase letters,
lowercase letters, and other characters.

maxrepeat=N

Default = 0

Reject passwords that contain more than N same consecutive
characters.

reject_username

Check whether the name of the user in straight or reversed
form is contained in the new password. If it is found, the new
password is rejected.

try_first_pass

Try to get the password from a previous PAM module. If that
does not work, prompt the user for the password.

use_authtok

This argument is used to force the module not to prompt the
user for a new password. Instead, the new password is
provided by the previously stacked password module.

dictpath=/path

Path to the cracklib dictionaries.
maxsequence=N

Default = 0 (meaning this check is disabled)

N set to any number other than 0 causes passwords with
monotonic characters longer than that number to be rejected.

maxclassrepeat=N

Default = 0 (meaning this check is disabled)

N set to any number other than 0 causes passwords with
consecutive characters in the same class that are longer than
that number to be rejected.

gecoscheck=N

Causes passwords with more than three straight characters
from the user's GECOS field, typically containing the user's
real name, to be rejected.

enforce:for_root=N

Default = 0 (meaning this check is disabled)

N set to any number other than 0 causes passwords with
consecutive characters in the same class that are longer than
that number to be rejected.

enforce:for_root

Enforce failed password checks for the root user. This option is off
by default.

For example, if your organization requires passwords to be 10
characters long and they must contain two digits, you would add a line
similar to the following to the /etc/pam.d/system-auth file:

password required pam_cracklib.so minlen=10 dcredit=-2

The keywords used in this example with pam_cracklib are as follows:

minlen=10: The new password must be at least 10 characters.

dcredit=-2: The new password must contain two numbers.

NOTE
The pam_cracklib restrictions do not apply to the root user unless
you apply the enforce:for_root option.

Encouraging sudo use with PAM
To allow tracking of root-account use by individuals and avoid a
repudiation situation (see Chapter 22, “Understanding Basic Linux
Security”), you should restrict the use of the su command and
encourage the use of sudo. If your organization has such a policy, you
can accomplish this with PAM in just a few steps.

The su command is PAM-aware, which greatly simplifies things. It
uses the PAM module pam_wheel to check for users in the wheel group.
The /etc/pam.d/su configuration file is shown here:

cat /etc/pam.d/su

#%PAM-1.0

auth required pam_rootok.so

auth sufficient pam_rootok.so

Uncomment the following line to implicitly trust users

in the "wheel" group.

#auth sufficient pam_wheel.so trust use_uid

Uncomment the following line to require a user to be

in the "wheel" group.

#auth required pam_wheel.so use_uid

auth substack system-auth

auth include postlogin

account sufficient pam_succeed_if.so uid = 0 use_uid

quiet

account include system-auth

password include system-auth

session include system-auth

session include postlogin

session optional pam_xauth.so

First, to restrict the use of su, if you are using the wheel group as your
administrative group, you need to reassign your administrative group
to a new group (see Chapter 11, “Managing User Accounts”). If you are
not using the wheel group, just be sure not to assign anyone in the

future to this group.

Next, you need to edit the /etc/pam.d/su configuration file. Remove
the comment mark, #, from the following line:

#auth required pam_wheel.so use_uid

With these modifications, PAM disables the use of the su command.
Administrative users now must use sudo, which the system tracks and
provides a desired non-repudiation environment (see Chapter 22).

Obtaining more information on PAM
PAM is another rich and versatile security tool available to you on your
Linux system. In your own Linux system's man pages, you can read
about managing the PAM configuration files and about the modules in
your /usr/lib64/security (64-bit) directory.

To get more information on PAM configuration files, use the
command man pam.conf.

You can see all of the PAM modules available on your system by
entering ls /usr/lib64/security/pam*.so at the command line.
To get more information on each PAM module, enter man
pam_module_name. Be sure to leave off the file extension of so for
the pam_module_name. For example, enter man pam_lastlog to learn
more about the pam_lastlog.so module. Several websites can
provide additional information on PAM:

The Official Linux-PAM website: http://linux-pam.org

The Linux-PAM System Administrator's Guide:
http://linux-pam.org/Linux-PAM-html/Linux-PAM_SAG.html

PAM Module reference: http://linux-pam.org/Linux-PAM-
html/sag-module-reference.html

http://linux-pam.org
http://linux-pam.org/Linux-PAM-html/Linux-PAM_SAG.html
http://linux-pam.org/Linux-PAM-html/sag-module-reference.html

Summary
Cryptography tools offer ways of protecting and verifying the validity
of the data you use on your Linux system. The PAM facility provides a
means of creating policies to secure the tools that are used to
authenticate users on your system.

Both the cryptography tools and PAM should be handled with care as
you learn about Linux. Be sure to test any modifications that you make
on a test Linux system or a virtualized Linux system before you
implement them on a production machine.

The next chapter covers SELinux. While cryptography and PAM are
tools that you can use on your Linux system, SELinux is an entire
security enhancement layer.

Exercises
Use these exercises to test your knowledge of using cryptography tools
and PAM. These tasks assume that you are running a Fedora or Red
Hat Enterprise Linux system (although some tasks work on other
Linux systems as well). If you are stuck, solutions to the tasks are
shown in Appendix B (although in Linux, there are often multiple
ways to complete a task).

1. Encrypt a file using the gpg2 utility and a symmetric key.

2. Generate a public key ring using the gpg2 utility.

3. List out the key ring you generated.

4. Encrypt a file and add your digital signature using the gpg2 utility.

5. Go to the Fedora download page: https://getfedora.org. Select
one of the Fedora distributions to download. When the download
is complete, verify your image.

6. Using the command which su, determine the su command's full
filename. Next, determine whether the su command on your
Linux system is PAM-aware.

7. Does the su command have a PAM configuration file? If so,
display the configuration file on the screen and list what PAM
contexts it uses.

8. List out the various PAM modules on your system to your screen.

9. Find the PAM “other” configuration file on your system. Does it
exist? Does it enforce Implicit Deny?

10. Find the PAM limits configuration file. Does it have a setting to
keep a fork bomb from occurring on your system?

https://getfedora.org

CHAPTER 24
Enhancing Linux Security with SELinux

IN THIS CHAPTER
Learning about SELinux benefits

Learning how SELinux works

Setting up SELinux

Fixing problems with SELinux

Getting additional information on SELinux

Security Enhanced Linux (SELinux) was developed by the National
Security Agency (NSA) along with other security research
organizations, such as the Secure Computing Corporation (SCC).
SELinux was released to the open source community in 2000, and it
became popular when Red Hat included SELinux in its Linux
distributions. Now, SELinux is used by many organizations and is
widely available.

Understanding SELinux Benefits
SELinux is a security enhancement module deployed on top of Linux.
It provides additional security measures, is included by default, and is
set to be in enforcing mode in Red Hat Enterprise Linux (RHEL) and
Fedora.

SELinux provides improved security on the Linux system via role
based access controls (RBACs) on subjects and objects (aka processes
and resources). “Traditional” Linux security uses Discretionary Access
Controls (DACs).

With DAC, a process can access any file, directory, device, or other
resource that leaves itself open to access. With RBAC, a process only
has access to resources that it is explicitly allowed to access, based on
the assigned role. The way that SELinux implements RBAC is to assign
an SELinux policy to a process. That policy restricts access as follows:

Only letting the process access resources that carry explicit labels

Making potentially insecure features, such as write access to a
directory, available as Booleans, which can be turned on or off

A service, such as a web server, that includes an SELinux policy will
often get installed with SELinux labels set on specific directories and
files. This can make it so that the running server process can only read
and write files from specific directories. If you want to change that,
you need to add the correct SELinux labels on the files and directories
that you want the process to access.

SELinux is not a replacement for DAC. Instead, it is an additional
security layer.

DAC rules are still used when using SELinux.

DAC rules are checked first, and if access is allowed, then SELinux
policies are checked.

If DAC rules deny access, SELinux policies are not reviewed.

If a user tries to execute a file for which they do not have execute

access to (rw-), the “traditional” Linux DAC controls deny access.
Thus, the SELinux policies are not even checked.

NOTE
SELinux is the default security enhancement of Red Hat
distributions, whereas AppArmor is the default security
enhancement for Ubuntu. You can still install SELinux on Ubuntu
by using the command sudo apt-get install selinux and then
reboot. However, as of this writing, the Ubuntu Wiki page for
SELinux suggests that you do not use Ubuntu's SELinux package
(https://wiki.ubuntu.com/SELinux). If you want to learn more
about AppArmor, go to
https://help.ubuntu.com/community/AppArmor.

Even though “traditional” Linux security controls still work, there are
several benefits to using SELinux. Following are a few of SELinux's
benefits:

It implements the RBAC access control model. This is
considered the strongest access control model.

It uses least privilege access for subjects (for example,
users and processes). The term least privilege means that
every subject is given a limited set of privileges that are only
enough to allow the subject to be functional in its tasks. With least
privilege implemented, a user or process is limited on the
accidental (or on-purpose) damage to objects it can cause.

It allows process sandboxing. The term process sandboxing
means that each process runs in its own area (sandbox). It cannot
access other processes or their files unless special permissions are
granted. These areas where processes run are called “domains.”

It allows a test of its functionality before
implementation. SELinux has a permissive mode, which allows
you to see the effect of enforcing SELinux on your system. In
permissive mode, SELinux still logs what it considers security
breaches (called AVC denials), but it doesn't prevent them.

Another way to look at SELinux benefits is to examine what can

https://wiki.ubuntu.com/SELinux
https://help.ubuntu.com/community/AppArmor

happen if SELinux is not running on your Linux system. For example,
getting back to the web server example, your web server daemon
(httpd) is listening on a port for something to happen. A simple
request from a web browser comes in to view a home page. Going
through its normal routine, the httpd daemon hears the request and
only “traditional” Linux security is applied. Being unconstrained by
SELinux, httpd can do these things:

Access any file or directory, based on read/write/execute
permissions for the associated owner and group.

Perform potentially insecure activities, such as allowing a file
upload or changing system limits.

Listen on any port it likes for incoming requests.

On a system constrained by SELinux, the httpd daemon is much more
tightly controlled. Using the preceding example, httpd can only listen
on the port on which SELinux allows it to listen. SELinux prevents
httpd from accessing any file that doesn't have the proper security
context set and denies potentially insecure activities that are not
explicitly enabled with Booleans in SELinux. In essence, SELinux
severely limits what malicious code might gain access to and generally
limits activity on your Linux system.

Understanding How SELinux Works
SELinux can be compared to a guard at a door: In this comparison, the
subject (the user) wants to access the object (the file) inside the room.
To gain access to this object:

1. The subject must present an ID badge to the guard.

2. The guard reviews the ID badge and access rules kept in a large
manual.

a. If the access rules allow this particular ID badge inside the
door, the subject may enter the room to access the object.

b. If the access rules do not allow this particular ID badge access
to the object, then the guard refuses entry.

SELinux provides a combination of role based access control (RBAC)
and either type enforcement (TE) or Multi-Level Security (MLS). In
role based access control, access to an object is based on a subject's
assigned role in the organization. Therefore, it is not based on the
subject's username or process ID. Each role is granted access rights.

Understanding Type Enforcement
Type enforcement (TE) is necessary to implement the RBAC model.
Type enforcement secures a system through these methods:

Labeling objects as certain security types

Assigning subjects to particular domains and roles

Providing rules allowing certain domains and roles to access
certain object types

The example that follows uses the ls -l command to show the DAC
controls on the file my_stuff. The output shows the file's owner
(johndoe) and group (johndoe) as well as its assignments for
permissions.

If you need a review of file permissions, see Chapter 4, “Moving
Around the Filesystem.”

$ ls -l my_stuff

-rw-rw-r--. 1 johndoe johndoe 0 Feb 12 06:57 my_stuff

The example that follows includes ls -lZ and the same file, my_stuff,
but instead of just the DAC controls, the -Z option displays the
SELinux security RBAC controls too.

$ ls -lZ my_stuff

-rw-rw-r--. johndoe johndoe

unconfined_u:object_r:user_home_t:s0 … my_stuff

The ls -Z example displays four items associated with the file that are
specific to SELinux:

user (unconfined_u)

role (object_r)

type (user_home_t)

level (s0)

These four RBAC items (user, role, type, and level) are used in the
SELinux access control to determine appropriate access levels.
Together, the items are called the SELinux security context. A security
context (ID badge) is sometimes called a security label.

These security context assignments are given to subjects (processes
and users). Each security context has a specific name. The name given
depends upon what object or subject it has been assigned: Files have a
file context, users have a user context, and processes have a process
context, also called a domain.

The rules allowing access are called allow rules or policy rules. A policy
rule is the process SELinux follows to grant or deny access to a
particular system security type. Returning to the comparison of
SELinux with the guard, SELinux serves as the guard who must see
the subject's security context (ID badge) and review the policy rules
(access rules manual) before allowing or denying access to an object.
Thus, type enforcement ensures that only certain “types” of subjects
can access certain “types” of objects.

Understanding Multi-Level Security

With SELinux, the default policy type is called a targeted policy, which
primarily controls how network services (such as web servers and file
servers) can be accessed on a Linux system. The targeted policy places
fewer restrictions on what valid user accounts can do on the system.
For a more restricted policy, you can choose Multi-Level Security
(MLS). MLS uses type enforcement along with the additional feature
of security clearances. It also offers Multi-Category Security, which
gives classification levels to objects.

TIP
The Multi-Level Security (MLS) names can cause confusion. Multi-
Category Security (MCS) is sometimes called Multi-Clearance
Security. Because MLS offers MCS, it is sometimes called
MLS/MCS.

Multi-Level Security enforces the Bell-LaPadula Mandatory Access
security model. The Bell-LaPadula model was developed by the US
government to impose information confidentiality. Enforcing this
model is accomplished by granting object access based on a role's
security clearance and an object's classification level.

Security clearance is an attribute granted to roles allowing access to
classified objects. Classification level is an attribute granted to an
object, providing protection from subjects who have a security
clearance attribute that is too low. You most likely have heard of the
classification level top secret. The fictional book and movie character
James Bond had a top-secret security clearance, which granted him
access to top-secret classified information. This is a classic example of
the Bell-LaPadula model.

The combination of RBAC along with either type enforcement (TE) or
Multi-Level Security (MLS) enables SELinux to provide such a strong
security enhancement. SELinux also offers different operational
modes for its use.

Implementing SELinux security models
The role-based access control model, type enforcement, Multi-Level
Security, and Bell-LaPadula models are all interesting topics. SELinux
implements these models through a combination of four primary
SELinux pieces:

Operational modes

Security contexts

Policy types

Policy rule packages

Although we've touched upon some of these design elements, the
following will give you an in-depth understanding of them. This
understanding is needed before you can begin modifying the SELinux
configuration on your system.

Understanding SELinux operational modes
SELinux comes with three operational modes: disabled, permissive,
and enforcing. Each of these modes offers different benefits for Linux
system security.

Using the disabled mode
In the disabled mode, SELinux is turned off. The default method of
access control, Discretionary Access Control (DAC), is used instead.
This mode is useful for circumstances in which enhanced security is
not required.

If at all possible, Red Hat recommends setting SELinux to permissive
mode rather than disabling it. However, there are occasions where
disabling SELinux is appropriate.

If you are running applications that are working properly (from your
perspective) but are generating massive amounts of SELinux AVC
denial messages (even in permissive mode), you may end up filling up
log files to the point of making your systems unusable. The better
approach is to set the proper security context on the files your
applications need to access. Nevertheless, disabling SELinux is the
quicker fix.

Before you disable SELinux, however, think about whether you may
ever want to enable it on that system again. If you decide to set it to
enforcing or permissive at a later date, the next time you reboot your
system, it will go through an automatic SELinux file relabel before it
comes up.

TIP
If all you care about is turning SELinux off, you have found the
answer. Just edit the configuration file /etc/selinux/config and
change the text SELINUX= to SELINUX=disabled. SELinux will be
disabled after a system reboot. You can now skip the rest of this
chapter.

Using the permissive mode
In permissive mode, SELinux is turned on, but the security policy
rules are not enforced. When a security policy rule should deny
admission, access is still allowed. However, a message is sent to a log
file denoting that access should have been denied.

SELinux permissive mode is used for the following:

Auditing the current SELinux policy rules

Testing new applications to see what effect SELinux policy rules
will have on them

Testing new SELinux policy rules to see what effect the new rules
will have on current services and applications

Troubleshooting why a particular service or application is no
longer working properly under SELinux

In some cases, you can use the audit2allow command to read the
SELinux audit logs and generate new SELinux rules to allow the
denied actions selectively. This can be a quick way to get your
applications working on your Linux system without disabling
SELinux.

Using the Enforcing mode
The name says it all. In enforcing mode, SELinux is turned on and all
of the security policy rules are enforced.

Understanding SELinux security contexts
As mentioned earlier, an SELinux security context is the method used
to classify objects (such as files) and subjects (such as users and
programs). The defined security context allows SELinux to enforce
policy rules for subjects accessing objects. A security context consists
of four attributes: user, role, type, and level.

User The user attribute is a mapping of a Linux username to an
SELinux name. This is not the same as a user's login name, and it
is referred to specifically as the SELinux user. The SELinux
username ends with a u, making it easier to identify in the output.
Regular unconfined users have an unconfined_u user attribute in
the default targeted policy.

Role A designated role in the company is mapped to an SELinux
role name. The role attribute is then assigned to various subjects
and objects. Each role is granted access to other subjects and
objects based on the role's security clearance and the object's
classification level. More specifically, for SELinux, users are
assigned a role and roles are authorized for particular types or
domains. Using roles can force accounts, such as root, into a less
privileged position. The SELinux role name has an r at the end.
On a targeted SELinux system, processes run by the root user
have a system_r role, while regular users run under the
unconfined_r role.

Type This type attribute defines a domain type for processes, a
user type for users, and a file type for files. This attribute is also
called security type. Most policy rules are concerned with the
security type of a process and what files, ports, devices, and other
elements of the system that process has access to (based on their
security types). The SELinux type name ends with a t.

Level The level is an attribute of Multi-Level Security (MLS), and
it enforces the Bell-LaPadula model. It is optional in TE but is
required if you are using MLS.

The MLS level is a combination of the sensitivity and
category values that together form the security level. A level

is written as sensitivity : category.
sensitivity

Represents the security or sensitivity level of an object, such as
confidential or top secret.

Is hierarchical, with s0 (unclassified) typically being the
lowest.

Is listed as a pair of sensitivity levels (lowlevel-highlevel) if
the levels differ.

Is listed as a single sensitivity level (s0) if there are no low and
high levels. In some cases, however, even if there are no low
and high levels, the range is still shown (s0-s0).

category

Represents the category of an object, such as No Clearance,
Top Clearance, and so on.

Traditionally, the values are between c0 and c255.

Is listed as a pair of category levels (lowlevel.highlevel) if the
levels differ.

Is listed as a single category (level) if there are no low and high
levels.

Users have security contexts
To see your SELinux user context, enter the id command at the shell
prompt. The following is an example of the security context for user
johndoe:

$ id

uid=1000(johndoe) gid=1000(johndoe) groups=1000(johndoe)

 context=unconfined_u:unconfined_r:unconfined_t:s0-

s0:c0.c1023

The user's security context list shows the following:

user: The Linux user, johndoe, is mapped to the SELinux
unconfined_u user.

role: The SELinux user, unconfined_u, is mapped to the role of the
unconfined_r.

type: The user has been given the type of unconfined_t.

level:

sensitivity: The user has only one sensitivity level, and it is
the lowest level of s0.

categories: The user has access to c0.c1023, which is all
categories (c0 through to c1023).

Files have security contexts
A file also has a security context. To see an individual file's context, use
the -Z option on the ls command. The following is a security context
for the file my_stuff:

$ ls -Z my_stuff

-rw-rw-r--. johndoe johndoe

 unconfined_u:object_r:user_home_t:s0 my_stuff

The file context list shows the following:

user: The file is mapped to the SELinux unconfined_u user.

role: The file is mapped to the role of object_r.

type: The file is considered to be part of the user_home_t domain.

level:

sensitivity: The user has only one sensitivity level, and it is
the lowest level of s0.

categories: MCS is not set for this file.

Processes have security contexts
A process's security context has the same four attributes as a user's
and a file's context. To see process information on a Linux system, you
typically use a variant of the ps command. In the following code, the ps
-el command was used.

ps -el | grep bash

0 S 1000 1589 1583 0 80 0 - 1653 n_tty_ pts/0

00:00:00 bash

0 S 1000 5289 1583 0 80 0 - 1653 wait pts/1

00:00:00 bash

4 S 0 5350 5342 0 80 0 - 1684 wait pts/1

00:00:00 bash

To see a process's security context, you need to use the -Z option on
the ps command. In the example that follows, the ps -eZ command
was used and then piped into grep to search only for processes running
the bash shell.

ps -eZ | grep bash

unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023 1589

pts/0 00:00:00 bash

unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023 5289

pts/1 00:00:00 bash

unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023 5350

pts/1 00:00:00 bash

The process context list shows the following:

user: Process is mapped to the SELinux unconfined_u user.

role: Process is running as the unconfined_r role.

type: Process is running in the unconfined_t domain.

level:

sensitivity: Process has only level s0.

categories: Process has access to c0.c1023, which is all
categories (c0 through to c1023).

These security contexts can all be changed to meet your organization's
particular security needs. However, before you learn how to change
the settings of these security contexts, you need to understand another
piece of the SELinux puzzle, SELinux policy types.

Understanding SELinux Policy types
The policy type chosen directly determines what sets of policy rules
are used to dictate what an object can access. The policy type also
determines what specific security context attributes are needed. This is

where you start to see the fine level of access control that can be
implemented via SELinux.

NOTE
The policy types available on your distribution may not match the
ones listed here. For instance, on older Linux distributions, the
strict policy is still available. On newer distributions, the strict
policy has been merged into the Targeted policy, with Targeted
used by default.

SELinux has different policies among which you can choose:

Targeted

MLS

Minimum

Each policy implements different access controls to match your
organization's needs. It is critical to understand these policy types in
order to select the correct one for your particular security
requirements.

Targeted policy
The Targeted policy's primary purpose is to restrict “targeted”
daemons. However, it can also restrict other processes and users.
Targeted daemons are sandboxed. A sandbox is an environment where
programs can run but their access to other objects is tightly controlled.

A process running in such an environment is said to be “sandboxed.”
Thus, a targeted daemon is restricted so that no malicious attacks
launched through them can affect other services or the Linux system
as a whole. Targeted daemons make it safer for you to share your print
server, file server, web server, or other services while limiting the risks
that access to those services pose to other assets on your system.

All subjects and objects not targeted are run in the unconfined_t
domain. The unconfined_t domain has no SELinux policy restrictions
and thus only uses the “traditional” Linux security.

SELinux comes with the Targeted policy set as the default. Thus, by

default, SELinux targets only a few daemons.

MLS (Multi-Level Security) policy
The MLS policy's primary purpose is to enforce the Bell-LaPadula
model. It grants access to other subjects and objects based upon a
role's security clearance and the object's classification level.

In the MLS policy, a security context's MLS attribute is critical.
Otherwise, the policy rules will not know how to enforce access
restrictions.

Minimum policy
This policy is just as it sounds—minimal. It was originally created for
low-memory machines or devices such as smartphones.

The Minimum policy is essentially the same as the Targeted policy, but
only the base policy rule package is used. This “bare-bones” policy can
be used to test out the effects of SELinux on a single designated
daemon. For low-memory devices, the Minimum policy allows
SELinux to run without consuming a great deal of resources.

Understanding SELinux policy rule packages
Policy rules, also called allow rules, are the rules used by SELinux to
determine if a subject has access to an object. Policy rules are installed
with SELinux and are grouped into packages, also called modules.

On your Linux system, there is user documentation on these various
policy modules in the form of HTML files. To view this documentation
on Fedora or RHEL, open your system's browser and type in the
following URL: file:///usr/share/doc/selinux-
policy/html/index.html. For Ubuntu, the URL is
file:///usr/share/doc/selinux-policy-doc/html/index.html. If you
do not have the policy documentation on your system, you can install
it on a Fedora or RHEL system by typing yum install selinux-policy-
doc at the command line. On Ubuntu, type sudo apt-get install
selinux-policy-doc at the command line.

You can review this policy documentation to see how policy rules are

created and packaged.

The policy rule packages, along with the SELinux operational modes,
policy type, and various security contexts, work together to secure
your Linux system via SELinux. The following sections cover how to
begin configuring SELinux to meet your particular organization's
security needs.

Configuring SELinux
SELinux comes preconfigured. You can use the SELinux features
without any configuration work. However, rarely do the preconfigured
settings meet all of your Linux system's security needs.

SELinux configurations can only be set and modified by the root user.
Configuration and policy files are located in the /etc/selinux
directory. The primary configuration file is the /etc/selinux/config
file, and it appears as follows:

cat /etc/selinux/config

This file controls the state of SELinux on the system.

SELINUX= can take one of these three values:

enforcing - SELinux security policy is enforced.

permissive - SELinux prints warnings instead of

enforcing.

disabled - SELinux is fully disabled.

SELINUX=enforcing

SELINUXTYPE= can take one of these three values:

targeted - Targeted processes are protected,

minimum - Modification of targeted policy.

Only selected processes are protected.

mls - Multi Level Security protection.

SELINUXTYPE=targeted

This main SELinux configuration file allows you to set the mode and
the policy type.

Setting the SELinux mode
To see SELinux's current mode on your system, use the getenforce
command. To see both the current mode and the mode set in the
configuration file, use the sestatus command. Both commands are
shown in the code that follows:

getenforce

Enforcing

sestatus

SELinux status: enabled

SELinuxfs mount: /sys/fs/selinux

SELinux root directory: /etc/selinux

Loaded policy name: targeted

Current mode: enforcing

Mode from config file: enforcing

Policy MLS status: enabled

Policy deny_unknown status: allowed

Memory protection checking: actual (secure)

Max kernel policy version: 31

To change the mode setting, you can use the setenforce newsetting,
where newsetting is either

enforcing or 1

permissive or 0

Notice that you cannot use the setenforce command to change
SELinux to disabled mode.

The example that follows shows the SELinux mode being changed
immediately to permissive mode via the setenforce command. The
sestatus command shows the current operational mode and the mode
in the configuration file, which has not been modified. When the
system is rebooted, it determines the SELinux operational mode from
the configuration file. Thus, the permissive mode set in the example
that follows is temporary because the enforcing mode is set via the
configuration file when the system is rebooted.

setenforce 0

getenforce

Permissive

sestatus

SELinux status: enabled

SELinuxfs mount: /sys/fs/selinux

SELinux root directory: /etc/selinux

Loaded policy name: targeted

Current mode: permissive

Mode from config file: enforcing

…

CAUTION
It is best to switch from the disabled to the enforcing mode by
modifying the configuration file and rebooting. Switching from
disabled to enforcing via the setenforce command may hang your
system as a result of incorrect file labels. Keep in mind that, when
rebooting after changing from disabled mode, there could be a
long wait for your filesystem to be relabeled after the system comes
back up in permissive or enforcing mode.

To disable SELinux, you must edit the SELinux configuration file.
Rebooting the system always changes the mode back to what is set in
that configuration file. The preferred method of changing the SELinux
mode is to modify the configuration file and then reboot the system.

When switching from disabled to either enforcing or permissive mode,
SELinux automatically relabels the filesystem after a reboot. This
means that SELinux checks and changes the security contexts of any
files with incorrect security contexts (for example, mislabeled files)
that can cause problems in the new mode. Also, any files not labeled
are labeled with contexts. This relabeling process can take a long time
because each file's context is checked. Following is the message that
you'll receive when a system is going through a relabeling process after
a reboot:

*** Warning -- SELinux targeted policy relabel is required.

*** Relabeling could take a very long time, depending on

file

*** system size and speed of hard drives.

To modify the mode in the /etc/selinux/config file, change the line
SELINUX= to one of the following:

SELINUX=disabled

SELINUX=enforcing

SELINUX=permissive

The SELinux configuration file example that follows shows that the
mode has been set to permissive. Now, when a system reboot occurs,
the mode is changed.

cat /etc/selinux/config

This file controls the state of SELinux on the system.

SELINUX= can take one of these three values:

targeted - Targeted processes are protected,

minimum - Modification of targeted policy.

Only selected processes are protected.

mls - Multi Level Security protection

SELINUX=permissive

…

The primary SELinux configuration file does not just contain the mode
setting. It also specifies the policy type, which will be enforced.

Setting the SELinux policy type
The policy type you choose determines whether SELinux enforces TE,
MLS, or a base package. This type setting directly determines the sets
of policy rules used to dictate what an object can access.

By default, the policy type is set to targeted. To change the default
policy type, edit the /etc/selinux/config file. Change the line
SELINUXTYPE= to one of the following:

SELINUX=targeted

SELINUX=mls

SELINUX=minimum

If you set the SELinux type to mls or minimum, you need to make sure
that you have their policy package installed first. Check by typing the
following command:

yum list selinux-policy-mls or yum list selinux-policy-

minimum

NOTE
To check the SELinux policy packages on Ubuntu, use the
command sudo apt-cache policy package_name.

The example of the SELinux configuration file that follows shows that
the type has been set to mls. Now when a system reboot occurs, the
policy type is changed.

cat /etc/selinux/config

This file controls the state of SELinux on the system.

…

SELINUXTYPE= type of policy in use. Possible values are:

targeted - Targeted processes are protected,

minimum - Modification of targeted policy.

Only selected processes are protected.

mls - Multi Level Security protection.

SELINUXTYPE=mls

Managing SELinux security contexts
SELinux security contexts allow SELinux to enforce policy rules for
subjects accessing objects. Your Linux system comes with security
contexts already assigned.

To view current SELinux file and process security contexts, use the
secon command. Table 24.1 lists available options on the secon
command.

TABLE 24.1 secon Command Options

Option Description
-u Use this option to show the user of the security context.
-r Use this option to show the role of the security context.
-t Use this option to show the type of the security context.
-s Use this option to show the sensitivity level of the security

context.

-c Use this option to show the clearance level of the security
context.

-m Use this option to show the sensitivity and clearance level of
the security context as an MLS range.

If you use the secon command with no designation, it shows you the
current process's security context. To see another process's security
context, use the -p option. The example that follows shows you how to
use secon to view the current and the systemd process's security
context.

secon -urt

user: unconfined_u

role: unconfined_r

type: unconfined_t

secon -urt -p 1

user: system_u

role: system_r

type: init_t

To view a file's security context, you use the -f option, as shown here:

secon -urt -f /etc/passwd

user: system_u

role: object_r

type: passwd_file_t

The secon command doesn't show your security context. To see your
security context, use the id command.

Managing the user security context
Remember that every system user login ID is mapped to a particular
SELinux user ID. To see a mapping list on your system, enter the
semanage login -l command. The semanage command and its output
are shown in the code that follows. If a user login ID is not listed, then
it uses the “default” login mapping, which is the Login Name of
default. Notice that the associated MLS/MCS settings for each
SELinux user are shown as well.

semanage login -l

Login Name SELinux User MLS/MCS Range

Service

__default__ unconfined_u s0-s0:c0.c1023

*

root unconfined_u s0-s0:c0.c1023

*

To see a current display of the SELinux users and their associated
roles, use the command semanage user -l. The partial display that
follows shows roles mapped to SELinux usernames:

semanage user -l

 Labeling MLS/ MLS/

SELinux User Prefix MCS Level MCS Range SELinux

Roles

guest_u user s0 s0 guest_r

…

user_u user s0 s0 user_r

xguest_u user s0 s0 xguest_r

If you need to add a new SELinux username, the semanage utility is
used again. This time, the command is semanage user -a
selinux_username. To map a login ID to the newly-added SELinux
username, the command is semanage login -a -s selinux_username
loginID. The semanage utility is a powerful tool in managing your
SELinux configuration. For more information on the semanage utility,
see the man pages.

Managing the file security context
Labeling files is critical to maintaining proper access control to each
file's data. SELinux does set file security labels upon installation and
upon system reboot when the SELinux mode is switched from
disabled. To see a file's current label (aka security context), use the ls
-Z command, as shown here:

ls -Z /etc/passwd

-rw-r--r--. root root system_u:object_r:etc_t:s0 /etc/passwd

You can use several commands to manage file security context labels,
as shown in Table 24.2.

TABLE 24.2 File Security Context Label Management
Commands

Utility Description
chcat Use this to change a file's security context label's category.
chcon Use this to change a file's security context label.
fixfiles This calls the restorecon/setfiles utility.
restorecon This does the exact same thing as setfiles utility, but it

has a different interface than setfiles.
setfiles Use this to verify and/or correct security context labels. It

can be run for file label verification and/or relabeling files
when adding a new policy module to the system. Does
exactly the same thing as the restorecon utility but has a
different interface than restorecon.

The chcat and chcon commands, shown in Table 24.2, allow you to
change a file's security context. In the following example, the chcon
command is used to change the SELinux user associated with file.txt
from undefined_u to system_u.

ls -Z file.txt

-rw-rw-r--. johndoe johndoe

 unconfined_u:object_r:user_home_t:s0 file.txt

chcon -u system_u file.txt

ls -Z file.txt

-rw-rw-r--. johndoe johndoe

 system_u:object_r:user_home_t:s0 file.txt

Notice in Table 24.2 that fixfiles, restorecon, and setfiles are
essentially the same utility. However, restorecon is the popular choice
to use when fixing files’ labels. The command restorecon filename
changes a file back to its default security context.

Managing the process security context
The definition of a process is a running program. When you run
programs or start services on a Linux system, each one is given a
process ID (see Chapter 6, “Managing Running Processes”). On a
system with SELinux, a process is also given a security context.

How a process gets its security context depends upon which process
started it. Remember that systemd (previously init) is the “mother” of

all processes (see Chapter 15, “Starting and Stopping Services”). Thus,
many daemons and processes are started by systemd. The processes
systemd starts are given new security contexts. For instance, when the
apache daemon is started by systemd, it is assigned the type (aka
domain) httpd_t. The context assigned is handled by the SELinux
policy written specifically for that daemon. If no policy exists for a
process, then it is assigned a default type, unconfined_t.

For a program or application run by a user (parent process), the new
process (child process) inherits the user's security context. Of course,
this occurs only if the user is allowed to run the program. A process
can also run a program. The child process in this case also inherits its
parent process's security context. Thus, the child process runs in the
same domain.

So, a process's security context is set before the program is run and
depends upon who started it. You can use a couple of commands to
change the security contexts under which a program is run:

runcon: Run the program using options to determine the user,
role, and type (aka domain).

sandbox: Run the program within a tightly controlled domain (aka
sandbox).

You can cause several problems by using runcon, so use it with caution.
However, sandbox offers a great deal of protection. It allows flexibility
in testing out new programs on your Linux system.

Managing SELinux policy rule packages
Policy rules are the rules used by SELinux to determine whether a
subject has access to an object. They are grouped into packages, also
called modules, and are installed with SELinux. An easy way to view
the modules on your system is to use the semodule -l command. It
lists all of the policy modules along with their current version number.
An example of the semodule -l command is shown here:

semodule -l

abrt

accountsd

acct

…

xserver

zabbix

zarafa

zebra

zoneminder

zosremote

Several tools can help you manage and even create your own policy
modules. Table 24.3 shows the various policy rule package tools
available on a Fedora system.

TABLE 24.3 SELinux Policy Package Tools

Policy Tool Description
audit2allow Generates policy allow/dontaudit rules from logs of

denied operations
audit2why Generates a description of why the access was

denied from logs of denied operations
checkmodule Compiles policy modules
checkpolicy Compiles SELinux policies
load_policy Loads new policies into the kernel
semodule_expand Expands a policy module package
semodule_link Links policy module packages together
semodule_package Creates a policy module package

The following is an example policy typically used as a framework to
create local policy rules. The example policy is rather long, so only a
portion of it is shown.

cat /usr/share/doc/selinux-policy/example.te

policy_module(myapp,1.0.0)

##

#

Declarations

#

type myapp_t;

type myapp_exec_t;

domain_type(myapp_t)

domain_entry_file(myapp_t, myapp_exec_t)

type myapp_log_t;

logging_log_file(myapp_log_t)

type myapp_tmp_t;

files_tmp_file(myapp_tmp_t)

…

allow myapp_t myapp_tmp_t:file manage_file_perms;

files_tmp_filetrans(myapp_t,myapp_tmp_t,file)

#

You can see from the preceding example code that a special syntax is
used in policy code. To create and modify policy rules, you need to
learn this policy rule language syntax, learn how to use the SELinux
policy compilers, and learn how to link policy rule files together to
form modules; you probably need to take a couple of day-long classes
to accomplish this. You may be tempted to give up on SELinux at this
point. However, it is much easier to use Booleans to modify policies.

Managing SELinux via Booleans
SELinux policy rule writing and module creation is a rather
complicated and time-consuming activity. Creating incorrect policy
rules could potentially compromise your Linux system's security.
Thankfully, SELinux provides Booleans.

A Boolean is a toggle switch that toggles a setting on or off. A Boolean
switch allows you to change parts of SELinux policy rules without any
knowledge of policy writing. These policy changes can be done without
a system reboot too!

To see a list of all of the current Booleans used in SELinux, use the
getsebool -a command. The following is an example of the SELinux
policy rules with Booleans on a Fedora Linux system:

getsebool -a

abrt_anon_write --> off

abrt_handle_event --> off

…

xserver_object_manager --> off

zabbix_can_network --> off

To see a specific policy that can be modified by a Boolean, the
getsebool command is used again. This time, the policy name is
passed to it, as shown in the following example:

getsebool httpd_can_connect_ftp

httpd_can_connect_ftp --> off

To toggle a policy, you can use the setsebool command. This
command changes the policy rule temporarily. When the system is
rebooted, the Boolean returns to its original setting. If you need this
setting to be permanent, you can use setsebool with the -P option.

The setsebool command has six settings: three for turning a policy on
(on, 1, or true), and three for turning a policy off (off, 0, or false).

One example where you might want to use setsebool relates to
restricting the use of executable files. In some situations, it is not good
security to allow users to execute programs from their /home directory.
To prevent this from happening, the allow_user_exec_content policy
rule needs to be turned off. The example that follows shows the
setsebool command being used to do just that. Notice that the -P
option is used to make this setting permanent.

setsebool -P allow_user_exec_content off

The getsebool command verifies that the Boolean setting has been
correctly made:

getsebool allow_user_exec_content

allow_user_exec_content --> off

Booleans make modifying current SELinux policy rules much easier.
Overall, the SELinux command line configuration utilities, such as
getsebool, are easy to use. However, if you want a GUI configuration
tool, SELinux has one. It is installed via the command yum install
policycoreutils-gui. On Ubuntu, use the command sudo apt-get
install policycoreutils. To use this configuration tool, simply type in
the command system-config-selinux and a GUI interface appears.

Monitoring and Troubleshooting SELinux
SELinux is another tool for monitoring your system. It logs all access
denials, which can help you determine whether an attack is being
attempted. These same SELinux log files are also useful in
troubleshooting SELinux problems.

Understanding SELinux logging
SELinux uses a cache called the Access Vector Cache (AVC) when
reviewing policy rules for particular security contexts. When access is
denied, called an AVC denial, a denial message is put into a log file.

These logged denial messages can help you diagnose and address
routine SELinux policy violations. Where these denial messages are
logged depends upon the status of the auditd and rsyslogd daemons:

If the auditd daemon is running, the denial messages are logged
to /var/log/audit/audit.log.

If auditd is not running, but the rsyslogd daemon is running, the
denial messages are logged to /var/log/messages.

NOTE
If both auditd and rsyslogd are running, and you have the
setroubleshootd daemon on your system, denial messages are sent
to both the audit.log and messages log files. However, denial
information in the messages log file is put into a more
understandable format by the setroubleshootd daemon.

Reviewing SELinux messages in the audit log
If you have the auditd daemon running, you can quickly see if any AVC
denials have been logged by using the aureport command. The
example that follows shows the use of aureport and grep to search for
AVC denials. At least one denial has been logged to
/var/log/audit/audit.log:

aureport | grep AVC

Number of AVC's: 1

After you discover that an AVC denial has been logged in audit.log,
you can use ausearch to review the denial message(s). The example
that follows shows the ausearch command being used to review the
logged AVC denial message:

ausearch -m avc

type=AVC msg=audit(1580397837.344:274): avc: denied {

getattr } for pid=1067

 comm="httpd" path="/var/myserver/services" dev="dm-0"

ino=655836

 scontext=system_u:system_r:httpd_t:s0

 tcontext=unconfined_u:object_r:var_t:s0 tclass=file

permissive=0

The display provides information on who was attempting access, along
with their security context when attempting it. Look for these key
words in an AVC denial message:

type=AVC

avc: denied

com="httpd"

path="/var/myserver/services"

This can give you enough data either to begin fixing a problem or to
track down malicious activity. Here, the /var/myserver/services
directory has the wrong SELinux file context to be read by the httpd
service.

Reviewing SELinux messages in the messages log
If you have the auditd service running, you can find AVC denial
messages by searching through the /var/log/audit/audit.log file
using grep. For the latest RHEL and Fedora systems, or any Linux
system using systemd, you can run the journalctl command to check
for AVC denial log messages as well. Within each log message is an
AVC message that you can view to get information about that AVC
denial, as in the following example:

journalctl | grep AVC

type=AVC msg=audit(1580397837.346:275): avc: denied {

getattr }for pid=1067

 comm="httpd" path="/var/myserver/services" dev="dm-0"

ino=655836

 scontext=system_u:system_r:httpd_t:s0

 tcontext=unconfined_u:object_r:var_t:s0 tclass=file

permissive=0

Since you know that there are AVC denials, you can pass the entire
/var/log/audit/audit.log file to sealert to step through the issues:

sealert -a /var/log/audit/audit.log

SELinux is preventing httpd from getattr access on the file

/var/myserver/services.

***** Plugin catchall (100. confidence) suggests

If you believe that httpd should be allowed getattr access

on the

services file by default.

Then you should report this as a bug.

You can generate a local policy module to allow this access.

Do

allow this access for now by executing:

ausearch -c 'httpd' --raw | audit2allow -M my-httpd

semodule -X 300 -i my-httpd.pp

Additional Information:

Source Context system_u:system_r:httpd_t:s0

Target Context unconfined_u:object_r:var_t:s0

Target Objects /var/myserver/services [file

]

…

Raw Audit Messages

type=AVC msg=audit(1580397837.346:275): avc: denied {

getattr }

for pid=1067 comm="httpd" path="/var/myserver/services"

dev="dm-0"

ino=655836 scontext=system_u:system_r:httpd_t:s0

tcontext=unconfined_u:object_r:var_t:s0 tclass=file

permissive=0

Hash: httpd,httpd_t,var_t,file,getattr

In this case, if you want to allow access by the httpd service to the
content in the directory being denied, you can run the ausearch and
semodule commands shown in the output. This creates and applies a
new SELinux policy to allow access to the content. Provided there are
no other permission problems, httpd should be able to access that
content.

Troubleshooting SELinux logging
Obviously, the log files are extremely important for diagnosing and
addressing SELinux policy violations. The log files, or directly
querying the systemd journal (journalctl command), are your first
steps in troubleshooting SELinux. Thus, it is important to make sure
that your Linux system is logging messages in the first place.

A quick way to determine if the logging is taking place is to check if the
proper daemons are running: auditd, rsyslogd, and/or
setroubleshootd. Use an appropriate command, such as systemctl
status auditd.service. Of course, the command you use depends on
your Linux distribution and its version. See Chapter 15 for more
details. If the daemon is not running, start it so that logging may begin
to occur.

CAUTION
Sometimes AVC denials are not logged because of dontaudit policy
rules. Although the dontaudit rules help reduce false positives in
the logs, they can cause problems when troubleshooting. To fix
this, temporarily disable all dontaudit policy rules using the
command semodule -DB.

Troubleshooting common SELinux problems
When you begin working with SELinux, it is easy to overlook the
obvious. Whenever access is denied, you should first check the
“traditional” Linux DAC permissions. For example, use the ls -l
command and double-check that a file's owner; group; and read, write,
and execute assignments are correct.

With SELinux, several regular items can cause problems:

Using a nonstandard directory for a service

Using a nonstandard port for a service

Moving files that result in losing their security context labels

Having Booleans set incorrectly

Each one of these problems can be solved fairly quickly.

Using a nonstandard directory for a service
For various reasons, you may decide to store a service's files in a
nonstandard directory. When you do this, SELinux needs to know that
this nonstandard behavior has occurred. Otherwise, it denies access to
legitimate service access requests.

For example, you decided to keep your HTML files in a different
location from the standard /var/www/html. You put the files in
/abc/www/html. You must let SELinux know that you want the http
service to be able to access the files within /abc/www/html. The
commands to accomplish this are semanage and restorecon. In the

following code snippet, the commands are used to add the proper
security context type on the /abc/www/html directory and all it
contains:

semanage fcontext -a -t httpd_sys_content_t

"/abc/www/html(/.*)?"

To actually set the new security context type to the files within the
directory, you need to use the restorecon -R command. This is
accomplished in the following code:

restorecon -R -v /abc/www/html

ls -Z /abc/www/html

unconfined_u:object_r:httpd_sys_content_t:s0 abc

Now the httpd daemon has permission to access your HTML files in
their non-standard directory location.

Using a nonstandard port for a service
Similar to the problem just described, you may decide to have a service
listening on a nonstandard port. When you make this port change, the
service often fails to start.

For example, you decide for security purposes to move sshd from port
22 to a nonstandard port, 47347. SELinux does not know about this
port, and the service fails to start. To fix this problem, you must first
find the security context type for sshd. This is accomplished using the
code that follows by issuing the semanage port -l command and
piping the results into grep to search for ssh.

semanage port -l | grep ssh

ssh_port_t tcp 22

In the preceding example, you can see that the context type needed is
ssh_port_t. Now, using the semanage command again, you add that
type to port 47347, as shown here:

semanage port -a -t ssh_port_t -p tcp 47347

semanage port -l | grep ssh

ssh_port_t tcp 47347, 22

At this point, edit the /etc/ssh/sshd_config file to add a Port 47347

line to the file. Then restart the sshd service so that the service listens
on the nonstandard port 47347.

Moving files and losing security context labels
You used the cp command to move a file from /etc temporarily to the
/tmp directory. Then you used the mv command to put it back. Now the
file has the security context of the temporary directory instead of its
original security context, and your system is getting AVC denial
messages when the service using that file tries to start up.

There is an easy fix, thanks to the restorecon -R command. Simply
type in restorecon file, and the file has its permanent security context
restored.

Booleans set incorrectly
Another common problem is simply setting a Boolean incorrectly. This
can give you several AVC denials.

For example, if your system's scripts are no longer able to connect out
to the network and you are getting AVC denials in your logs, you need
to check the httpd Booleans. Use the getsebool -a command, and pipe
it into grep to search for any Booleans that affect httpd. The example
here shows these commands being used:

getsebool -a | grep http

…

httpd_can_network_connect --> off

…

The getsebool command shows the Boolean
httpd_can_network_connect is set to off. To change this Boolean, use
the following command: setsebool -P httpd_can_network_connect on.
Notice the -P option was used to make the setting permanent. Now
your scripts should be able to connect out to the network.

Putting It All Together
Obviously, SELinux is a rather complicated and rich tool. You now
have a good, solid foundation on the SELinux basics. Here are some
recommendations as you get started implementing SELinux on your
system.

The default targeted SELinux mode can be used to secure most basic
network services (httpd, vsftpd, Samba, and so on) without you
needing to assign special user roles or otherwise lock down your
system. In this case, the main things you need to do are to put files in
standard locations (or run commands to assign the proper file contexts
to nonstandard locations), make sure that Booleans are turned on for
less secure features that you want on anyway, and watch AVC denials
for problems.

Start with the permissive operational mode. This allows requests
to succeed that SELinux sees as insecure.

Run your current system for a significant amount of time in
permissive mode. Review the logs and see what problems may
occur with the default SELinux settings. You can then change
Booleans or file contexts so that features improperly denied can
be allowed. After the problems are worked out, turn on enforcing
mode.

Overall, implement SELinux configuration changes one at a time
in a test environment or using permissive mode. See what kind of
effect each configuration change has before moving on to the next
one. You can then use the audit2allow command to allow actions
that were stopped by AVC denials to be selectively allowed in the
policy for a service.

Obtaining More Information on SELinux
Several additional sources of information can help you with SELinux
on your Linux system:

Your System's man Pages Issue the command man -k selinux
to find all of the various man pages that you can review for the
SELinux utilities currently installed on your system. If you are
debugging SELinux problems for a well-known service (such as
httpd, vsftpd, Samba, and so on), there is probably a man page
associated with how specifically to fix SELinux problems with that
service.

The Red Hat Enterprise Linux Manuals Located at
http://docs.redhat.com, this site contains an entire manual on
SELinux.

The Fedora Project SELinux Guide Located at
http://docs.fedoraproject.org, this site has a Security-Enhanced
Linux Guide. However, the guide is not updated for every Fedora
version, so you may need to look in older versions to find it. Also,
the SELinux Guide is not located within the Security manual, but
the Security manual is a good manual to review as well.

SELinux Project Wiki This is the official SELinux project page.
Several resources are available at this site, which is located at
http://selinuxproject.org.

http://docs.redhat.com
http://docs.fedoraproject.org
http://selinuxproject.org

Summary
SELinux provides a security enhancement to Linux, and it is installed
by default on many Linux distributions. In this chapter, you learned
the benefits of SELinux, how it works, how to set it up, how to fix
various problems with SELinux, and how to get more information
about this important security enhancement.

At first glance, SELinux appears rather complicated. However, after
it's broken down into its various components—operational modes,
security contexts, policy types, and policy packages—you can see how
the various pieces work together. Each component plays an important
role for enforcing and testing the chosen security requirements for
your organization.

You learned about the various steps available to configure SELinux.
Even though SELinux comes preconfigured, you may need to make
some modifications to meet your organization's security needs. Each
component has its own configuration steps and settings to choose.
Though policy rule creation was not covered, you did learn how to
modify the supplied policies via Booleans.

SELinux provides another tool for monitoring your Linux system's
security. Because SELinux logs all access denials, it can help you
determine if an attack has been or is being attempted. Even the best-
laid plans can go badly. Therefore, in this chapter, you learned how to
fix common SELinux configuration problems.

In the next chapter, you'll learn how to protect your Linux system on a
network. You'll learn about controlling access, managing firewalls, and
securing remote access.

Exercises
Use these exercises to test your knowledge of using SELinux. These
tasks assume that you are running a Fedora or Red Hat Enterprise
Linux system (although some tasks work on other Linux systems as
well). If you are stuck, solutions to the tasks are shown in Appendix B
(although in Linux, there are often multiple ways to complete a task).

1. Making no changes to the SELinux primary configuration file,
write down the command to set your system into the permissive
operating mode for SELinux.

2. Making no changes to the SELinux primary configuration file,
write down the command to set your system into the enforcing
mode for SELinux.

3. What current and permanent SELinux policy types are set on your
system and how did you find them?

4. List the security context for the /etc/hosts file and identify its
different security context attributes.

5. Create a file called test.html in your home directory, and assign
its type to httpd_sys_content_t. (This is something that you might
do to make content available to be shared by your web server
outside of the common /var/www/html directory.)

6. List the security context for the running crond process and
identify its security context attributes.

7. Create a file called /etc/test.txt, change its file context to
user_tmp_t, restore it to its proper content (the default context for
the /etc directory), and remove the file. Use the ls -Z
/etc/test.txt command to check the file at each point in the
process.

8. You have a tftp server on your private network, and you want to
allow anonymous writes and access to the tftp service's home
directory (while SELinux is in enforcing mode). Determine what
Booleans allow anonymous writes and access to the tftp service's

home directory and turn those Booleans on.

9. What command would list out all of the SELinux policy modules
on your system along with their version number?

10. Tell SELinux to allow access to the sshd service through TCP Port
54903.

CHAPTER 25
Securing Linux on a Network

IN THIS CHAPTER
Managing network services

Controlling access to network services

Implementing firewalls

Setting up your Linux system on a network, especially a public
network, creates a whole new set of challenges when it comes to
security. The best way to secure your Linux system is to keep it off all
networks. However, that is rarely a feasible option.

Entire books have been filled with information on how to secure a
computer system on a network. Many organizations hire full-time
computer security administrators to watch over their network-
attached Linux systems. Therefore, think of this chapter as a brief
introduction to securing Linux on a network.

Auditing Network Services
Most Linux systems used for large enterprises are configured as
servers that, as the name implies, offer services to remote clients over
a network. A network service is any task that the computer performs
requiring it to send and receive information over the network using
some predefined set of rules. Routing email is a network service, as is
serving web pages.

A Linux server has the potential to provide thousands of services.
Many of them are listed in the /etc/services file. Consider the
following sections from the /etc/services file:

$ cat /etc/services

/etc/services:

$Id: services,v 1.55 2013/04/14 ovasik Exp $

#

Network services, Internet style

IANA services version: last updated 2013-04-10

#

Note that it is presently the policy of IANA to assign …

Each line describes one service, and is of the form:

#

service-name port/protocol [aliases …] [# comment]

…

echo 7/tcp

echo 7/udp

discard 9/tcp sink null

discard 9/udp sink null

systat 11/tcp users

systat 11/udp users

daytime 13/tcp

daytime 13/udp

qotd 17/tcp quote

qotd 17/udp quote

…

chargen 19/tcp ttytst source

chargen 19/udp ttytst source

ftp-data 20/tcp

ftp-data 20/udp

21 is registered to ftp, but also used by fsp

ftp 21/tcp

…

http 80/tcp www www-http # WorldWideWeb

HTTP

http 80/udp www www-http # HyperText

Transfer Protocol

http 80/sctp # HyperText

Transfer Protocol

kerberos 88/tcp kerberos5 krb5 # Kerberos v5

kerberos 88/udp kerberos5 krb5 # Kerberos v5

…

blp5 48129/udp # Bloomberg locator

com-bardac-dw 48556/tcp # com-bardac-dw

com-bardac-dw 48556/udp # com-bardac-dw

iqobject 48619/tcp # iqobject

iqobject 48619/udp # iqobject

After the comment lines, notice three columns of information. The left
column contains the name of each service. The middle column defines
the port number and protocol type used for that service. The right
column contains an optional alias or list of aliases for the service.

Many Linux distributions come with unneeded network services
running. An unnecessary service exposes your Linux system to
malicious attacks. For example, if your Linux server is a print server,
then it should only be offering printing services. It should not also
offer Apache Web Services. This would unnecessarily expose your
print server to any malicious attacks that take advantage of web
service vulnerabilities.

Originally, restricting services on Linux systems meant setting up
individual physical Linux servers with only a few services running on
each. Later, running multiple Linux virtual machines on a physical
host let you lock down small sets of services on virtual machines. More
recently, containerized applications can allow many more separate and
secured services to run on each physical host.

Evaluating access to network services with nmap
A wonderful tool to help you review your network services from a
network standpoint is the nmap security scanner. The nmap utility is
available in most Linux distribution repositories and has a web page
full of information at http://nmap.org.

To install nmap on a Fedora or RHEL distribution, use the yum or dnf

http://nmap.org

command (using root privileges), as shown in the example that
follows.

yum install nmap -y

Updating Subscription Management repositories.

Last metadata expiration check: 0:03:41 ago on Sat 12 Oct

2019 11:24:07 PM EDT.

Dependencies resolved.

===

 Package Arch Version Repository

Size

===

Installing:

 nmap x86_64 2:7.70-4.el8 rhel-8-for-x86_64-

appstream-rpms 5.8 M

Transaction Summary

===

Install 1 Package

Total download size: 5.8 M

Installed size: 24 M

…

Installed:

 nmap-2:7.70-4.el8.x86_64

Complete!

To install the nmap utility on an Ubuntu distribution, type sudo apt-get
install nmap at the command line.

The nmap utility's full name is Network Mapper. It has a variety of uses
for security audits and network exploration. Using nmap to do various
port scans allows you to see what services are running on all of the
servers on your local network and whether they are advertising their
availability.

NOTE
What is a port? Ports, or more correctly network ports, are
numeric values used by the TCP and UDP network protocols as
access points to services on a system. Standard port numbers are
assigned to services so that a service knows to listen on a particular
port number and a client knows to request the service on that port
number.

For example, port 80 is the standard network port for unencrypted
(HTTP) traffic to the Apache web service. So, if you ask for
www.example.com from your web browser, the browser assumes that
you mean to use TCP port 80 on the server that offers that web
content. Think of a network port as a door to your Linux server.
Each door is numbered. And behind every door is a particular
service waiting to help whoever knocks on that door.

To audit your server's ports, the nmap utility offers several useful scan
types. The nmap site has an entire manual on all of the port scanning
techniques that you can use at http://nmap.org/book/man-port-
scanning-techniques.html. Here are two basic port scans to get you
started on your service auditing:

TCP Connect port scan For this scan, nmap attempts to connect
to ports using the Transmission Control Protocol (TCP) on the
server. If a port is listening, the connection attempt succeeds.

TCP is a network protocol used in the TCP/IP network protocol
suite. TCP is a connection-oriented protocol. Its primary purpose
is to negotiate and initiate a connection using what is called a
“three-way handshake.” TCP sends a synchronize packet (SYN)
to a remote server specifying a specific port number in the
packet. The remote server receives the SYN and replies with an
acknowledgment packet (SYN-ACK) to the originating computer.
The original server then acknowledges (ACK) the response, and a
TCP connection is officially established. This three-way
handshake is often called a SYN-SYN-ACK or SYN, SYN-ACK,

http://www.example.com
http://nmap.org/book/man-port-scanning-techniques.html

ACK.

If you select a TCP Connect port scan, the nmap utility uses this
three-way handshake to do a little investigative activity on a
remote server. Any services that use the TCP protocol will
respond to the scan.

UDP port scan For this scan, nmap sends a UDP packet to every
port on the system being scanned. UDP is another popular
protocol in the TCP/IP network protocol suite. Unlike TCP,
however, UDP is a connectionless protocol. If the port is listening
and has a service that uses the UDP protocol, it responds to the
scan.

TIP
Keep in mind that Free and Open Source Software (FOSS)
utilities are also available to those with malicious intent. While
you are doing these nmap scans, realize that the remote scan
results that you see for your Linux server are the same scan
results that others will see. This will help you evaluate your
system's security settings in terms of how much information is
being given out to port scans. Keep in mind that you should
use tools like nmap only on your own systems, because scanning
ports on other people's computers can give the impression that
you are trying to break in.

When you run the nmap utility, it provides a handy little report with
information on the system you are scanning and the ports it sees. The
ports are given a “state” status. nmap reports six possible port states:

open: This is the most dangerous state an nmap scan can report for
a port. An open port indicates that a server has a service handling
requests on this port. Think of it as a sign on the door, “Come on
in! We are here to help you.” Of course, if you are offering a public
service, you want the port to be open.

closed: A closed port is accessible, but there is no service waiting
on the other side of this door. However, the scan status still
indicates that there is a Linux server at this particular IP address.

filtered: This is the best state to secure a port that you don't want
anyone to access. It cannot be determined if a Linux server is
actually at the scanned IP address. It is possible that a service
could be listening on a particular port, but the firewall is blocking
access to that port, effectively preventing any access to the service
through the particular network interface.

unfiltered: The nmap scan sees the port but cannot determine if
the port is open or closed.

open|filtered: The nmap scan sees the port but cannot determine

if the port is open or filtered.

closed|filtered: The nmap scan sees the port but cannot
determine if the port is closed or filtered.

To help you better understand how to use the nmap utility, review the
following example. For the purposes of building a network services
list, the example nmap scans are conducted on a Fedora system. The
first scan is a TCP Connect scan from the command line using the
loopback address 127.0.0.1.

nmap -sT 127.0.0.1

Starting Nmap 7.70 (https://nmap.org) at 2020-1-10 11:47

EDT

Nmap scan report for localhost (127.0.0.1)

Host is up (0.016s latency).

Not shown: 998 closed ports

PORT STATE SERVICE

25/tcp open smtp

631/tcp open ipp

Nmap done: 1 IP address (1 host up) scanned in 1.34 seconds

The TCP Connect nmap scan reports that two TCP ports are open and
have services listening on the localhost (127.0.0.1) for requests to
these ports:

Simple Mail Transfer Protocol (SMTP) is listening at TCP port 25.

Internet Printing Protocol (IPP) is listening at TCP port 631.

The next nmap scan is a UDP scan on the Fedora system's loopback
address.

nmap -sU 127.0.0.1

Starting Nmap 7.70 (https://nmap.org) at 2020-1-10 11:48

EDT

Nmap scan report for localhost (127.0.0.1)

Host is up (0.00048s latency).

Not shown: 997 closed ports

PORT STATE SERVICE

68/udp open|filtered dhcpc

631/udp open|filtered ipp

Nmap done: 1 IP address (1 host up) scanned in 2.24 seconds

The UDP nmap scan reports that two UDP ports are open and have
services listening on those ports:

Dynamic Host Control Protocol client (dhcpc) is listening at port
68.

Internet Printing Protocol (ipp) is listening at port 631.

Notice that port 631's IPP is listed under both nmap's TCP Connect scan
and the UDP scan because the IPP service can communicate over both
the TCP and the UDP protocol and thus is listed in both scans.

Using these two simple nmap scans, TCP Connect and UDP on your
loopback address, you can build a list of the network services offered
by your Linux server. Keep in mind that port numbers are associated
with a particular protocol (TCP or UDP) and a particular network
interface. For example, if you have one network interface card (NIC)
on a computer that faces the Internet and another that faces a private
network, you may want to offer a private service (like the CUPS service
for printing) to the NIC on your private network. But you may want to
filter that port (631) on the NIC that faces the Internet.

Using nmap to audit your network services
advertisements
You probably want lots of people to visit your website (httpd service).
You probably don't want everyone on the Internet to be capable of
accessing your SMB file shares (smb service). To make sure that you are
properly separating access to those two types of services, you want to
be able to check what a malicious scanner can see of the services
available on your public-facing network interfaces.

The idea here is to compare what your Linux server looks like from the
inside versus what it looks like from the outside. If you determine that
some network services are accessible that you intended to keep
private, you can take steps to block access to them from external
interfaces.

TIP
You may be tempted to skip the scans from inside your
organization's internal network. Don't. Malicious activity often
occurs by a company's own employees or by someone who has
already penetrated external defenses. Again, the nmap utility is a
great help here. To get a proper view of how your Linux server's
ports are seen, you need to conduct scans from several locations.
For example, a simple audit would set up scans in these places:

On the Linux server itself

From another server on the organization's same network

From outside the organization's network

In the following examples, part of a simple audit is conducted. The
nmap utility is run on a Fedora system, designated as Host-A. Host-A is
the Linux server whose network services are to be protected. Host-B is
a Linux server using the Linux Mint distribution and is on the same
network as Host-A.

TIP
Security settings on various network components, such as the
server's firewall and the company's routers, should all be
considered when conducting audit scans.

For this audit example, a scan is run from Host-A, using not the
loopback address but the actual IP address. First, the IP address for
Host-A is determined using the ip addr show command. The IP
address is 10.140.67.23.

ip addr show

fconfig

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state

UNKNOWN

 group default qlen 1000

 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

 inet 127.0.0.1/8 scope host lo

 valid_lft forever preferred_lft forever

 inet6 ::1/128 scope host

 valid_lft forever preferred_lft forever

2: ens3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc

fq_codel

 state UP group default qlen 1000

 link/ether 52:54:00:c4:27:4e brd ff:ff:ff:ff:ff:ff

 inet 10.140.67.23/24 brd 10.140.67.255 scope global

dynamic

 noprefixroute ens3

 valid_lft 3277sec preferred_lft 3277sec

 inet6 fe80::5036:9ec3:2ae8:7623/64 scope link

noprefixroute

 valid_lft forever preferred_lft forever

Now, using the Host-A IP address, an nmap TCP Connect scan is issued
from Host-A. The nmap scan goes out to the network to conduct the
scan. All ports are reported as having a status of closed.

nmap -sT 10.140.67.23

Starting Nmap 7.80 (https://nmap.org) at 2020-1-31 11:53

EDT

Nmap scan report for rhel8 (10.140.67.23)

Host is up (0.010s latency).

All 1000 scanned ports on 10.140.67.23 are closed

Nmap done: 1 IP address (1 host up) scanned in 1.48 seconds

The nmap scan is moved from originating at Host-A to originating on
Host-B. Now the TCP Connect scan is attempted on Host-A's ports
from Host-B's command line.

$ nmap -sT 10.140.67.23

Starting Nmap 7.80 (https://nmap.org) at 2020-1-31 11:57

EDT

Note: Host seems down. If it is really up,

 but blocking our ping probes, try -PN

Nmap done: 1 IP address (0 hosts up) scanned in 0.11 seconds

Here, nmap gives a helpful hint. Host-A appears to be down, or it could
just be blocking the probes. So, another nmap scan is attempted from
Host-B, using nmap's advice of disabling the scan's ping probes via the -
PN option.

$ nmap -sT -PN 10.140.67.23

Starting Nmap 7.80 (https://nmap.org) at 2020-1-31 11:58

EDT

Nmap scan report for rhel8 (10.140.67.23)

Host is up (0.0015s latency).

All 1000 scanned ports on 10.140.67.23 are filtered

Nmap done: 1 IP address (1 host up) scanned in 5.54 seconds

You can see that Host-A (10.140.67.23) is up and running and all of its
ports have a status of filtered. This means that there is a firewall in
place on Host-A. These scans from Host-B give you a better idea of
what a malicious scanner may see when scanning your Linux server.
In this example, the malicious scanner would not see much.

NOTE
If you are familiar with nmap, you know that the TCP SYN scan is
the default scan nmap uses. The TCP SYN scan does an excellent job
of probing a remote system in a stealth manner. Because you are
probing your own system for security auditing purposes, it makes
sense to use the more “heavy-duty” nmap utility scans. If you still
want to use the TCP SYN scan, the command is nmap -sS
ip_address.

The services currently running on Host-A are not that “juicy.” In the
example that follows, another service, sshd, is started on Host-A using
the systemctl command (see Chapter 15, “Starting and Stopping
Services”). This should give the nmap utility a more interesting target to
search for.

systemctl start sshd.service

systemctl status sshd.service

• sshd.service - OpenSSH server daemon

 Loaded: loaded (/usr/lib/systemd/system/sshd.service;

enabled; vendor preset: enabled)

 Active: active (running) since Fri 2020-1-30 15:08:29

EDT; 1 day 20h ago

 Docs: man:sshd(8)

 man:sshd_config(5)

 Main PID: 807 (sshd)

 Tasks: 1 (limit: 12244)

 Memory: 10.9M

 CGroup: /system.slice/sshd.service

 └─807 /usr/sbin/sshd -D -oCiphers=…

Also, because Host-A's firewall is blocking the nmap scans from Host-B,
it would be interesting to see what an nmap scan can report when the
firewall is down. The example that follows shows the firewall being
disabled on Host-A for a Fedora 21 or RHEL 7 system (for other
systems, you probably need to disable the iptables service):

systemctl stop firewalld.service

systemctl status firewalld.service

With a new service running and Host-A's firewall lowered, the nmap
scans should find something. In the following, nmap scans are run
again from Host-B. This time the nmap utility shows the ssh service
running on open port 22. Notice that with the firewall down on Host-
A, both nmap scans pick up much more information. This really
demonstrates the importance of your Linux server's firewall.

nmap -sT 10.140.67.23

Starting Nmap 7.80 (http://nmap.org) at 2020-1-31 11:58

EDT

Nmap scan report for 10.140.67.23

Host is up (0.016s latency).

Not shown: 999 closed ports

PORT STATE SERVICE

22/tcp open ssh

Nmap done: 1 IP address (1 host up) scanned in 0.40 seconds

nmap -sU 10.140.67.23

[sudo] password for johndoe: ***************

Starting Nmap 5.21 (http://nmap.org) at 2020-1-31 11:59

EDT

Nmap scan report for 10.140.67.23

Host is up (0.00072s latency).

Not shown: 997 closed ports

PORT STATE SERVICE

68/udp open|filtered dhcpc

631/udp open|filtered ipp

…

Nmap done: 1 IP address (1 host up) scanned in 1081.83

seconds

In order to conduct a thorough audit, be sure to include the UDP scan.
Also, there are additional nmap scans that may be beneficial to your
organization. Look at the nmap utility's website for additional
suggestions.

CAUTION
If you have been following along and lowered your server's firewall
to conduct these nmap scans, be sure to raise it again. Enter
systemctl start firewalld.service.

You still need to implement controls for those services that your Linux
server should offer. One way to accomplish this is via firewall rules.

Early versions of Linux use TCP wrappers to allow or deny access to
Linux services. It did this by offering /etc/hosts.allow and
/etc/hosts.deny files where you could specifically indicate which
services are available and which are blocked to particular outside
system names and/or IP addresses. As of Fedora 28 and RHEL 8, the
TCP wrappers feature was dropped from those distributions. However,
some features, such as vsftpd, still honor those configuration files
through other means.

Working with Firewalls
A firewall in a building is a fireproof wall that prevents the spread of
fire throughout the building. A computer firewall blocks the
transmission of malicious or unwanted data into and out of a
computer system or network. For example, a firewall can block
malicious scans from your Linux server ports. A firewall can also
change network packets flowing through your system and redirect
packets in various ways.

In Linux, iptables is the kernel-level firewall feature. It is most
commonly used to allow or block access from outside systems to the
services running on your local system. iptables works by allowing you
to create rules that can be applied to every packet that tries to enter
(INPUT), leave (OUTPUT), or cross through your system (FORWARD).

Although allowing or blocking packets trying to enter your system is
the primary feature of iptables, you can also create rules for iptables
that let you do the following:

Block packets leaving your system effectively to prevent a process
on your system from reaching a remote host, range of addresses,
or selected services.

Forward packets from one network interface on your system to
another, effectively allowing your computer to act as a router
between two networks.

Port forward a packet intended for a selected port to be rerouted
to another port on your local system, or to a remote system, so
that other locations can handle the request from the packet.

Change information in a packet header (called mangling) to
redirect the packet or somehow mark it for more processing.

Allow multiple computers on a private network (such as the
computers, televisions, or other devices on your home network) to
communicate with the Internet over a single public IP address.
(This is referred to as IP masquerading.)

In the following sections, I describe many of these features but focus
mostly on the rules to block or allow access to the services running on
your Linux system.

Understanding firewalls
Although you may tend to think of a firewall as a complete barrier, a
Linux firewall is really just a filter that checks each network packet or
application request coming into or out of a computer system or
network.

NOTE
What is a network packet? A network packet is data that has been
broken up into transmittable chunks. The chunks, or packets, have
additional data added to them as they traverse down the OSI
model. It's like putting a letter inside an envelope at each stage as it
moves down the protocol stack. One of the purposes of this
additional data is to ensure the packet's safe and intact arrival at its
destination. The additional data is stripped off of the packet as it
traverses back up the OSI model at its destination (like taking off
the outer envelope and handing the letter to the layer above).

Firewalls can be placed into different categories, depending upon their
function. Each category has an important place in securing your server
and network.

A firewall is either network-based or host-based. A
network-based firewall is one that is protecting the entire network
or subnet. For example, a network firewall would be used in your
workplace, where the network should be protected by a screening
router's firewall.

A host-based firewall is one that is running on and protecting an
individual host or server. You most likely have a firewall on your
PC at home. This is a host-based firewall.

A firewall is either a hardware or a software firewall.
Firewalls can be located on network devices, such as routers.
Their filters are configured in the router's firmware. In your
home, your Internet service provider (ISP) may provide a router
to let you gain access to the Internet. The router contains firewall
firmware, and it is considered a hardware firewall.

Firewalls can be located on a computer system as an application.
The application allows filtering rules to be set that filter the
incoming traffic. This is an example of a software firewall. A
software firewall is also called a rule-based firewall.

A firewall is either a network-layer filter or an
application-layer filter. A firewall that examines individual
network packets is also called a packet filter. A network-layer
firewall allows only certain packets into and out of the system. It
operates on the lower layers of the OSI reference model.

An application-layer firewall filters at the higher layers of the
OSI reference model. This firewall allows only certain
applications access to and from the system.

You can see how these firewall categories overlap. The best firewall
setup is a combination of all of the categories. As with many security
practices, the more layers you have, the harder it is for malicious
activity to penetrate.

Implementing firewalls
On a Linux system, the firewall is a host-based, network-layer,
software firewall managed by the iptables utility and related kernel-
level components. With iptables, you can create a series of rules for
every network packet coming through your Linux server. You can fine-
tune the rules to allow network traffic from one location but not from
another. These rules essentially make up a network access control list
for your Linux server.

Fedora, RHEL, and other Linux distributions have added the
firewalld service to provide a more dynamic way of managing firewall
rules than were offered previously. For recent RHEL and Fedora
releases, the iptables firewall backend was replaced with nftables. The
Firewall Configuration window (firewall-config command) provides
an easy way to open ports on your firewall and do masquerading
(routing private addresses to a public network) or port forwarding.
The firewalld service can react to changes in conditions, which the
static iptables service can't do as well on its own. By enabling access to
a service, firewalld can also do things like load modules needed to
allow access to a service.

TIP
The iptables utility manages the Linux firewall, called netfilter.
Thus, you will often see the Linux firewall referred to as
netfilter/iptables. The iptables syntax is still supported, but in
the latest RHEL and Fedora releases, nftables actually provides the
backend for iptables.

Starting with firewalld
The firewalld service may already be installed on your Linux system.
To check this, type the following:

systemctl status firewalld

• firewalld.service - firewalld - dynamic firewall daemon

 Loaded: loaded

(/usr/lib/systemd/system/firewalld.service; ena>

 Active: active (running) since Sat 2019-10-19 11:43:13

EDT; 5m>

 Docs: man:firewalld(1)

 Main PID: 776 (firewalld)

 Tasks: 2 (limit: 2294)

 Memory: 39.6M

 CGroup: /system.slice/firewalld.service

 └─776 /usr/bin/python3 /usr/sbin/firewalld --

nofork -->

If it's not, you can still install the service and the associated graphical
user interface and then start the firewalld service as follows:

yum install firewalld firewall-config

systemctl start firewalld.service

systemctl enable firewalld.service

To manage the firewalld service, you can start the Firewall
Configuration window. Do this by entering the following:

firewall-config &

Figure 25.1 shows an example of the Firewall Configuration window.

With firewalld, you can select from a set of firewall zones, depending
on which services you want to share and the level of protection you
want for your system. The default set of Fedora Workstation rules
selected in this example is appropriate for a Linux workstation
operating on a home network. For example, it allows the following:

DHCPv6 Client: To enable automatic assignment of addresses
on IPv6 networks.

Multicast DNS (mDNS): To allow domain name system
interfaces on small network interfaces, without requiring a
regular DNS server.

Network printing client and server (IPP): To allow printer
sharing on your local system and network.

Samba client: To allow file sharing with Windows systems and
other systems on your local network.

SSH: To allow others to try to log into your system from the
network.

Cockpit: To allow access to Cockpit web-based administration
from the network. Cockpit is installed by default in RHEL 8, but it
is not installed by default on Fedora 30 Workstation. So, Cockpit
won't appear in the Firewall Configuration window until you
install the cockpit package.

FIGURE 25.1 Firewall Configuration window

If you connect your computer to networks on which you have different
levels of trust (such as a wireless network at an airport), you can adjust
your firewall rules by selecting a different zone. For example, to
change to the public zone from the Firewall Configuration window, do
the following:

1. Under the Active Bindings column, select your active connection
(in this example, Wired connection 1).

2. Select a new zone (for example, public).

3. Select Change Zone.

The public zone, while still allowing IPv6 connections, remote login
(SSH), and mDNS service, does not allow access to more potentially
vulnerable printing, Windows file sharing (Samba), and Cockpit
services.

Besides changing zones, another common task that you might want to
do is just open some firewall ports to allow access to selected services.
From the Firewall Configuration window, with the Fedora

Workstation zone set as the current zone, just click each service that
you want to open. The port allowing access to each service is opened
immediately (when you select the Runtime configuration) and opened
permanently (when you select the Permanent configuration).

One nice feature of the Firewall Configuration window is that when
you choose to allow access to a service, you might do more than just
open a port. For example, enabling the FTP service also causes
connection tracking modules to be loaded that allow nonstandard
ports to be accessed through the firewall when needed.

Changing firewall rules with Cockpit
Cockpit offers another intuitive way of working with your system's
firewall. To view and modify your firewall with Cockpit, do the
following:

1. Open your web browser to the Cockpit interface
(https://yourhost:9090) and log in with root privilege.

2. Select Networking ➪ Firewall to see the Firewall screen, as shown
in Figure 25.2:

https://yourhost:9090

FIGURE 25.2 Firewall Configuration

3. Select Add Services. The Add Service pop-up appears.

4. Click the check box next to the service that you want to enable in
the current zone and select Add Services.

Access to the selected port is enabled. Assuming that you have a
service running on that port, someone requesting the service (such as
access to your web server on ports 80 and 443) will be allowed.

As mentioned earlier, underlying the Cockpit and firewalld services is
the iptables facility. If you have a Linux system without the Cockpit or
firewalld services (or with firewalld disabled), you can still use the
iptables service. The next sections describe how you can set iptables
firewall rules manually and use the iptables service directly, without
the firewalld service.

Understanding the iptables utility
Before you start changing the firewall rules via the iptables utility, you
need to understand netfilter/iptables basics, which include the
following:

Tables

Chains

Policies

Rules

Understanding these basics will help you set up and manage your
Linux server firewall properly.

netfilter/iptables tables
The iptables firewall has the ability to do more than just low-level
packet filtering. It defines what type of firewall functionality is taking
place. There are four tables in the iptables utility, with an additional
table added by SELinux. The tables offer the following functionalities:

filter: The filter table is the packet filtering feature of the
firewall. In this table, access control decisions are made for
packets traveling to, from, and through your Linux system.

nat: The nat table is used for Network Address Translation (NAT).
NAT table rules let you redirect where a packet goes.

mangle: As you would suspect, packets are mangled (modified)
according to the rules in the mangle table. Using the mangle table
directly is less common and typically done to change how a packet
is managed.

raw: The raw table is used to exempt certain network packets from
something called “connection tracking.” This feature is important
when you are using Network Address Translation and
virtualization on your Linux server.

security: This table is available only on Linux distributions that
have SELinux. (See Chapter 24, “Enhancing Linux Security with
SELinux.”) Although typically not used directly, the security table
allows SELinux to allow or block a packet based on SELinux
policies, adding another layer of filtering on top of standard
packet filter rules.

Of all the tables listed, three focus on Network Address Translation.
Therefore, the filter table is the primary table that this chapter
focuses on for basic firewall packet filtering.

netfilter/iptables chains
The netfilter/iptables firewall categorizes network packets into
categories, called chains. There are five chains (categories) to which a
network packet can be designated:

INPUT: Network packets coming into the Linux server

FORWARD: Network packets coming into the Linux server that are to
be routed out through another network interface on the server

OUTPUT: Network packets coming out of the Linux server

PREROUTING: Used by NAT for modifying network packets when
they come into the Linux server

POSTROUTING: Used by NAT for modifying network packets before
they come out of the Linux server

Which netfilter/iptables table you choose to work with determines
what chains are available for categorizing network packets. Table 25.1
shows what chains are available for each table.

TABLE 25.1 Chains Available for Each netfilter/iptables
Table

Table Chains Available
filter INPUT, FORWARD, OUTPUT
nat PREROUTING, OUTPUT, POSTROUTING
mangle INPUT, FORWARD, PREROUTING, OUTPUT, POSTROUTING
raw PREROUTING, OUTPUT
security INPUT, FORWARD, OUTPUT

After a network packet is categorized into a specific chain, iptables
can determine what policies or rules apply to that particular packet.

netfilter/iptables rules, policies, and targets
For each network packet, a rule can be set up defining what to do with
that individual packet. Network packets can be identified many ways
by the netfilter/iptables firewall. These are a few of the ways:

Source IP address

Destination IP address

Network protocol

Inbound port

Outbound port

Network state

If no rule exists for a particular packet, then the overall policy is used.
Each packet category or chain has a default policy. After a network
packet matches a particular rule or falls to the default policy, then
action on the packet can occur. The action taken depends upon what
iptables target is set. Here are a couple of actions (targets) that can be
taken:

ACCEPT: Network packet is accepted into the server.

REJECT: Network packet is dropped and not allowed into the
server. A rejection message is sent.

DROP: Network packet is dropped and not allowed into the server.
No rejection message is sent.

While REJECT gives a rejection message, DROP is quiet. You may
consider using REJECT for internal employees who should be told that
you are rejecting their outbound network traffic and why. Consider
using DROP for inbound traffic so that any malicious personnel are
unaware that their traffic is being blocked.

TIP
There are a couple of additional, more sophisticated targets for
iptables, such as QUEUE. You can find out more about these targets
via the iptables man page.

The iptables utility implements a software firewall using the filter
table via policies and rules. Now that you have a general
understanding of the software firewall implementation, you can begin
to dig deeper into the specific commands for implementing the
firewall via the iptables utility.

Using the iptables utility
Your Linux server should come with the firewall up and running.
However, it's a good idea to check and see if it really is enabled.

RHEL 7, RHEL 8, and recent Fedora systems
netfilter/iptables firewall The firewall interface service
running on these distributions is firewalld. The iptables service
is not run directly by default on these systems. To see if this
firewall service is running, type systemctl status
firewalld.service at the command line.

To enable the firewall, enter systemctl start
firewalld.service and systemctl enable firewalld.service
at the command line.

To disable the firewall, enter systemctl stop
firewalld.service at the command line.

Ubuntu netfilter/iptables firewall The firewall interface
service running on this distribution is ufw. To see if the firewall
service is running, enter sudo ufw status at the command line.
The ufw service is an interface to the iptables utility that does not
run as a service on Ubuntu. You can use ufw commands to
manipulate firewall rules. However, all of the iptables utility
commands are still valid for Ubuntu:

To enable the firewall, enter sudo ufw enable at the command
line.

To disable the firewall, enter sudo ufw disable at the
command line.

After you have checked the status and enabled or disabled the
netfilter/iptables firewall, the differences between the distributions
end.

To see what policies and rules are currently in place for the filter
(default) table, enter iptables -vnL at the command line:

iptables -vnL

Chain INPUT (policy ACCEPT 0 packets, 0 bytes)…

Note that on systems with firewalld enabled, there are many more
iptables chains and rules listed by default than you might be used to
on a system using iptables directly. This is done to offer more
flexibility in building your firewalls by allowing your rules to be split
into zones for different levels of security.

Only the first line of the iptables output is shown in the preceding
example. That line shows that the INPUT chain's default policy is
applied to all the network packets that don't match another rule.
Currently, all of the default INPUT, FORWARD, and OUTPUT policies are set
to ACCEPT. All network packets are allowed in, through, and out. A
firewall in this state is essentially disabled until specific REJECT or DROP
rules are added.

TIP
If your Linux server is dealing with IP v6 network packets, you can
use the ip6tables utility to manage your firewall for IPv6
addresses. The ip6tables utility is nearly identical to the iptables
utility. For more information, enter man ip6tables at the command
line.

Modifying iptables policies and rules
Before you begin to modify a netfilter/iptables firewall directly by
using the iptables command, you should go on a system that you can
use for testing and turn off the firewalld service.

To get started, it is helpful to understand a few command options.

A few options for modifying the firewall follow:

-t table

The iptables command listed along with this switch is
applied to the table. By default, the filter table is used.
Example:

iptables -t filter -P OUTPUT DROP

-P chain target

Sets the overall policy for a particular chain. The rules in the
chain are checked for matches. If no match occurs, then the
chain's listed target is used. Example:

iptables -P INPUT ACCEPT

-A chain

Sets a rule called an “appended rule,” which is an exception
to the overall policy for the chain designated. Example:

iptables -A OUTPUT -d 10.140.67.25 -j REJECT

-I rule# chain

Inserts an appended rule into a specific location, designated
by the rule#, in the appended rule list for the chain
designated. Example:

iptables -I 5 INPUT -s 10.140.67.23 -j DROP

-D chain rule#

Deletes a particular rule, designated by the rule#, from the
chain designated. Example:

iptables -D INPUT 5

-j target

If the criteria in the rule are met, the firewall should jump to
this designated target for processing. Example:

iptables -A INPUT -s 10.140.67.25 -j DROP

-d IP address

Assigns the rule listed to apply to the designated destination
IP address. Example:

iptables -A OUTPUT -d 10.140.67.25 -j REJECT

-s IP address

Assigns the rule listed to apply to the designated source IP
address. Example:

iptables -A INPUT -s 10.140.67.24 -j ACCEPT

-p protocol

Assigns the rule listed to apply to the protocol designated.
For example, here incoming ping (icmp) requests are
dropped:

iptables -A INPUT -p icmp -j DROP

--dport port#

Assigns the rule listed to apply to certain protocol packets

coming into the designated port#. Example:

iptables -A INPUT -p tcp --dport 22 -j DROP

--sport port#

Assigns the rule listed to apply to certain protocol packets
going out of the designated port#. Example:

iptables -A OUTPUT -p tcp --sport 22 -j ACCEPT

-m state --state network_state

Assigns the rule listed to apply to the designated network
state(s). Example:

iptables -A INPUT -m state --state RELATED,ESTABLISHED

-j ACCEPT

To see how the iptables options work, consider the following example.
You have a Linux server (Host-A) at IP address 10.140.67.23. There
are two other Linux servers on your network. One is Host-B at IP
address 10.140.67.22 and the other is Host-C at IP address
10.140.67.25. Your goal is to accomplish the following:

Allow Host-C full access to Host-A.

Block remote login connections using ssh from Host-B to Host-A.

Setting a policy of Drop
The following code shows the default policies of Host-A's firewall. In
this example, the firewall is wide open with no restrictions
implemented. No rules are set, and the policies are all set to ACCEPT.

iptables -vnL

Chain INPUT (policy ACCEPT)

target prot opt source destination

Chain FORWARD (policy ACCEPT)

target prot opt source destination

Chain OUTPUT (policy ACCEPT)

target prot opt source destination

First, what would happen if the INPUT policy was changed from ACCEPT
to DROP? Would that reach the goal? Look at what happens when this is
tried. Remember that if no rules are listed for an incoming packet,
then the chain's policy is followed. This change is made to Host-A's
firewall in the example that follows.

iptables -P INPUT DROP

iptables -vnL

Chain INPUT (policy DROP)

target prot opt source destination

Chain FORWARD (policy ACCEPT)

target prot opt source destination

Chain OUTPUT (policy ACCEPT)

target prot opt source destination

TIP
For policies, you cannot set the target to REJECT. It fails, and you
receive the message “iptables: Bad policy name.” Use DROP as your
policy instead.

Host-B attempts to ping Host-A and then attempts an ssh connection,
as shown in the example that follows. As you can see, both attempts
fail. Because ping commands are blocked, this does not meet the
objective to block only remote login connections using ssh from Host-
B.

$ ping -c 2 10.140.67.23

PING 10.140.67.23 (10.140.67.23) 56(84) bytes of data.

--- 10.140.67.23 ping statistics ---

2 packets transmitted, 0 received, 100% packet loss, time

1007ms

$ ssh root@10.140.67.23

ssh: connect to host 10.140.67.23 port 22: Connection timed

out

When Host-C attempts to ping Host-A and make an ssh connection,
both attempts fail. Thus, it is confirmed that the firewall setting, INPUT
policy equals DROP, is not what is needed to reach the goal.

$ ping -c 2 10.140.67.23

PING 10.140.67.23 (10.140.67.23) 56(84) bytes of data.

--- 10.140.67.23 ping statistics ---

2 packets transmitted, 0 received, 100% packet loss, time

1008ms

$ ssh root@10.140.67.23

ssh: connect to host 10.140.67.23 port 22: Connection timed

out

Blocking a source IP address
What if instead only Host-B's IP address were blocked? That would

allow Host-C to reach Host-A. Would this setting reach the desired
goal?

In the example that follows, the policy of DROP must first be changed to
ALLOW in Host-A's iptables. After that, a specific rule must be
appended to block network packets from Host-B's IP address,
10.140.67.22, alone.

iptables -P INPUT ACCEPT

iptables -A INPUT -s 10.140.67.22 -j DROP

iptables -vnL

Chain INPUT (policy ACCEPT)

target prot opt source destination

DROP all -- 10.140.67.22 anywhere

Chain FORWARD (policy ACCEPT)

target prot opt source destination

Chain OUTPUT (policy ACCEPT)

target prot opt source destination

Host-C can now successfully ping and ssh into Host-A, meeting one of
the set goals.

$ ping -c 2 10.140.67.23

PING 10.140.67.23 (10.140.67.23) 56(84) bytes of data.

64 bytes from 10.140.67.23: icmp_req=1 ttl=64 time=11.7 ms

64 bytes from 10.140.67.23: icmp_req=2 ttl=64 time=0.000 ms

--- 10.140.67.23 ping statistics ---

2 packets transmitted, 2 received, 0% packet loss, time

1008ms

rtt min/avg/max/mdev = 0.000/5.824/11.648/5.824 ms

$ ssh root@10.140.67.23

root@10.140.67.23's password:

However, Host-B can neither ping nor ssh into Host-A. Thus, the
appended rule is not quite what is needed to reach the entire goal.

$ ping -c 2 10.140.67.23

PING 10.140.67.23 (10.140.67.23) 56(84) bytes of data.

--- 10.140.67.23 ping statistics ---

2 packets transmitted, 0 received, 100% packet loss, time

1007ms

$ ssh root@10.140.67.23

ssh: connect to host 10.140.67.23 port 22: Connection timed

out

Blocking a protocol and port
What if, instead of blocking Host-B's IP address entirely, only
connections to the ssh port (port 22) from Host-B's IP address were
blocked? Would that reach the goal of allowing Host-C full access to
Host-A and only blocking ssh connections from Host-B?

In the example that follows, the iptables rules for Host-A are modified
to try blocking Host-B's IP address from port 22. Note that the --dport
option must accompany a particular protocol, such as, for example, -p
tcp. Before the new rule is added, the rule from the previous example
must be deleted using the -D option. Otherwise, the rule from the
previous example would be used by the netfilter/iptables firewall for
packets from 10.140.67.22 (Host-B).

iptables -D INPUT 1

iptables -A INPUT -s 10.140.67.22 -p tcp --dport 22 -j

DROP

iptables -vnL

Chain INPUT (policy ACCEPT)

target prot opt source destination

DROP tcp -- 10.140.67.22 anywhere tcp dpt:ssh

Chain FORWARD (policy ACCEPT)

target prot opt source destination

Chain OUTPUT (policy ACCEPT)

target prot opt source destination

First, the new iptables rule is tested from Host-C to ensure that both
ping attempts and ssh connections remain unaffected. It works
successfully.

$ ping -c 2 10.140.67.23

PING 10.140.67.23 (10.140.67.23) 56(84) bytes of data.

64 bytes from 10.140.67.23: icmp_req=1 ttl=64 time=1.04 ms

64 bytes from 10.140.67.23: icmp_req=2 ttl=64 time=0.740 ms

--- 10.140.67.23 ping statistics ---

2 packets transmitted, 2 received, 0% packet loss, time

1000ms

rtt min/avg/max/mdev = 0.740/0.892/1.045/0.155 ms

$ ssh root@10.140.67.23

root@10.140.67.23's password:

Next, the new iptables rule is tested from Host-B to ensure that ping
works and ssh connections are blocked. It also works successfully!

$ ping -c 2 10.140.67.23

PING 10.140.67.23 (10.140.67.23) 56(84) bytes of data.

64 bytes from 10.140.67.23: icmp_req=1 ttl=64 time=1.10 ms

64 bytes from 10.140.67.23: icmp_req=2 ttl=64 time=0.781 ms

--- 10.140.67.23 ping statistics ---

2 packets transmitted, 2 received, 0% packet loss, time

1001ms

rtt min/avg/max/mdev = 0.781/0.942/1.104/0.164 ms

$ ssh root@10.140.67.23

ssh: connect to host 10.140.67.23 port 22: Connection timed

out

Again, your organization's Access Control Matrix (see Chapter 22,
“Understanding Basic Linux Security”) helps you in creating the
necessary rules for the netfilter/iptables firewall on your Linux
server. Then each modification should be tested in a test or virtual
environment before implementing it in your production Linux systems
firewall.

Saving an iptables configuration
Because firewalld is the recommended service for creating firewalls in
RHEL, Fedora, and other Linux systems, manual creation of
permanent firewall rules is less common. However, if you like, you can
still manually save and restore firewall rules that you create directly

with iptables.

In the example that follows, the modifications made earlier are still in
the firewall. You can save the current set of firewall filter rules using
the iptables-save command.

iptables -vnL

Chain INPUT (policy ACCEPT 8 packets, 560 bytes)

 pkts bytes target prot opt in out source

destination

 0 0 DROP tcp -- * * 10.140.67.22 0.0.0.0/0

tcp dpt:22

 0 0 DROP tcp -- * * 0.0.0.0/0 0.0.0.0/0

tcp dpt:33

 0 0 DROP icmp -- * * 0.0.0.0/0 0.0.0.0/0

…

iptables-save> /tmp/myiptables

To restore those rules later, you can start by flushing the current rules
(iptables -F) and restoring them (iptables-restore).

iptables -F

iptables -vnL

Chain INPUT (policy ACCEPT 8 packets, 560 bytes)

 pkts bytes target prot opt in out source destination

 0 0 DROP tcp -- * * 0.0.0.0/0 0.0.0.0/0

tcp dpt:33

 0 0 DROP icmp -- * * 0.0.0.0/0 0.0.0.0/0

…

A flush of the rules does not affect the iptables configuration file. To
restore the firewall to its original condition, use the iptables-restore
command. In the example that follows, the iptables configuration file
is redirected into the restore command and the original DROP rule for
10.140.67.22 is restored.

iptables-restore < /tmp/myiptables

iptables -vnL

Chain INPUT (policy ACCEPT 16 packets, 1120 bytes)

 pkts bytes target prot opt in out source destination

 0 0 DROP tcp -- * * 10.140.67.22 0.0.0.0/0

tcp dpt:22

 0 0 DROP tcp -- * * 0.0.0.0/0 0.0.0.0/0

tcp dpt:33

 0 0 DROP icmp -- * * 0.0.0.0/0 0.0.0.0/0

NOTE
For an Ubuntu system, the way of saving and restoring your
netfilter/iptables modifications are very similar to the way it is
done in Fedora. You can still use the iptables-save command to
create an iptables configuration file from the current iptables
setting and use iptables-restore to restore it. There are several
options for loading a configuration file upon system boot. See the
Ubuntu community website at
https://help.ubuntu.com/community/IptablesHowTo for the various
options.

You can also save your netfilter/iptables firewall rules to create an
audit report. Reviewing these rules periodically should be part of your
organization's System Life Cycle Audit/Review phase.

https://help.ubuntu.com/community/IptablesHowTo

Summary
Securing your Linux server is critical on a network. Inherently, a
majority of the malicious attacks originate from a network, especially
the Internet. This chapter covered some of the basics that you need in
order to get started on this process.

Protecting your network services can be simplified after you determine
and remove any unneeded network services. The nmap utility helps you
here. Also, you can use nmap to audit your Linux server's advertising of
network services. These audits assist in determining what firewall
modifications are needed.

Recent versions of Fedora and RHEL have added the firewalld service
as a front end to the iptables firewall facility that is built into the
Linux kernel. By using the firewalld-config tool and Cockpit web UI,
you can easily open ports in your firewall to allow access to selected
services. The netfilter/iptables firewall facility is a host-based,
network-layer, software firewall. It is managed by the iptables and
ip6tables utilities. With these utilities, a series of policies and rules
can be created for every network packet coming through your Linux
server.

At this point in this book, you should have a good grasp of what goes
into setting up and securing Linux desktop and server systems. In the
next two chapters, I'm going to help you extend that knowledge into
cloud computing and virtualization.

Exercises
Refer to the material in this chapter to complete the tasks that follow.
If you are stuck, solutions to the tasks are shown in Appendix B
(although in Linux, you can often complete a task in multiple ways).
Try each of the exercises before referring to the answers. These tasks
assume you are running a Fedora or Red Hat Enterprise Linux system
(although some tasks work on other Linux systems as well). Please
don't use a production system to try out the iptables commands in
these exercises. Although the commands shown here do not
permanently change your firewall (the old rules will return when the
firewall service restarts), improperly modifying your firewall can result
in unwanted access.

1. Install the Network Mapper utility on your local Linux system.

2. Run a TCP Connect scan on your local loopback address. What
ports have a service running on them?

3. Run a UDP port scan on your Linux system from a remote system.

4. Check to see if your system is running the firewalld service. If
not, install firewalld and firewall-config and then start and
enable that service.

5. Use the Firewall Configuration window to open access to secure
(TCP port 443) and insecure (TCP port 80) ports for a web
service.

6. Determine your Linux system's current netfilter/iptables
firewall policies and rules.

7. Save your Linux system's current firewall rules, flush them, and
then restore them.

8. For your Linux system's firewall, set a filter table policy for the
input chain to DROP.

9. Change your Linux system firewall's filter table policy back to
accept for the input chain, and then add a rule to drop all network
packets from the IP address 10.140.67.23.

10. Without flushing or restoring your Linux system firewall's rules,
remove the rule you just added.

Part VI
Engaging with Cloud Computing

IN THIS PART
Chapter 26 Shifting to Clouds and Containers

Chapter 27 Using Linux for Cloud Computing

Chapter 28 Deploying Linux to the Cloud

Chapter 29 Automating Apps and Infrastructure with Ansible

Chapter 30 Deploying Applications as Containers with
Kubernetes

CHAPTER 26
Shifting to Clouds and Containers

IN THIS CHAPTER
Understanding key technologies for cloud computing

Learning how Linux containers work

Installing and starting container software

Pulling and running container images

Restarting a stopped container

Building a container image

Tagging and pushing container images to a registry

While most of this book focuses on installing and managing individual
computers, services, and applications, this part takes you into the
technologies needed to bring Linux into large data centers. For a data
center to operate efficiently, its computers must become as generic as
possible and running components must become more automated.
Chapters in this part focus on technologies that make those two things
happen.

Computers become more generic by separating the applications from
the operating systems. This means not just packaging applications into
things you install on an operating system (like RPM or Deb packages),
but also putting together sets of software into packages that
themselves can run once they are delivered in ways that keep them
separate from the operating system. Virtual machines (VMs) and
containers are two ways of packaging sets of software and their
dependencies in ways that are ready to run.

From a high level, a virtual machine is a complete operating system
that runs on another operating system, allowing you to have many

VMs active at a time on one physical computer. Everything an
application or a service needs to run can be stored within that VM or
in attached storage.

A VM has its own kernel, file system, process table, network interfaces,
and other operating system features separate from the host, while
sharing the CPU and RAM with the host system. You can deploy that
VM to a physical system in a way that makes it easy to run the
application and then discard the VM when you are done. You can run
multiple instances of the VM on the same computer or clone and run
the VM across multiple computers. The term virtual machine comes
from the fact that each VM sees an emulation of computer hardware
and not the hardware itself directly.

A container is like a VM, with the major difference being that a
container doesn't have its own kernel. In most other ways, it is like a
VM in that its name spaces are separate from the host operating
system and you can move it from host to host to run wherever it is
convenient.

The chapters in this part introduce you to the concepts, tools, and
technologies that you need to know to engage with cloud computing.
You can try out virtual machines on a single Linux host using KVM.
You can then deploy virtual machines to cloud technologies such as
OpenStack and Amazon Web Services (AWS).

To deploy sets of hosts, either on bare metal or the cloud, you will
learn how to use Ansible. With Ansible playbooks, you can also define
the software that is installed and run on each host system.

As for containers, the Kubernetes project has grabbed the spotlight as
the premier technology for orchestrating massive numbers of
containers across large data centers. Products such as Red Hat
OpenShift provide supported Kubernetes platforms for large
enterprises.

The technology that started the rush to containers a few years ago was
the Docker project. The docker command and daemon offered
simplified ways to build and run containers on Linux systems. Today,
standardized container formats (such as the Open Container

Initiative) and other container tools, such as podman, offer ways of
working with containers that align more tightly with the Kubernetes
ecosystem.

The remainder of this chapter is devoted to getting started with
containers. It covers the docker and podman commands, along with
other popular tools for working with individual containers.

Understanding Linux Containers
Containers make it simple to get and run applications and then
discard them when you are done. There are a few things that you
should know about containers before you get started.

In working with containers, people refer to the entity that you move
around as a container image (or simply an image). When you run that
image, or when it is paused or stopped, it is referred to as a container.

A container remains separate from the host system by using its own
set of namespaces. You typically would build your own container
images by getting a secure base image and then adding your own
layers of software on top of that image to create a new image. To share
your images, you push them to shared container registries and allow
others to pull them.

Namespaces
Linux support for namespaces is what allows containers to be
contained. With namespaces, the Linux kernel can associate one or
more processes with a set of resources. Normal processes, not those
run in a container, all use the same host namespaces. By default,
processes in a container only see the container's namespaces and not
those of the host. Namespaces include the following:

Process table A container has its own set of process IDs and, by
default, can only see processes running inside the container.
While PID 1 on the host is the init process (systemd), in a
container PID 1 is the first process run inside the container.

Network interfaces By default, a container has a single
network interface (eth0) and is assigned an IP address when the
container runs. By default, a service run inside a container (such
as a web server listening on ports 80 and 443) is not exposed
outside of the host system. The upside of this is that you could
have hundreds of web servers running on the same host without
conflict. The downside is that you need to manage how those
ports are exposed outside of the host.

Mount table By default, a container can't see the host's root file
system, or any other mounted file system listed in the host's
mount table. The container brings its own filesystem, consisting
of the application and any dependencies it needs to run. Files or
directories needed from the host can be selectively bind-mounted
inside the container.

User IDs Although containerized processes run as some UID
within the host's namespace, another set of UIDs is nested within
the container. This can, for example, let a process run as root
within a container but not have any special privileges to the host
system.

UTS A UTS namespace allows a containerized process to have a
different host and domain name from the host.

Control group (cgroup) In some Linux systems (such as
Fedora and RHEL), a containerized process runs within a selected
control group and cannot see the other cgroups available on the
host system. Likewise, it cannot see the identity of its own cgroup.

Interprocess communications (IPC) A containerized process
cannot see the IPC namespace from the host.

Although access to any host namespace is restricted by default,
privileges to host namespaces can be opened selectively. In that way,
you can do things like mount configuration files or data inside the
container and map container ports to host ports to expose them
outside of the host.

Container registries
Permanent storage for containers is done in what is referred to as a
container registry. When you create a container image that you want
to share, you can push that image to a public registry or a private
registry that you maintain yourself (such as a Red Hat Quay registry).
Someone who wants to use the image will pull it from the registry.

There are large, public container image registries, such as the Docker
Hub (docker.io) and Quay Registry (Quay.io). They offer free accounts
to get started. If you want access to more features, such as the ability

to keep your registry private, premium accounts are available as well.

Base images and layers
Although you can create containers from scratch, most often a
container is built by starting with a well-known base image and adding
software to it. That base image typically aligns with the operating
system from which you are installing software into your container.

You can get official base images from Ubuntu
(https://hub.docker.com/_/ubuntu), CentOS
(https://hub.docker.com/_/centos), Fedora
(https://hub.docker.com/_/fedora), and many other Linux
distributions. Those Linux distributions may offer base images in
different forms, such as standard and minimal versions. In fact, there
are base images that you can build on that offer runtimes for php, Perl,
Java, and other development environments.

Although Red Hat offers a subscription model for its software, if you
want to use Red Hat software as the foundation for your container
images, Red Hat offers freely available Universal Base Images (UBIs)
for standard, minimal, and a variety of runtime containers. You can
find those images by searching the Red Hat Container Catalog for UBI
images (https://catalog.redhat.com/software/containers/explore).

You can add software to a base image using commands such as docker
build or podman. By using a Dockerfile to define the build, you can add
yum or apt-get commands to install software from software
repositories into your new container.

When you add software to an image, it creates a new layer to become
part of the new image. Reusing the same base images for the
containers that you build offers several advantages. One advantage is
that when you run the container image, only one copy of the base
image is needed on the host. So, if you were running 10 different
containers based on the same base image, you only need to pull and
store the base image once, then possibly only add a few megabytes of
extra data for each new image.

If you look at the contents of a base image, it would look like a little

https://hub.docker.com/_/ubuntu
https://hub.docker.com/_/centos
https://hub.docker.com/_/fedora
https://catalog.redhat.com/software/containers/explore

Linux filesystem. You see configuration files in /etc, executables in
/bin and /sbin, and libraries in /lib. In other words, it would have the
basic components that an application would need from a Linux host
system.

Keep in mind that the container images you run don't necessarily need
to match the host Linux system. So, for example, you could run a
Fedora base image on an Ubuntu system, as long as there are no
specific kernel requirements or libraries built into the container image.

Starting with Linux Containers
Very little preparation is needed to start running containers on your
own Linux system. The following procedures describe how to prepare
your Linux system to start using containers.

Docker Inc. now makes a free version of its software available via the
Moby project, with Docker having become its commercial product. To
try an older version of the docker package, you can run the following
on a RHEL 7 system to install the docker package and then start and
enable the docker service:

yum install docker -y

systemctl start docker

systemctl enable docker

The podman command supports most of the docker command line
options for working with containers, so you can use it instead of
docker. Keep in mind that podman represents a different code base from
docker, even though it supports similar management command
options. With podman, you don't need to have a service running, as you
do with docker. To install podman on Fedora or RHEL, do the
following:

yum install podman -y

You can now start using the podman or docker commands to work with
containers and container images for the examples in this chapter.

Pulling and running containers
With the docker or podman packages installed and ready to use, you
can try running a container. To start, you can pull a container to your
local system and then run it. If you like, you can skip the pull
command since running the container will pull it if the requested
image is not already on your system.

Pulling a container

Choose a reliable container image to try out, as in one that comes from
an official project, is up to date, and preferably has been scanned for
vulnerabilities. Here is an example of pulling a RHEL 8 UBI base
image with the podman command (you can replace podman with docker
in these examples):

podman pull registry.access.redhat.com/ubi8/ubi

Trying to pull …/ubi8/ubi…Getting image source signatures

Copying blob fd8daf2668d1 done

Copying blob cb3c77f9bdd8 done

Copying config 096cae65a2 done

Writing manifest to image destination

Storing signatures

096cae65a2078ff26b3a2f82b28685b6091e4e2823809d45aef68aa2316300c7

To see that the image is on your system, run the following:

podman images

REPOSITORY TAG IMAGE ID CREATED SIZE

/ubi8/ubi latest 096cae65a207 2 weeks ago 239 M

Running a shell from a container
Use podman or docker to run a shell within a container. You can identify
the image either by the image ID (096cae65a207) or name
(registry.access.redhat.com/ubi8/ubi). Use the -i (interactive) and -
t (terminal) options so that you can have an interactive session within
the container from the bash shell:

podman run -it 096cae65a207 bash

[root@e9086da6ed70 /]#

With the shell running, commands that you type will operate within
the container. For example, you list the container's filesystem or check
out the os-release file to see the operating system on which the
container is based:

[root@e9086da6ed70 /]# ls /

bin dev home lib64 media opt root sbin sys

usr

boot etc lib lost+found mnt proc run srv tmp

var

[root@e9086da6ed70 /]# cat /etc/os-release | grep ^NAME

http://registry.access.redhat.com/ubi8/ubi

NAME="Red Hat Enterprise Linux"

Because containers are meant to have the minimal amount of content
needed to run the intended application, many standard tools may not
be inside the container. You can install software inside a running
container. However, keep in mind that containers are meant to be
discarded. So, if you want to add software permanently, you should
build a new image to include the software you want.

Here's an example of adding software to a running container:

[root@e9086da6ed70 /]# yum install procps iproute -y

Now you can run commands such as ps and ip inside the container:

[root@e9086da6ed70 /]# ps -ef

UID PID PPID C STIME TTY TIME CMD

root 1 0 0 17:44 pts/0 00:00:00 bash

root 40 1 0 17:45 pts/0 00:00:00 ps -ef

[root@e9086da6ed70 /]# ip a

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 …

 inet 127.0.0.1/8 scope host lo

 …

3: eth0@if11: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 …

 inet 10.88.0.6/16 brd 10.88.255.255 scope global eth0

 …

Notice that from within the container, you see only two running
processes (the shell and the ps command). PID 1 is the bash shell. The
trimmed output from ip a shows that there is only one external
network interface from the container (eth0@if11) and that interface is
assigned the IP address of 10.88.0.6/16.

When you are done, you can type exit to quit the shell and stop the
container:

[root@e9086da6ed70 /]# exit

Although the shell and the container are no longer running, the
container is still available on your system in a stopped state. Notice
that podman ps alone doesn't show the container. You need to add --
all:

[root@e9086da6ed70 /]# podman ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

[root@e9086da6ed70 /]# podman ps --all

CONTAINER ID IMAGE COMMAND CREATED STATUS

PORTS NAMES

437ec53386ca …ubi:latest bash 1 hour ago Up 1 minute ago

go_ein

Later you can see how to delete and restart a stopped container.

Running an FTP server from a container
Because you want to be able to throw away a container when you are
done, in general you want any changeable data to be stored outside of
the container. The following is a simple example of an FTP server
(vsftpd) being run from a container. If you want to try this example
yourself, I recommend that you skip to the section “Building a
container image” later in this chapter for instructions on how to build
the vsftpd container image yourself.

For this procedure, you need a configuration file (vsftpd.conf) and an
FTP directory that contains a file or two to share (/var/ftp/pub) on the
host system. When the vsftpd container starts, it bind mounts those
items into the container as volumes.

1. Create a vsftpd.conffile: Create the vsftpd.conf file in the
default location, /etc/vsftpd/vsftpd.conf. See the vsftpd.conf
man page for details. Here is an example:

anonymous_enable=YES

local_enable=YES

write_enable=YES

local_umask=022

dirmessage_enable=YES

xferlog_enable=NO

connect_from_port_20=YES

listen=NO

listen_ipv6=YES

pam_service_name=vsftpd

userlist_enable=YES

tcp_wrappers=NO

vsftpd_log_file=/dev/stdout

syslog_enable=NO

background=NO

pasv_enable=Yes

pasv_max_port=21100

pasv_min_port=21110

2. Create an ftp directory: Create an anonymous FTP directory
for vsftpd to share in the standard location on the host
(/var/ftp/pub) and copy a few files to that directory:

mkdir -p /var/ftp/pub

cp /etc/services /etc/login.defs /var/ftp/pub/

3. Get the vsftpd container image: Build the vsftpd image as
described in “Building a container image” later in this chapter. To
check that it is available to run, enter the following:

podman images

REPOSITORY TAG IMAGE ID CREATED SIZE

vsftpd latest 487d0db26098 5 seconds ago 208 MB

4. Run the vsftpd container image: When you run the vsftpd
container, you need to expose ports and mount files from the host
to the container. Here's an example (you can use docker instead of
podman):

podman run -d -p 20:20 -p 21:21 \

 -p 21100-21110:21100-21110 \

-v /etc/vsftpd/:/etc/vsftpd/ \

-v /var/ftp/pub:/var/ftp/pub \

--name vsftpd vsftpd

podman ps

CONTAINER ID IMAGE COMMAND CREATED

 STATUS PORTS NAMES

3a5d094dd4b5 vsftpd:latest /usr/local/s2… 9 seconds ago

 Up 10 seconds ago 0.0.0.0:20-21->20-21/tcp vsftpd

This example uses the following options:

-d: Runs the container in detached mode, so the vsftpd
service runs in the background.

-p: Standard FTP ports (TCP 20 and TCP 21) are mapped to
the same port numbers on the host network interfaces, so the
service can be accessed outside of the local host. A range of
ports needed for passive FTP are opened to their
counterparts on the host as well (21100-21110).

--rm: Although not included in this example, adding --rm to
the command line will remove the container when it exits.

-v: To use the configuration files (/etc/vsftpd directory) and
content that you want to share (/var/ftp directory) from the
host system, those directories are bind-mounted to the same
locations on the container with the -v option.

--name: Set the name of the container to vsftpd (or any name
you like).

Keep in mind that you can bind container content and ports to other
locations on the host. In that way, you can have multiple versions of
the same software running on the same host without conflicting with
each other.

To make your vsftpd service accessible outside of the local system, be
sure to open the FTP ports and passive FTP ports that you just
assigned as follows:

 # firewall-cmd --zone=public --add-service=ftp

 # firewall-cmd --zone=public \

 --permanent --add-service=ftp

 # firewall-cmd --zone=public \

 --add-port=21100-21110/tcp

 # firewall-cmd --zone=public \

 --permanent --add-port=21100-21110/tcp

 # firewall-cmd reload

You can now use any FTP client to access the FTP service via the
anonymous user. To configure your vsftpd service further and check
that it is working, refer to Chapter 18, “Configuring an FTP Server.”

Starting and stopping containers
Unless you specifically set a container to be removed when is stops (--
rm option), if the container is stopped, paused, or just fails, the
container is still on your system. You can see the status of all
containers on your system (currently running or not) using the ps
option:

podman ps

CONTAINER ID IMAGE COMMAND

CREATED

 STATUS PORTS NAMES

4d6be3e63fe3 localhost/vsftpd:latest /usr/local/s2… About

an hour ago

 Up About an hour ago 0.0.0.0:20-21->20-21/tcp vsftpd

podman ps -a

CONTAINER ID IMAGE COMMAND

CREATED

 STATUS PORTS NAMES

7da88bd62667 ubi8/ubi:latest bash

2 minutes ago

 Exited 7 seconds ago

silly_wozniak

4d6be3e63fe3 localhost/vsftpd:latest /usr/local/s2i/ru…

About an hour ago

 Up About an hour ago 0.0.0.0:20-21->20-21/tcp vsftpd

Only running containers are shown with podman ps. By adding -a, you
can see all containers, including those that are no longer running but
have not yet been removed. You can restart an existing container that
is no longer running using the start option:

podman start -a 7da88bd62667

[root@7da88bd62667 /]#

The restarted container was running a bash shell. Because the
container's terminal session already existed, I didn't need to start a
new one (-it). I just needed to attach (-a) to the existing session. For a
container that was just running in detached mode, I can simply start
and stop it as required:

podman stop 4d6be3e63fe3

4d6be3e63fe3…

podman start 4d6be3e63fe3

4d6be3e63fe3

Note that if the container had been started with the --rm option, the
container would be removed as soon as you stopped it. So, you would
have to run a new container instead of just restarting the old one.
Because the configuration files and data are stored outside of the
container, running a new container is easy and painless. Upgrading
the application in the future is as easy as removing the old container
and starting up one from the updated container image.

Building a container image
To build a container image, all you need is a Dockerfile describing how
to build the image and any other content that you want to include with
the image. The following procedures describe how to create a simple
container from your own Dockerfile and how to get the software you
need to build a vsftpd service into a container from software available
on GitHub.

Build a simple container image
This procedure creates a simple container from a Dockerfile. In this
process, you create a Dockerfile and a simple script, then build that
content into a new container image.

1. Create a directory to hold your container project and then enter
that directory:

mkdir myproject

cd myproject

2. Create a script called cworks.sh in the current directory that
contains the following text:

#!/bin/bash

set -o errexit

set -o nounset

set -o pipefail

echo "This Container Works!"

3. Create a file named Dockerfile in the current directory that
contains the following content:

FROM registry.access.redhat.com/ubi7/ubi-minimal

COPY ./cworks.sh /usr/local/bin/

CMD ["/usr/local/bin/cworks.sh"]

4. Build a container image called myproject from the Dockerfile:

podman build -t myproject .

STEP 1: FROM registry.access.redhat.com/ubi7/ubi-minimal

STEP 2: COPY ./cworks.sh /usr/local/bin/

6382dfd00f7bedf1a64c033515a09eff37cbc6d1244cbeb4f4533ad9f00aa970

STEP 3: CMD ["/usr/local/bin/cworks.sh"]

STEP 4: COMMIT myproject

6837ec3a37a241…

5. Run the container to make sure it works. To do that, you can use
either the container name (myproject) or its image ID
(6837ec3a37a241):

podman run 6837ec3a37a241

The Container Works!

Build an FTP container from GitHub
The following procedure describes how to get the software you need to
build a vsftpd service into a container from software available on
GitHub. It then shows you how to build and run that container.

1. If you don't already have it, install git on your local system:

yum install git -y

2. For this example, we are starting with the vsftpd container-images
project on GitHub. Clone a copy of that software to a local
directory as follows:

git clone

https://github.com/container-images/vsftpd.git

cd vsftpd

ls

default-conf/ Dockerfile LICENSE Makefile README.md

root/ s2i/ tests/

3. Modify the files as needed. In particular, go through the
Dockerfile and use the latest Fedora image available. Leaving off
the :tag at the end of the image name says to look for the version
of that image that includes the :latest tag, which is a special tag
that identifies the latest available version of that image. For
example, modify the FROM line at the beginning so that it appears
as follows:

FROM registry.fedoraproject.org/fedora

4. From the vsftpd directory, use either the docker or podman
commands to build the container image. For example:

podman build -t vsftpd .

STEP 1: FROM registry.fedoraproject.org/fedora:31

Getting image source signatures

Copying blob c0a89efa8873 done

Copying config aaaa3e1d6a done

Writing manifest to image destination

Storing signatures

STEP 2: ENV SUMMARY="Very Secure Ftp Daemon" …

STEP 3: LABEL maintainer="Dominika Hodovska

<dhodovsk@redhat.com>" …

STEP 4: RUN dnf install -y vsftpd #38;#38; dnf clean all

 && mkdir /home/vsftpd

…

Installing:

vsftpd x86_64 3.0.3-32.fc31 fedora 164 k

…

Complete!

99931652dceacc2e9…

STEP 5: VOLUME /var/log/vsftpd

b79b229d09f726356…

STEP 6: EXPOSE 20 21

b0af5428800140104…

STEP 7: RUN mkdir -p ${APP_DATA}/src

b3652e0d07e35af79…

STEP 8: WORKDIR ${APP_DATA}/src

f9d96dee640c5cedc…

STEP 9: COPY ./s2i/bin/ /usr/local/s2i

ded9b512693ccabaa…

STEP 10: COPY default-conf/vsftpd.conf

/etc/vsftpd/vsftpd.conf

0c48af8d4f72b76c7…

STEP 11: CMD ["/usr/local/s2i/run"]

STEP 12: COMMIT vsftpd

aa0274872f23ae94dfee…

5. Check that the new image was created:

podman images

REPOSITORY TAG IMAGE ID CREATED SIZE

localhost/vsftpd latest aa0274872f23 4 minutes ago 607 MB

This build process consisted of 12 steps. The FROM line in the first step
pulls the fedora image from registry.fedoraproject.org container
registry. Each subsequent step runs a command. If content is added
during the command, a new layer is created for the image. Step 2 and

http://registry.fedoraproject.org

Step 3 set environment variables and labels that are used during the
build as well as to identify attributes of the container image when it is
used later.

Step 4 runs the dnf command that installs the vsftpd package from the
Fedora yum repos to the container. Notice that the RUN instruction has
both dnf install and dnf clean in the same instruction. This is good
practice since it prevents an additional layer of cached dnf data from
being included with the image.

Step 5 identifies the volume used to store vsftpd log files. Step 6
exposes TCP port 20 and TCP 21 for the FTP service. Note that even
though the ports are exposed (meaning that they can be seen from
outside of the container), they will still need to be mapped to host
ports when you run the container later, if you want those ports to be
available outside of the local system.

Step 7 and Step 8 create a directory and set that as the working
directory for the application. Step 9 copies source-to-image (s2i)
scripts into the container to run the vsftpd service. Step 10 copies a
default vsftpd.conf configuration file into the container.

The CMD instruction in Step 11 sets /usr/local/s2i/run as the default
command to execute if the container is run without overriding that
command. Step 12 commits the final vsftpd image to local storage
(which you can see by typing podman images).

For more information on creating and using a Dockerfile to build
container images, refer to the Dockerfile Reference
(https://docs.docker.com/engine/reference/builder/). To learn more
about options for building container images, refer to the podman man
pages (man podman build).

Tagging and pushing an image to a registry
So far, I have shown an example of building a container image and
running it on your local system. To make your image available to other
people on other systems, you typically add that image to a container
registry. Follow these instructions to tag an image on your local system
and push it to a remote container registry.

https://docs.docker.com/engine/reference/builder/

To try out a simple registry on your local system, install the docker-
distribution package on a Fedora or RHEL 7 system. For a more
permanent solution, you can get accounts on public container
registries such as Quay.io and Docker Hub. Both free trials and
subscriptions are available from Quay.io (https://quay.io/plans/).
You can also set up and run your own supported container registry,
such as Red Hat Quay (https://www.openshift.com/products/quay).

To get you started, the following procedure has you install the docker-
distribution package on the local system and then tag and push an
image to it:

1. Install docker-distribution: On a RHEL 7 or recent Fedora
system, install and start the docker-distribution:

yum install docker-distribution -y

systemctl start docker-distribution

systemctl enable docker-distribution

systemctl status docker-distribution

• docker-distribution.service-v2 Registry server for Docker

 Loaded: loaded

 (/usr/lib/systemd/system/docker-distribution.service;

 enabled; vendor pres>

 Active: active (running) since Wed 2020-01-01…

2. Open the registry port: To be able to push and pull container
images from other host systems, you need to open TCP port 5000
on the firewall:

firewall-cmd --zone=public

 --add-port=5000/tcp --permanent

3. Tag the image: By tagging a local image, you identify the
location of the registry where the image will be stored. Replace
the image id and host.example.com with your image ID and
hostname or IP address to tag the image:

podman images | grep vsftpd

localhost/vsftpd latest aa0274872f23 2 hours ago 607 MB

podman tag aa0274872f23

host.example.com:5000/myvsftpd:v1.0

4. Push the image: Push the image to the local registry (substitute

https://quay.io/plans/
https://www.openshift.com/products/quay
http://host.example.com

your hostname or IP address). Turn off tls-verify, because
docker-registry uses http protocol:

podman push --tls-verify=false

host.example.com:5000/myvsftpd:v1.0

5. Pull the image: To make sure that the image is available from
your registry, try to pull the image. Either delete the image from
your local system or go to another host to try this:

podman pull --tls-verify=false \

 host.example.com:5000/myvsftpd:v1.0

At this point, you should be able to share your images with others from
your registry.

If you were using a public registry, which is a better solution for
sharing images with a wider audience, the procedure for pushing and
pulling images would look like the following.

podman login quay.io

Username: myownusername

Password: ***************

podman tag aa0274872f23 \

 quay.io/myownusername/myvsftpd:v1.0

podman push quay.io/myownusername/myvsftpd:v1.0

Using containers in the enterprise
Although the Docker project made huge strides in simplifying how
individual containers can be used, it was the Kubernetes project that
helped propel Linux containers into the enterprise. While command-
line tools like docker and podman are good for managing individual
containers, Kubernetes offers a platform for deploying large, complex
applications across huge data centers. Refer to Chapter 30, “Deploying
Applications as Containers with Kubernetes,” for information on how
to use Kubernetes to deploy and manage containerized applications in
the enterprise.

Summary
Containerizing applications has seen widespread adoption over the
past few years. The Docker project was a huge contributor to the
simplification of containerizing individual applications and running
them on single systems. Tools such as podman also became available to
deploy and manage individual containers on Linux systems.

This chapter described how to pull, run, build, and otherwise manage
containers using command-line tools like docker and podman. You can
use this knowledge as a foundation for understanding how
containerization works and for how those concepts are applied later in
Chapter 30, as it describes how Kubernetes can manage containerized
applications across an entire enterprise.

Exercises
The exercises in this section describe tasks related to working with
containers. If you are stuck, solutions to the tasks are shown in
Appendix B. Keep in mind that the solutions shown in Appendix B are
usually just one of multiple ways to complete a task.

1. Choose either podman (for any RHEL or Fedora system) or docker
(RHEL 7), install the software package containing the tool of your
choice, and start any necessary services to use those commands.

2. Using either docker or podman, pull this image to your host:
registry.access.redhat.com/ubi7/ubi.

3. Run the ubi7/ubi image to open a bash shell.

4. With the bash shell open within a container, run a few commands
to see the operating system on which the container is based,
install the proc-ps package, run a command to see the processes
running inside the container, and then exit.

5. Restart the container again and connect to it using an interactive
shell. Exit the shell when you are finished.

6. Create a simple Dockerfile from a ubi7/ubi base image, include a
script named cworks.sh that uses echo to output the string “The
Container Works!” and add that script to the image so that it runs
as the default command.

7. Use docker or podman to build an image named containerworks
from the Dockerfile you just created.

8. Gain access to a container registry, either by installing the docker-
distribution package or by getting an account on Quay.io or
Docker Hub.

9. Tag and push your new image to your chosen container registry.

http://registry.access.redhat.com/ubi7/ubi

CHAPTER 27
Using Linux for Cloud Computing

IN THIS CHAPTER
How Linux is used in clouds

Understanding basic cloud technology

Setting up a hypervisor

Creating virtual machines

Computer operating systems were originally designed to be installed
directly on computer hardware. When it needed memory, storage,
processing power, or network interfaces, a computer operating system
looked for physical RAM, hard disks, CPUs, and network interface
cards. When it needed more of those things than were physically
installed, you turned the machine off and physically added them to the
computer. Nowadays, virtualizing these items is what makes cloud
computing possible.

Virtualization, as is relates to computers, is the act of making
computing resources that were originally designed as physical objects
to be represented by virtual ones. For example, a virtual operating
system (referred to as a virtual machine) doesn't communicate
directly with the hardware. Instead, a virtual machine (VM) interacts
with a specially configured host computer referred to as a hypervisor.
So, instead of being able to run one operating system on a physical
computer, you could potentially run dozens or even hundreds of VMs
on a single physical computer.

The advantages gained from running VMs are massive. Not only can
you have multiple operating systems running on the same computer,
but those systems can be different ones—Linux, BSD, Windows, or any
other system made to run on the computer's hardware. If you need to

shut down the host computer for maintenance, you can migrate the
running VMs to another hypervisor with an imperceptible amount of
downtime.

To support virtual machines across multiple hypervisors, you can
virtualize the features they rely upon as well. For example, virtual
networks and virtual storage can span multiple hypervisors, so if a VM
needed to move to another hypervisor, the same virtual networks and
storage would be available to a newly migrated virtual machine.

You don't need to build a whole data center to begin understanding
virtualization and to use some of the underlying technologies that
make cloud computing possible. This chapter starts you off by helping
you to set up a host computer to run as a hypervisor, start running
VMs on that hypervisor, and then learn how to migrate VMs to other
hypervisors (in order to prevent downtime or just to grow your
capacity).

Overview of Linux and Cloud Computing
Cloud computing moves us into an arena where everything you
learned previously in this book is being abstracted and automated. In a
cloud environment, when you install a system, you are probably not
booting from a physical DVD, erasing the local hard drive, and
installing Linux directly on a computer sitting in front of you. You are
also probably not logging into the installed system and manually
configuring the software and features you want to run on that system.

Instead, you are installing to a VM or running a container that is on
some host system in the cloud. The network interfaces that you see
may not be represented by a physical switch, rather they may be
virtual networks that exist on a single computer or span multiple
hypervisors.

Today, every software aspect of cloud computing can be fulfilled using
open source technology running on Linux systems. To get a feel for
how some of the basic technologies in cloud computing work, this
chapter explains some of those technologies and then describes how to
set up a hypervisor and start using VMs on that hypervisor.

Cloud hypervisors (aka compute nodes)
In cloud computing, the operating systems serving cloud users are not
running directly on computer hardware. Instead, hypervisors are
configured to run many operating systems as what are referred to as
virtual machines (VMs).

Depending on your cloud environment, you may hear a hypervisor
referred to as a compute node, a worker node, or simply as a host.
Because hypervisors tend to be commodity items (dozens or hundreds
of hypervisors may be set up for a location), Linux is the logical choice
as the operating system running as hypervisors directly on hardware.

Kernel-based Virtual Machine (KVM) is the basic virtualization
technology implemented in most Linux distributions to make a Linux
system into a hypervisor. KVM is supported on Ubuntu, Red Hat
Enterprise Linux, Fedora, CentOS, and many other Linux systems.

The other major technology that can be used instead of KVM to make
a Linux system into a hypervisor is Xen (www.xenproject.org). Xen has
been around longer than KVM, and it is supported in products from
Citrix Systems and Oracle.

Later in this chapter, I describe how to check to see if a computer has
the required hardware features to be used as a hypervisor and how to
configure it to be used with KVM.

Cloud controllers
Because a cloud configuration can include multiple hypervisors, pools
of storage, multiple virtual networks, and many virtual machines, you
need centralized tools to manage and monitor those features. You can
use both graphical and command-based tools for controlling cloud
environments.

Although not considered a full cloud controller, the Virtual Machine
Manager (virt-manager) GUI and virsh command can be used to
manage a small cloud-like environment. Using virt-manager, you can
get a feel for managing multiple virtual machines across several
hypervisors, and you can learn how to deal with virtual networks and
shared storage pools.

Full-blown cloud platforms have their own controllers for offering
much more complex interactions between cloud components. For
example, the Red Hat OpenStack platform
(https://access.redhat.com/products/red-hat-openstack-platform)
and its upstream RDO project (https://www.rdoproject.org) provide
flexible and expandable cloud environments for managing VMs and all
associated supporting features. For Red Hat Virtualization (RHV), the
RHV Manager provides many of the same features.

If you want to start out more simply, however, you can start by using
virt-manager, the VM Desktop tool, to manage your first mini cloud-
like environment.

Cloud storage
New demands on data storage arise when you move your operating

http://www.xenproject.org
https://access.redhat.com/products/red-hat-openstack-platform
https://www.rdoproject.org

systems and applications into a cloud environment. To be able to move
a virtual machine to run on another hypervisor, its storage must be
available from that new hypervisor. Storage needs for clouds include
back-end storage for your VMs, images for launching VMs, and
databases for storing information about the cloud itself.

Shared storage between hypervisors can be done as simply as creating
an NFS share (see Chapter 20, “Configuring an NFS File Server”) and
mounting it on the same mount point between multiple hypervisors.
NFS is one of the easiest ways to implement shared storage.

More robust shared storage that can handle disk failures and provide
better performance works better for clouds providing critical services.
Shared block storage, where you mount a whole disk or disk partition,
can be accomplished using technologies such as iSCSI or Fibre
Channel.

Ceph (http://ceph.com) is an open source project for managing both
block and object storage that is popular for managing storage in cloud
environments. GlusterFS (www.gluster.org) is a scale-out filesystem
that is often used in cloud environments.

For the simple mini-cloud example in this chapter, I used NFS to
provide shared storage between the hypervisors. Ceph and GlusterFS
are more appropriate for enterprise-quality installations.

Cloud authentication
To be able to limit how much cloud resources a user can consume, and
possibly track and charge for that use, you need authentication
mechanisms. Authentication is necessary for those who are using
cloud features as well as for those who are allowed to administer cloud
features.

Cloud platform projects sometimes let you connect centralized
authentication mechanisms to validate and authorize cloud users.
These can include Kerberos, Microsoft Active Directory, and others. In
Linux, Identity, Policy, and Audit (IPA) software (see www.freeipa.org)
offers a full set of authentication features that can be used across an
enterprise cloud platform.

http://ceph.com
http://www.gluster.org
http://www.freeipa.org

Cloud deployment and configuration
If you are managing a large cloud infrastructure, you don't want to
have to walk over to each machine and click through a graphical
installation every time you want to add a hypervisor or other node on
your network. Today, many tools can deploy and configure Linux
systems as simply as rebooting the computer and having it boot up to a
preconfigured installer.

In Chapter 9, “Installing Linux,” I talked about how to use a PXE
server (to boot a Linux installer automatically over the network from
your network interface card) and Kickstart files (to identify all of the
answers you need to complete an installation). With that setup in
place, you can simply boot a computer from a network interface and
come back a short time later to find a fully installed Linux system.

After a computer is deployed, systems can be configured and possibly
monitored and updated using tools such as Puppet
(http://puppetlabs.com) and Chef (www.chef.io). Whole work
environments can be deployed in virtual machines using Vagrant
(www.vagrantup.com). Ansible (www.ansible.com) is another tool for
automating IT infrastructures and the applications that run on them.

Cloud platforms
If you want to implement your own, private cloud within your
organization, the open source OpenStack platform is probably the
most popular choice. It offers a huge amount of flexibility and power
in how you configure and use it.

Red Hat Virtualization (RHV) is another popular cloud platform. RHV
makes it easy to start with a simple RHV Manager and one or two
hypervisors to run the VMs it manages and then grow your own cloud
platform by adding more hypervisors, storage pools, and other
features.

If you want to use public clouds based on open source technology to
run the operating systems that you need, you can use any of several
different cloud providers. Public cloud providers that you can use to
run Linux VMs include Amazon Web Services (www.amazon.com/aws),

http://puppetlabs.com
http://www.chef.io
http://www.vagrantup.com
http://www.ansible.com
http://www.amazon.com/aws

Google Cloud Platform (https://cloud.google.com), and Rackspace
(www.rackspace.com). Chapter 28, “Deploying Linux to the Cloud,”
covers how to deploy Linux to some of these cloud providers.

https://cloud.google.com
http://www.rackspace.com

Trying Basic Cloud Technology
To help you understand cloud technology from the ground up, this
section illustrates some of the basic building blocks of a modern cloud
infrastructure. Using three computers, I'll help you create a setup that
includes the following:

Hypervisors A hypervisor is a software component that allows
you to run other multiple computer systems on it. Those other
systems are referred to as virtual machines (VMs). A cloud
infrastructure may have dozens or hundreds of hypervisors
running, possibly running thousands of virtual machines.

Virtual machines The virtual machines that you run on a Linux
hypervisor can be the same type of Linux system, a different
Linux system, a Windows system, or any other type of system that
is compatible with the hardware on which the hypervisor runs.
Thus, the virtual machines that run on the hypervisors that we
will build here could include Fedora, Ubuntu, RHEL, CentOS,
Microsoft Windows, and others.

Shared storage To offer the greatest flexibility, the storage that
hypervisors make available to virtual machines is often shared
among a pool of hypervisors. This allows a set of hypervisors to
share a set of images that they use to install or start virtual
machines. It also lets the same set of virtual machines run on any
hypervisor in that group and even move to a different hypervisor
without shutting down the VM. Moving running VMs can be
useful if a hypervisor becomes overloaded or if it needs to be shut
down for maintenance.

The setup we build in the following procedure allows you to work with
VMs in these ways:

Installing a new VM on a hypervisor

Setting features on your VMs

Logging in to and using a VM running on a hypervisor

Migrating running VMs to another hypervisor

We will explore the following technologies:

Kernel-based Virtual Machine (KVM)) KVM is the basic
kernel technology that allows virtual machines to interact with the
Linux kernel.

QEMU Processor Emulator One qemu process runs for each
active virtual machine on the system. QEMU provides features
that make it appear to each virtual machine as though it is
running on physical hardware.

Libvirt Service Daemon (libvirtd) A single libvirtd service
runs on each hypervisor. The libvirtd daemon listens for
requests to start, stop, pause, and otherwise manage virtual
machines on a hypervisor. Those requests can come from an
application designed to manage virtual machines (such as virt-
manager or OpenStack Dashboard) or from an application that you
create to talk directly to the libvirt application programming
interface.

Virtual Machine Manager The Virtual Machine Manager
(virt-manager command) is a GUI tool for managing virtual
machines. Besides letting you request to start and stop virtual
machines, virt-manager lets you install, configure, and manage
VMs in different ways. You can use the virsh command to pass
options to the command line to work with virtual machines
instead of clicking in a GUI window.

Virtualization Viewer The virt-viewer command launches a
virtual machine console window on your Desktop. The window
that appears allows you to work from a console window to a
Desktop or command-line interface to the selected virtual
machine (depending on what that VM has to offer). What this
means is that someone consuming your PaaS could bundle
together their own operating system, application, configuration
files, and data and deploy them. They would rely on your PaaS to
provide the compute power, storage, memory, network interfaces,
and management features needed to run the virtual machines

containing their applications.

The next section gives you your first taste of some of the foundational
technologies of Linux clouds. It describes how to set up a small cloud
by configuring your own hypervisors, virtual machines, and virtual
storage.

Setting Up a Small Cloud
With three physical machines connected together on a network, you
can illustrate some of the basic concepts that you need in order to
understand how to build your own cloud. The three computers
running Fedora 30 and the network connecting them are configured as
follows:

Networking A high-speed, wired network was set up to connect
the three computers. Fast network connections are critical to
successful VM migration. In this example, each hypervisor also
has a network bridge configured so that each virtual machine can
pick up an IP address directly from a DHCP service on the
network.

Hypervisors Two of the computers are configured as
hypervisors. A hypervisor (sometimes referred to as a host or a
compute node) allows you to run virtual machines. In Fedora 30,
the basic hypervisor technology is called Kernel-based Virtual
Machine (KVM), while the actual virtual machines are managed
by the libvirtd service.

Storage One computer is configured to offer shared storage
between the two hypervisors. For simplicity, NFS is used to create
the shared storage, although in a production environment, iSCSI
or Fibre Channel would be better solutions.

NOTE
For test purposes, you could use one of the two hypervisors to
provide the shared storage. However, one of the main purposes of
configuring two hypervisors and separate shared storage is that
you want to be able to shut down any hypervisor and still have all
of your virtual machines operate normally. If you have shared
storage available from one of the hypervisors, you could never
bring that hypervisor down without shutting down all of the VMs
using that storage.

Configuring hypervisors
In the following procedure, I installed Fedora 30 on two physical
computers and configured them as KVM hosts running the libvirtd
service. Follow these steps to accomplish this for yourself.

Step 1: Get Linux software
Go to the Get Fedora page (https://getfedora.org) and download
Fedora 30. I chose to download the Fedora 30, 64-bit Workstation
edition DVD ISO. If a later version of Fedora is available, you could
likely use that instead.

Use any available DVD burning application to burn the image to a
DVD or otherwise make the image available to install (such as by PXE
booting).

Step 2: Check your computers
The computers you use as hypervisors in Fedora 30 need to meet a few
requirements. You should check the following on your computer
before you start installing:

Supports virtualization. You can check for virtualization
support by looking at the flags set in the CPU.

Memory. The computer must have enough RAM not only to run

https://getfedora.org

the host operating system, but also for each virtual machine that
you expect to run on the system.

Processing power. Keep in mind that each virtual machine
consumes processing power for itself and any application running
inside the virtual machine.

Storage is another consideration. However, because we intend to
configure storage from a separate node on the network, we will
address that issue later.

To check that the available features of your computers meet the
requirements, boot a Linux Live CD or DVD, open a Terminal window,
and type the following commands:

cat /proc/cpuinfo | grep --color -E "vmx|svm|lm"

flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr

pge mca

cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm

pbe

syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon pebs

bts

rep_good xtopology nonstop_tsc aperfmperf pni pclmulqdq

dtes64

monitor ds_cpl vmx smx es…

…

Running the above command shows that this computer is a 64-bit
computer (lm) and that an Intel chip supports virtualization features
(vmx). If the CPU were an AMD chip that supported virtualization,
instead of vmx, you would see svm highlighted. Those settings show that
this computer can be used as a hypervisor.

When you start running VMs on a host, memory is often the
bottleneck. For memory requirements, you must add what is needed
by the host to whatever you need for each VM. You can lower memory
requirements by not having Desktop software installed, as most
hypervisors do. In this case, however, I performed a Fedora
Workstation install, which comes with a Desktop. To check the
memory and swap on the computer, I entered the following:

free -m

 total used free shared

buff/cache available

Mem: 15318 4182 6331 1047

4805 9678

Swap: 7743 0 7743

This system has about 16Gb of RAM and 8Gb of swap. I estimate that
4Gb is good for a Desktop system. If I allow 1Gb or 2Gb for each VM,
this system should be able to run 6–12 VMs along with the Desktop.
Check the memory requirements for the operating systems and the
applications that you plan to run to determine your particular memory
needs.

To check the number and types of processors on your computer, enter
the following:

grep processor /proc/cpuinfo

processor : 0

…

processor : 6

processor : 7

head /proc/cpuinfo

processor : 0

vendor_id : GenuineIntel

cpu family : 6

model : 60

model name : Intel(R) Core(TM) i7-4800MQ CPU @ 2.70GHz

stepping : 3

cpu MHz : 2701.000

cache size : 6144 KB

…

The first command in the preceding code shows that there are eight (0
through 7) processors on the computer. The second command for the
first processor shows that it is GenuineIntel, the model number, model
name, CPU speed, and other information.

To do live VM migration between the two hypervisors, the CPUs must
be in the same family. If they don't have compatible CPUs, you could
migrate a VM by shutting it down on one hypervisor and starting it up
from shared storage on the other.

After you have sized up the two hypervisor computers, start installing
Fedora on them.

Step 3: Install Linux on hypervisors
Using the Fedora 30 Workstation installation media, begin installing
the two hypervisors. Follow descriptions in Chapter 9, “Installing
Linux,” for installing Fedora. You should know the following things,
which are specific to the installation for this procedure:

Name the hypervisors I set the hostnames on the hypervisors
to host1.example.com and host2.example.com.

Partitioning When partitioning, I erase the entire hard disk.
Then I create a 500Mb /boot partition and a 12Gb swap partition,
and I assign the rest of the disk space to the root partition (/). The
/var/lib/libvirt/images directory holds most of the data on this
system, but that is a shared directory, available from another
system on the network and shared between the two hypervisors.
(More on that later.)

Networking If given the option, turn on wired network
interfaces for each hypervisor. The hypervisors and storage
should all be on the same local network, because the speed of your
network connection among those machines is critical to getting
good performance.

Software packages During installation, I install only the default
Fedora Workstation packages. After installation is complete and
the system is rebooted, I install more of the software that's needed
for each hypervisor.

Reboot the computer when installation is finished (ejecting the DVD
and starting up on the hard drive). After the system is rebooted,
update the Fedora software, add new packages, and reboot the system
again as follows:

yum update -y

yum install virt-manager libvirt-daemon-config-network

reboot

The virt-manager package contains the GUI tool for managing your

http://host1.example.com
http://host2.example.com

virtual machines. The libvirt-daemon-config-network package creates
the default network interface that lets the virtual machines access
external networks (through the host) using Network Address
Translation (NAT). The default address range assigned to the virtual
machines is 192.168.122.2 through 192.168.122.254.

Other packages that you will need should already be included with the
Fedora Workstation install. If you did a different install type, make
sure that you have the following packages also added:

libvirt-client (for the virsh command)

libvirt-daemon (to get the libvirtd service)

Step 4: Start services on the hypervisors
You need to make sure that the libvirtd service is running on both
hypervisors. Start the sshd service as well. They may already be
running, but just to make sure, do the following as root on both
hypervisors:

systemctl start sshd.service

systemctl enable sshd.service

systemctl start libvirtd.service

systemctl enable libvirtd.service

The sshd service allows you to log into the hypervisors over the
network, if necessary. The libvirtd service is the one with which you
may be unfamiliar. It is listening for requests to manage your virtual
machines on each host.

Step 5: Edit /etc/hosts, or set up DNS
To make it convenient to communicate between the hypervisors and
storage system, you should assign hostnames to each system and map
those names to IP addresses. Setting up a DNS server to which all the
systems point is probably the best way to do that. However, for our
simple example, you can just edit the /etc/hosts file on each system
and add entries for each host.

Here is an example of what additional entries to your /etc/hosts file
might look like for the three systems used in this procedure:

192.168.0.138 host1.example.com host1

192.168.0.139 host2.example.com host2

192.168.0.1 storage.example.com storage

Next you need to configure the storage.

Configuring storage
You can provide networked storage to the hypervisors for this
procedure in many ways. I chose to set up a separate Fedora system on
the same local network as the hypervisors and use NFS to attach the
shared storage to both hypervisors.

NFS is not the most efficient method of sharing storage among
hypervisors, but it is one of the easiest and most common to set up. In
this procedure, I use the Virtualization Manager GUI tool (virt-
manager) to configure the NFS storage pool.

For consistency's sake, the NFS share set up from the storage system is
the /var/lib/libvirt/images directory. It is mounted in the same
place on each of the hypervisors. (For testing, if you only have two
machines available, you can configure storage from one of the
hypervisors. Keep in mind, however, that this means that you can't
turn off that hypervisor without shutting down all of your VMs.)

Step 1: Install Linux software
To set up your storage on an NFS server, you can use pretty much any
Linux system that has an NFS service available. Consider these things
when you install Linux:

Disk space. Make sure that you have enough storage space
available on the partition that contains the shared directory. For
this example, /var/lib/libvirt/images is the shared directory.

Performance. For best performance, you want to have a disk
that has fast access times and data transfer rates.

For Fedora and RHEL, NFS server software is available from the nfs-
utils package. For Ubuntu, you need the nfs-kernel-server package.
After initial installation is finished, check that the NFS server software
is installed. If it isn't, you can install it on Fedora or RHEL with this

command:

yum install nfs-utils

For Ubuntu and similar systems, type this:

apt-get install nfs-kernel-server

Step 2: Configure NFS share
To create an NFS share, you need to identify the directory to share and
add information about it to the /etc/exports file. Follow these steps:

a. Create a directory. You can share any directory containing the
space that you want to share. Consider making a new directory
and mounting a whole disk or partition on it. For this example, I
create a directory named /var/storage as follows:

mkdir -p /var/storage

b. Allow exporting. On your storage system, create an entry in the
/etc/exports file to share the directory with selected systems (by
name or IP address). For this example, I allowed read-write
access (rw) to all systems on the 192.168.0 subnetwork:

/var/storage 192.168.0.*(no_root_squash,rw,sync)

Step 3: Start the NFS service
Start the NFS service and open the firewall on the storage system to
allow access to that service. Here's how:

a. Start and enable NFS. On the latest Fedora and RHEL
systems, enter the following to start the NFS server:

systemctl start nfs-server.service

systemctl enable nfs-server.service

On RHEL 6, older Fedora, and some Ubuntu systems, use these
commands to start and enable the NFS service:

service nfs start

chkconfig nfs on

b. Open the firewall. To open the firewall ports so that those
outside the local system can use your NFS share, do the following
on Fedora 30:

firewall-cmd --permanent --add-service=rpc-bind

firewall-cmd --permanent --add-service=nfs

systemctl restart firewalld

For systems using iptables directly, see Chapter 20 for information on
how to open your firewall for the NFS service.

Step 4: Mount the NFS share on the hypervisors
Log in to each hypervisor and follow these steps to make the share
available locally. Note that the location of the mount point directory
on each hypervisor must be the same. Here's how:

a. Check the NFS share availability. From each of the two
hypervisors, make sure that you can see the available share by
entering the following:

showmount -e storage.example.com

Export list for storage.example.com:

/var/storage 192.168.0.*

b. Mount the NFS share. Add information about the share to the
/etc/fstab file. For our example, to allow the directory from the
192.168.0.1 system to be mounted on the same directory locally
each time the system boots, the entry in the /etc/fstab file could
look like this:

storage.example.com:/storage /var/lib/libvirt/images nfs

defaults 0 0

c. Set SELInux boolean. If SELinux is in enforcing mode, set the
following boolean to allow qemu-kvm to use the NFS share:

setsebool -P virt_use_nfs 1

d. Test the NFS mount. To check that you got the mount entry
correct, run the following command to mount all entries in the
/etc/fstab that have not already been mounted, and check that

the NFS share was mounted:

mount -a

mount | grep libvirt

storage.example.com:/var/storage on

/var/lib/libvirt/images type nfs4

(rw,relatime,vers=4.0,rsize=1048576,wsize=1048576,namlen=255,hard,proto=tcp,

port=0,timeo=600,retrans=2,sec=sys,clientaddr=192.168.0.1,local_lock=none,

addr=192.168.0.138)

With your hypervisors and storage now in place, you can begin
creating your virtual machines.

Creating virtual machines
The Virtual Machine Manager (virt-manager) is a good tool to use to
create you first virtual machines. It steps you through the installation
and setup of virtual machines, and it provides a way to view and
change the status of your existing virtual machines.

Later, when you understand the kinds of features that go into creating
virtual machines, you can use the virt-install command to create
virtual machines instead. The advantage of virt-install is that you
can script or easily copy and paste a command line to create a virtual
machine instead of having to click through a GUI window.

You downloaded the Fedora 30 Workstation ISO image earlier in this
chapter, so I'll use that in the example for creating a virtual machine.
However, if you prefer, you can install many different versions of
Linux or Windows as your virtual machine.

Step 1: Get images to make virtual machines
You can create a virtual machine in many ways. In general, you start
with either a pre-built image (basically a copy of a working virtual
machine) or just install from an installation ISO image into a fresh
storage area. Here we are going to do the latter and create a VM from
the Fedora 30 Workstation installation ISO image.

Assuming that you are logged in to one of the hypervisors as root and
the ISO image is in the current directory, copy the ISO to the default

directory used by virt-manager for storage (/var/lib/libvirt/images):

cp Fedora-Workstation-Live-x86_64-30-1.2.iso

/var/lib/libvirt/images/

Because that directory is shared by both hypervisors, you can go to
either hypervisor to use that image.

Step 2: Check the network bridge
On each hypervisor, there should be a default network bridge named
virbr0. All virtual machines will be added to this network interface
and automatically assigned an IP address. This default bridge exists
due to libvirtd's default virtual network. By default, the hypervisor
uses the address range of 192.168.122.2 through 192.168.122.254 to
assign to the virtual machines. Using Network Address Translation
(NAT), the host can route packets from the virtual machines using
these private addresses to external network interfaces.

Do the following on each hypervisor to check the bridge for each:

brctl show virbr0

bridge name bridge id STP enabled interfaces

virbr0 8000.001aa0d7483e yes vnet0

ip addr show virbr0

5: virbr0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc

noqueue

 state UP group default

 link/ether fe:54:00:57:71:67 brd ff:ff:ff:ff:ff:ff

 inet 192.168.122.1 brd 192.168.122.255 scope global

dynamic virbr0

Step 3: Start Virtual Machine Manager (virt-manager)
From the Desktop on either hypervisor, do the following to open
Virtual Machine Manager and connect it to the hypervisor:

a. Start virt-manager. Go to the Activities screen, type Virtual
Machine Manager into the search box, and press Enter, or type
virt-manager from the shell. Type the root password when
prompted. You should see the Virtual Machine Manager window.

b. Check the connection to the hypervisor. From the Add
Connection pop-up, the hypervisor (QEMU/KVM) should already
be set and the Autoconnect check box should be checked. Click
Connect to connect to the local hypervisor if it has not already
been done.

Step 4: Check connection details
After connecting to the hypervisor, set up some connection details. To
do that, from the Virtual Machine Manager window, do the following:

a. View the connection details. Select Edit ➪ Connection
Details to see the Connection Details window. Select the
Overview, Virtual Networks, Storage, and Network Interfaces tabs
to familiarize yourself with connection information for your
hypervisor. For example, the Storage tab appears in Figure 27.1,
showing that there are 438.40Gb of free space in the location used
by default for storage by this hypervisor (/var/lib/libvirt/images
directory).

b. Check that the network bridge is available. Select the
Virtual Networks tab, and make sure that the bridge (virbr0) is in
the list of available network interfaces.

Step 5: Create a new virtual machine
To create a new virtual machine from the Virtual Machine Manager
window, do the following:

a. Start the wizard. To start the Create a New Virtual Machine
Wizard, select File ➪ New Virtual Machine. The Create a New
Virtual Machine window appears.

b. Choose the installation method. Four ways of creating the
virtual machine are presented. The first three are ways to identify
the location of installation media. The fourth lets you import an
existing disk image. For our example, choose the first selection
(Local install media) and click Forward.

c. Choose the ISO. Select the Use ISO Image button and choose
Browse. In the window that appears, select or browse to the

Fedora 3021 Workstation ISO, select Choose Volume, and click
Forward to continue.

d. Choose the memory and CPU. Choose the amount of RAM
and number of processors available to the VM and click Forward.
I suggest at least 1024Mb of RAM and at least one processor.
Using 2048Mb of RAM, if it is available, is better.

e. Enable storage. Choose the amount of disk space that you want
the VM to consume. I suggest at least 10Gb for a Fedora
Workstation, but you could probably get by with less. The qcow2
image that is created grows to the size you actually consume (up
to the amount allocated), so over-allocating space causes no
problem until you actually try to use that space. Set the cache
mode to none or directsync to be able to migrate the VM later.
Click Forward.

f. Review the settings before the installation starts. Choose
the name for the virtual machine, and review the other settings for
your installation. Select Customize Configuration Before Install to
further review settings. Leave other settings at the default for
now, and click Finish.

g. Review the hardware settings. If you selected Customize on
the previous screen, you can review the settings in more detail.
Make sure the cache mode is set to none or directsync. When you
are satisfied, select Begin Installation.

FIGURE 27.1 Start Virtual Machine Manager and check
connection details.

h. Install the virtual machine. You are prompted to install the
system just as you would be if you were installing directly to
hardware. Complete the installation, and reboot the virtual
machine. If the VM window isn't open, double-click the VM entry
(in this case, fedora1) in the virt-manager window and log in.
Figure 27.2 shows an example of the virt-manager window with
the Fedora Workstation virtual machine displayed.

FIGURE 27.2 Open the virtual machine and begin using it.

Managing virtual machines
After you have one or more virtual machines installed on a hypervisor,
you can manage each VM in much the same way that you manage a
computer system installed directly on hardware. You can do the
following:

View the system from a console. Double-click a running VM
in the virt-manager window. A console window opens to the VM,
allowing you to use the VM just as you would from a physical
console to access an operating system installed directly on the
hardware. You can bypass virt-manager to display a VM's console
directly with virt-viewer. For example, for a VM named rhel8-01,
type virt-viewer rhel8-01.

Shut down the VM. Right-click the VM entry and select Shut

Down. Then select either Shut Down (to shut down properly) or
Force Off (effectively pulling the plug). Or, you can select Reboot.

Start the VM. If the VM is currently shut down, right-click the
entry and select Run to start the VM running.

Delete the VM. If you are totally finished using the VM, select
Delete. You are asked if you want to delete the storage as well.
Uncheck the box if you want to keep the storage associated with
the VM.

Now that you are comfortable using your virtual machines, you can try
migrating a VM to another hypervisor.

Migrating virtual machines
Being able to migrate your virtual machines between different
hypervisors gives you tremendous flexibility in managing your
computer workloads. Here are some of the advantages:

Improve performance by moving VMs from hypervisors that are
overloaded to ones that have more available memory and CPU
capacity.

Do routine maintenance on a hypervisor while keeping your VMs
running.

Move VMs off underutilized hypervisors so that you can shut
them off to save energy until they are needed again.

Move VMs off site if you are expecting to shut down a data center
or you are expecting a hurricane or other catastrophe to hit your
data center.

Live migration, in particular, is valuable if you need work to continue
on the VMs without interruption. The key to getting live VM migration
to work is setting up your environment properly. Make sure the
following things are in place (keep in mind that these are the kinds of
features that something like Red Hat Virtualization does for you):

Shared networked storage among the hypervisors.

The same network interfaces configured on each hypervisor.

Compatible CPUs between hypervisors. (Often, a set of
hypervisors have the exact same hardware.)

A fast network connection between the hypervisors and storage.

The same or similar versions of virtualization software on the
hypervisors. (In our case, we used Fedora 30 on both and
installed them similarly.)

With all that in place, live migration requires only a few steps to get
going.

Step 1: Identify other hypervisors
Assuming the Virtual Machine Manager window is still up and
running on one of your hypervisors, go to that window and do the
following to connect to the other hypervisor:

a. Connect to the hypervisor. Select File ➪ Add Connection. The
Add Connection window should appear.

b. Add the connection. Select the Connect to Remote Host check
box, choose SSH as the method, use the user name root, and type
the hostname of the other hypervisor (for example,
host1.example.com). When you click Connect, you may be
prompted to enter a password for the remote hypervisor's root
user and enter other information. Note that you might need to
install the openssh-askpass package to be prompted for the
password.

An entry for the new hypervisor should appear on the Virtual Machine
Manager window.

Step 2: Migrate running VM to Other hypervisor
Before you can migrate the VM to another hypervisor, you might need
to adjust your firewall rules. With the default firewall rules in place,
direct libvirt migration will fail. A random TCP port needs to be
opened to allow the migration. The default is 49152, but any available,
non-privileged port can be chosen. Tunneled migration requires SSH
key authentication.

http://host1.example.com

With the Virtual Machine Manager open, right-click your mouse on
any VM that is currently running and select Migrate. The Migrate the
Virtual Machine window appears, as shown in Figure 27.3:

Select the new host. In my example, the VM is currently running on
host2, so I want to select host1 as the new host. After a bit of time for
the memory image of the VM to copy over to the other host, the VM
should appear as running on that host.

If for some reason your migration fails (incompatible CPUs or other
problems), you can always shut down the VM on one host and start it
again on the other host. Doing that only requires that your shared
storage is in place. On the second host, simply run the Create a New
Virtual Machine Wizard, but select to run an existing image instead of
an installation ISO.

The hypervisor configuration I just demonstrated might suit you well
for your home workstation or even for a small business. Although it is
beyond the scope of this book to help you develop an entire cloud
computing platform, it is within my charter to help you use different
cloud platforms to run your Linux systems. The next chapter helps you
do just that.

FIGURE 27.3 Choose which hypervisor to migrate the VM to.

Summary
Linux is the foundation on which most of today's emerging cloud
technologies are being built. This chapter describes many of the basic
components that go into building a cloud based on Linux and other
open source technologies. It then helps you to learn about some of
those basic technologies by setting up a couple of hypervisors and
launching virtual machines.

Exercises
The exercises in this section describe tasks related to setting up a
hypervisor (KVM host computer) and using it to run virtual machines.
If you are stuck, solutions to the tasks are shown in Appendix B. Keep
in mind that the solutions shown in Appendix B are usually just one of
many ways to complete a task.

Although the example shown in this chapter for setting up hypervisors
uses three physical machines, these exercises can be done on a single
physical machine.

1. Check your computer to see if it can support KVM virtualization.

2. Install a Linux system along with the packages needed to use it as
a KVM host and to run the Virtual Machine Manager application.

3. Make sure that the sshd and libvirtd services are running on the
system.

4. Get a Linux installation ISO image that is compatible with your
hypervisor and copy it to the default directory used by Virtual
Machine Manager to store images.

5. Check that the default network bridge (virbr0) is currently active.

6. Install a virtual machine using the ISO image you copied earlier.

7. Make sure that you can log into and use the virtual machine.

8. Check that your virtual machine can connect to the Internet or
other network outside of the hypervisor.

9. Stop the virtual machine so that it is no longer running.

10. Start the virtual machine again so that it is running and available.

CHAPTER 28
Deploying Linux to the Cloud

IN THIS CHAPTER
Creating Linux cloud images

Deploying a cloud image with virt-manager (libvirtd)

Deploying a cloud image to OpenStack

Deploying a cloud image to Amazon EC2

To get a new Linux system to use, instead of just running, a standard
installation program from a physical DVD, you can get a Linux image
and deploy it to a cloud. One way to do that is to take a generic Linux
image (one that is bootable but unconfigured) and provide
information to configure it to suit your needs. Another way is to go to a
cloud provider, choose an image, click through selections to configure
it, and launch it.

The point is that cloud computing is offering up new ways to start up
and use Linux systems. In Chapter 27, I had you do a standard Linux
installation to create a virtual machine that runs on a Linux
hypervisor. In this chapter, I will show you how to use cloud images to
start up a fresh Linux system.

First, I describe how to use cloud-init to combine a Linux cloud image
manually with configuration information in order to allow it to run in
a variety of environments. Next, I tell you how a similar process is
done on an OpenStack cloud or an Amazon Elastic Compute Cloud
(EC2) by clicking through easy-to-use cloud controllers to choose
images and settings to run the Linux cloud instance that you want.

Getting Linux to Run in a Cloud
Cloud platforms are great for spinning up new virtual machines
quickly and efficiently. They can do so because a fresh install is not
required each time you want a new instance of an operating system.

Public clouds, such as Amazon EC2 (http://aws.amazon.com/ec2), offer
instances of different Linux distributions for you to start and use. You
choose a Linux instance, such as Ubuntu, Red Hat Enterprise Linux
(RHEL), or SUSE Linux Enterprise Server (SLES), which is tuned for
specific purposes. For example, there are instances that are optimized
for high-performance processing or memory-intensive applications.

The content of a cloud instance tends to be generic in nature. It is
expected that more information is attached to the image by the cloud
user or the cloud provider using a service such as cloud-init. This
information falls into two general categories: meta-data and user-data:

meta-data Included with meta-data is information that is needed
before the image boots. This is data that is outside of the contents
of the image and is typically managed by the cloud provider. Some
of this data comes from the fact that things such as storage,
memory, and processing power are drawn from a pool of
resources rather than from the physical machine on which you are
installing. So, the meta-data tells the cloud provider how many of
those resources, and possibly others, to allocate early in the
process of starting up the instance.

user-data The user-data information is inserted into the
operating system that exists on the image. This is data that the
person using the virtual machine provides. This might include a
user account and password, configuration files, commands to run
on first boot, the identities of software repositories, or anything
else that you might want to run or change within the operating
system itself.

When you go to run a Linux instance in a cloud environment, you
typically enter the meta-data and user-data information by clicking
check boxes and filling in forms from a web-based cloud controller

http://aws.amazon.com/ec2

(such as the OpenStack Dashboard or Red Hat Virtualization
Manager). The information may not be identified as meta-data and
user-data when you configure the instance through the cloud
controller.

The cloud you use to run your Linux virtual machines may be a public
cloud, a private cloud, or a hybrid cloud. The type of cloud you choose
may depend on your needs and your budget:

Public cloud Amazon EC2 and Google Compute Engine are
examples of cloud platforms that let you launch and use Linux
virtual machines from a web-based interface. You pay for the time
that the instance is running. The amount of memory, storage, and
virtual CPUs you use to run the service are also figured into the
costs. The advantage of public clouds is that you don't have to
purchase and maintain your own cloud infrastructure.

Private cloud With a private cloud, you put your own
computing infrastructure in place (hypervisors, controllers,
storage, network configuration, and so on). Setting up your own
private cloud means taking on more up-front costs to own and
maintain infrastructure. But it gives you added security and
control of your computing resources. Because you control the
infrastructure, you can create the images to which users have
access in your OpenStack infrastructure and account for user
usage of that infrastructure in your own way.

Hybrid cloud Many companies are looking toward hybrid cloud
solutions. A hybrid cloud can allow multiple cloud platforms to be
managed by a central facility. For example, Red Hat CloudForms
can deploy and manage virtual machines on OpenStack, VMware
vSphere, and Red Hat Enterprise Virtualization platforms,
provisioning different types of workloads to appropriate
environments. At times of peak demand, CloudForms can also
direct virtual machines to run on Amazon EC2 clouds. These
cloud environments have different ways of provisioning and
configuring virtual machines. However, the features that clouds
need to provide to virtual machine management are similar.
Having an understanding of those features can help you when you

configure a Linux system to run in a cloud.

To help you get a better feel for configuring Linux cloud instances, in
the next sections I'll describe how cloud-init works to configure Linux
cloud instances. I'll then help you create your own meta-data and user-
data files and apply them to your cloud instance so the information
can be used when the cloud image boots.

Creating Linux Images for Clouds
Think about what you did when you installed a Linux system in
Chapter 9, “Installing Linux.” During the manual installation process,
you set a root password, created a regular user account and password,
possibly defined your network interfaces, and did other tasks. The
information you entered became a permanent part of the operating
system that remained each time you booted the system.

When you start with a prebuilt cloud image as your Linux system, you
can use cloud-init to get a Linux system ready to run. The cloud-init
facility (http://launchpad.net/cloud-init) sets up a generic virtual
machine instance to run in the way that you want it to run without
going through an install process. The next section describes some ways
of using cloud-init.

Configuring and running a cloud-init cloud instance
In the next procedure, I show you how to create data manually; the
data can be combined with a bootable Linux cloud image so that when
that image boots, it is configured based on your data. Combining data
with the image at runtime allows you to change the data each time
before the image is run instead of installing it permanently in the
image.

I suggest that you run this procedure on one of the hypervisors you
configured in Chapter 27, “Using Linux for Cloud Computing.” This
not only allows you to create the customized data for your Linux cloud
image, but it also lets you run that image as a virtual machine on that
hypervisor.

To add data and run an existing cloud image, this procedure requires
you to obtain a cloud image, create data files, and generate a new
image that combines those elements. This procedure is meant to be
very simple to get a cloud image booted. Later, I will tell you how to
add more features to these data files. To configure and run a cloud
image, follow these steps:

1. Create cloud-init meta-data file. Create a file named meta-data

http://launchpad.net/cloud-init

to hold data that identifies information about the cloud instance
from the outside. For example, you can add a name to identify the
instance (instance-id), a hostname (local-hostname), and other
information. To keep your first try simple, I assign only two fields.
(You can set them to any names you like.)

instance-id: FedoraWS01

local-hostname: fedora01

2. Create cloud-init user-data file. Create a file named user-data
to hold data that configures inside the operating system on the
image itself. For this simple case, I just set a password for the
default user (fedora) to cloudpass and ensured that cloud-init
does not expire the password:

#cloud-config

password: cloudpass

chpasswd: {expire: False}

3. Combine data into a separate image. With the meta-data and
user-data files in the current directory, create an ISO image that
contains that data. Later, we present this image as a CD-ROM to
the Linux image so cloud-init knows how to configure the Linux
image. (Install the genisoimage and cloud-init packages first, if
you haven't already. The cloud-init package isn't required on the
hypervisor.)

yum install genisoimage cloud-init

genisoimage -output fedora31-data.iso -volid cidata \

 -joliet-long -rock user-data meta-data

4. Get a base cloud image. Cloud images for Ubuntu, Fedora, and
RHEL are configured for use with cloud-init. Get an official
Fedora cloud image (images for other distributions are described
later), and do the following:

a. Go to getfedora.org. Open a web browser, and go to
https://getfedora.org/en/cloud/download/.

b. Click OpenStack. Click the Download button that appears
for the OpenStack image in order to get a qcow2 image that
can be used in an OpenStack environment. The image name

http://getfedora.org
https://getfedora.org/en/cloud/download/

is something like Fedora-Cloud-Base-31-1.9.x86_64.qcow2.

5. Snapshot the image. You probably need to run this procedure a
few times before you get the exact image that you want. So,
instead of using the downloaded image directly, make a snapshot
of it. To keep track of my versions, I added 01 to the new snapshot
name:

qemu-img create -f qcow2 \

 -o backing_file=Fedora-Cloud-Base-31-1.9.x86_64.qcow2 \

 Fedora-Cloud-Base-01.qcow2

6. Copy files to the images directory. It's good practice to copy
images to the /var/lib/libvirt/images/ directory when you are
using them on a hypervisor (libvirtd service). For example, to
copy the cloud image and data image to that directory, type the
following:

cp Fedora-Cloud-Base-31-1.9.x86_64.qcow2 \

 Fedora-Cloud-Base-01.qcow2 \

 fedora31-data.iso \

 /var/lib/libvirt/images/

7. Start the cloud instance. With the files in place, run the
following commands to start an instance of your cloud image:

cd /var/lib/libvirt/images

virt-install --import --name fedora31-01 --ram 4096 --

vcpus 2 \

 --disk path=Fedora-Cloud-Base-

01.qcow2,format=qcow2,bus=virtio \

 --disk path=fedora21-data.iso,device=cdrom \

 --network network=default &

The previous virt-install example shows that the virtual machine is
assigned to consume 4Gb of RAM (--ram 4096) and two virtual CPUs
(--vcpus 2). The RAM and VCPU values on your system may be
different, depending on your computer's resources.

At this point, a virtual machine named fedora31-01 is running on your
hypervisor. As the virtual machine boots up, a console window should
open allowing you to log into the new cloud virtual machine.

Investigating the cloud instance
To investigate the cloud image that we created, you can open up the
running instance and look inside. One way to do that, if it is not
already open, is to open the virtual machine with virt-viewer:

virt-viewer fedora31-01

From the console window that appears, use the data that we added to
the image in order to log in. Use fedora as the user and cloudpass as
the password to log in. The fedora user has sudo privileges, so you can
use that account to investigate the instance by entering some
commands.

Here you can see where the user-data was copied into the instance:

$ sudo cat /var/lib/cloud/instances/FedoraWS01/user-data.txt

#cloud-config

password: cloudpass

chpasswd: {expire: False}

The basic cloud configuration is done in the /etc/cloud/cloud.cfg file.
You can see here that the root user account is disabled by default. At
the bottom of the file, you can see that the user named fedora is the
default user and has sudo privileges without requiring a password.

$ sudo cat /etc/cloud/cloud.cfg

users:

 - default

disable_root: 1

…

system_info:

 default_user:

 name: fedora0

 lock_paswd: true

 gecos: Fedora Cloud User

 groups: [wheel, adm, systemd-journal]

 sudo: ["ALL=(ALL) NOPASSWD:ALL"]

 shell: /bin/bash

 distro: fedora

 paths:

 cloud_dir: /var/lib/cloud

 templates_dir: /etc/cloud/templates

 ssh_svcname: sshd

vim:syntax=yaml

You can see other things in the cloud.cfg file as well. You can see
which cloud_init_modules run during initialization (such as those that
set the hostname or start rsyslog logging). You can see
cloud_config_modules that set the locale and the time zone and run
further configuration tools (such as Chef and Puppet).

Because yum repositories are enabled, provided that you have an
available network connection (DHCP should have assigned addresses
to the virtual machine by default), you can install any packages
available from the Fedora repositories.

Cloning the cloud instance
If you decide that you like the cloud instance you created, you can save
a copy of it to run later by making a clone of the two images (cloud and
data image) that make up the cloud instance. To create a clone of the
running cloud instance, using virt-manager, do the following:

1. Launch virt-manager. On the host system running the virtual
machine, run the virt-manager command or start Virtual Machine
Manager from the Activities screen on your desktop.

2. Pause the virtual machine. Right-click the virtual machine
instance entry in the virt-manager window and select Pause. This
makes the virtual machine inactive for the moment.

3. Clone the virtual machine. Right-click the virtual machine
instance entry again and select Clone. The Clone Virtual Machine
window appears, as shown in Figure 28.1

FIGURE 28.1 Cloning lets you save a permanent copy of a cloud
instance.

4. Choose clone settings. For the cloud-based image and the data
image, you can choose either to make new copies or share them
with the existing virtual machine. After you do, select Clone.

The cloned cloud instance is now available to start, stop, and otherwise
manage as you like from the Virtual Machine Manager window or the
virsh command. A great advantage of making clones is that you can
make any changes that you like to them, without having to change the
originals. Just delete the clone when you are done, and you can quickly
generate a new one when you need it.

Expanding your cloud-init configuration
You can add much more information to your meta-data and user-data
files to configure your cloud instances. Examples of cloud-init

settings can be found on the Cloud-Init Config Examples page
(http://cloudinit.readthedocs.org/en/latest/topics/examples.html).
The following sections show examples of settings that you can add to
your user-data files.

http://cloudinit.readthedocs.org/en/latest/topics/examples.html

NOTE
The user-data and meta-data files are in yaml format. The yaml
format uses indents and well-known delimiters. Items in a list are
preceded by a hyphen and a space. Keys and values are separated
by a colon and a space. If you are not familiar with YAML, I
recommend digging around the Yaml Project site
(https://github.com/yaml).

Adding ssh keys with cloud-init
Instead of using passwords to log into your cloud instances, you can
use key-based authentication along with the ssh command to log in
over the network. This is commonly used by cloud providers to allow
user access to cloud images.

If you have already generated public and private ssh keys for the user
account that you plan to use to ssh into the cloud instance, you can use
that public key for this procedure. If you had generated an RSA key
pair, the public key is located in the id_rsa.pub file by default:

cat $HOME/.ssh/id_rsa.pub

ssh-rsa

AAAAB3NzaC1yc2EAAAADAQABAAABAQDMzdq6hqDUhueWzl7rIUwjxB/rrJY4

oZpoWINzeGVf6m8wXlHmmqd9C7LtnZg2P24/ZBb3S1j7vK2WymOcwEoWekhbZHBAyYeqXKYQQjUB2E2Mr6qMkmrjQBx6ypxbz+VwADNC

wegY5RCUoNjrN43GVu6nSOxhFf7hv6dtCjvosOvtt0979YS3UcEyrobpNzreGSJ8FMPM

RFMWWg68Jz5hOMCIE1IldhpODvQVbTNsn/STxO7ZwSYV6kfDj0szvdoDDCyh8mPNC1kI

Dhf/qu/Zn1kxQ9xfecQ+SUi+2IwN69o1fNpexJPFr+Bwjkwcrk58C6uowG5eNSgnuu7G

MUkT <email>root@host2.example.com</email>

The public key from that file is typically copied to the
$HOME/.ssh/authorized_keys file for the user on the remote system to
which you wish to log in. We can have the key added to that file on our
cloud instance using entries in the user-data file that looks like the
following:

https://github.com/yaml

users:

 - default

 - name: wsmith

 gecos: William B. Smith

 primary-group: wsmith

 sudo: ALL=(ALL) NOPASSWD:ALL

 lock-passwd: true

 ssh-authorized-keys:

 - ssh-rsa

AAAAB3NzaC1yc2EAAAADAQABAAABAQDMzdq6hqDUhueWzl7rIUwj

xB/rrJY4oZpoWINzeGVf6m8wXlHmmqd9C7LtnZg2P24/

ZBb3S1j7vK2WymOcwEoWekhbZHBAyYeqXKYQQjUB2E2Mr6qMkmrjQBx6ypxbz+V

wADNCwegY5RCUoNjrN43GVu6nSOxhFf7hv6dtCjvosOvtt0979YS3UcEyrobpNz

reGSJ8FMPMRFMWWg68Jz5hOMCIE1IldhpODvQVbTNsn/

STxO7ZwSYV6kfDj0szvdoDDCyh8mPNC1kIDhf/qu/

Zn1kxQ9xfecQ+SUi+2IwN69o1fNpexJPFr+Bwjkwcrk58C6uowG5eNS

gnuu7GMUkT <email>root@host2.example.com</email>

From the previous information, you can see that wsmith is the default
user. The gecos entry is typically the user's full name, used in the fifth
field of the /etc/passwd file. The password is locked for this user.
However, because the ssh-rsa entry from my root account on
host2.example.com is provided here under ssh-authorized-keys for the
user, I can log into the cloud instance as wsmith over ssh without
entering a password (provided my private key is associated with that
public key).

Adding software with cloud-init
You aren't limited to the software already on your cloud image. Inside
your user-data file, you can define YUM repositories (in Fedora and
RHEL) or apt repositories (in Ubuntu or Debian) and then identify
any packages that you want to have installed when the cloud instance
starts.

The following example shows what entries in a user-data file might
look like to add a YUM repository (for Fedora or RHEL) to your cloud
instance and then install packages from that repository or any other
enabled repository:

myownrepo:

 baseurl: http://myrepo.example.com/pub/myrepo/

http://host2.example.com

 enabled: true

 gpgcheck: true

 gpgkey: file:///etc/pki/rpm-gpg/RPM-GPG-KEY-MYREPO

 name: My personal software repository

packages:

 - nmap

 - mycoolcmd

 - [libmystuff, 3.10.1-2.fc21.noarch]

In the example just shown, a new yum repository is created in the file
/etc/yum.repos.d/myownrepo.repo. A gpgkey is provided to check the
validity of installed packages, and GPG checking is turned on. After
that, the nmap package is installed (that's in the standard Fedora yum
repository), the mycoolcmd package is installed (from my private
repository), and a specific version of the libmystuff package is
installed.

Configuring apt software repositories for Ubuntu is done a bit
differently. Failsafe primary and security apt package mirrors are
configured by default (in the cloud.cfg file in the image), along with
settings to cause the instance, if run in an Amazon EC2 cloud, to
search the closest region for packages. To add more repositories,
entries in your user-data file could look like the following:

apt_mirror: http://us.archive.ubuntu.com/ubuntu/

apt_mirror_search:

 - http://myownmirror.example.com

 - http://archive.ubuntu.com

packages:

 - nmap

 - mycoolcmd

 - [libmystuff, 3.16.0-25]

The myownmirror.example.com entry tells apt to use your own private
apt repository to search for packages. Note that packages you want to
install can be entered in basically the same format as you did with
Fedora, although specific version information (if entered) might look
different in some cases.

You can add many other settings to your user-data and meta-data files.
Again, refer to the Cloud-Init Cloud Config Examples page
(http://cloudinit.readthedocs.org/en/latest/topics/examples.html)
for details.

http://myownmirror.example.com
http://cloudinit.readthedocs.org/en/latest/topics/examples.html

Using cloud-init in enterprise computing
So far, the cloud-init examples in this chapter have focused on taking
a cloud image, manually adding configuration data, and running it as a
virtual machine temporarily on your local hypervisor. This approach is
useful if you want to understand how cloud-init works and the
opportunities you have for tuning cloud images to your specifications.
This approach doesn't scale well, however, if you are managing large
enterprises of virtual machines.

Cloud-init supports the concept of datasources. By placing user-data
and meta-data in a datasource, you don't have to inject that
information manually into a cloud instance, as we did earlier in this
chapter. Instead, when the cloud-init service starts running on the
instance, it knows to not only look on the local system for data sources,
but also outside of it.

For Amazon EC2 clouds, cloud-init queries a particular IP address
(http://169.254.169.254/) for data. For example, it may check
http://169.254.169.254/2009-04-04/meta-data/ for meta-data and
http://169.254.169.254/2009-04-04/user-data/ for user-data. This
allows the configuration data to be stored and accessed from a central
location.

As for what might be inside the meta-data and user-data, far more
complex configuration schemes can be developed for deployment of
your cloud instances. Cloud-init supports configuration tools, such as
Puppet (http://puppetlabs.com/puppet/puppet-open-source) and Chef
(https://www.chef.io/chef/). These tools let you apply scripts of
configuration information to your cloud instances, even doing such
things as replacing components or restarting services as needed to
return the system to a desired state.

At this point, however, my job is not to make you into full-blown cloud
administrators (a few hundred pages ago, you could have been a Linux
novice). Instead, I want you to understand what you will be dealing
with if you eventually land in a cloud data center … because many
people believe that most data centers will be managed as cloud
infrastructures in the not-too-distant future.

http://puppetlabs.com/puppet/puppet-open-source
https://www.chef.io/chef/

So far in this chapter, you have looked at the inside of configuring
Linux for cloud computing. Next, let's step back and look at how you
can use two of the most popular Linux-based cloud platforms to run
your own Linux-based virtual machines: OpenStack and Amazon EC2.

Using OpenStack to Deploy Cloud Images
With OpenStack, you get a continually evolving platform for managing
your physical cloud computing infrastructure, as well as the virtual
systems that run on it. OpenStack lets you deploy your own private
cloud or offer it up to the world as a public cloud.

Rather than have you set up your own OpenStack cloud, I'm going to
show how you can use OpenStack to deploy virtual machines from an
OpenStack Dashboard. If you want to try it yourself, OpenStack is
available in the following ways:

Linux distributions Fedora, Ubuntu, and CentOS have free
versions of OpenStack that you can deploy yourself. Red Hat
Enterprise Linux offers a version of OpenStack that is available by
subscription. It's tricky to set up. Some all-in-one setups for
OpenStack can run on a single machine, but I think you will have
a better experience if you start with three physical machines: one
controller node and two hypervisors.

Public OpenStack clouds You can try out public OpenStack
clouds for varying costs. A list of public OpenStack clouds is
available from the OpenStack project site
(http://www.openstack.org/marketplace/public-clouds/).

My first point is to help you run a Linux system in a cloud when you
lack the capacity to do what you want on your own computers.
However, my other point is to show you how a cloud provider's web-
based interface (like OpenStack Dashboard) can greatly simplify the
cloud configuration we did manually with cloud-init earlier in this
chapter.

Starting from the OpenStack Dashboard
I'm going to start with an OpenStack setup that is already in place. The
OpenStack environment's administrator has created a project for me
called cnegus-test-project and a user account (cnegus) that lets me
access that project. Here's what I plan to do:

http://www.openstack.org/marketplace/public-clouds/

Configure networking. Just as I would set up a router and
physically plug my computers into that router, I'm going to set up
a virtual network. That virtual network will include a set of
addresses that are distributed to my virtual machines via DHCP.

Configure virtual machines. I'll step through the process of
choosing, configuring, and deploying a couple of virtual machines.

The version of OpenStack used for this demonstration is Red Hat
OpenStack Platform (RHEL-OSP). However, the experience would be
similar on any OpenStack environment. The next section shows you
how to start configuring your network.

Configuring your OpenStack virtual network
Follow these steps to configure your OpenStack virtual network.

1. Log in to OpenStack. Using the username and password
assigned to you by the OpenStack administrator, log in to the
OpenStack Dashboard from your web browser. You should see an
Overview screen, similar to the one shown in Figure 28.2:

FIGURE 28.2 Log in to the OpenStack Dashboard.

2. Create a network. To create a network, from the left column on
the Overview screen, select Networks. From the Networks screen
that appears, create a new network as follows (the examples I
used are in parentheses):

a. Select the Create Network button.

b. On the Network tab, type a network name (mynet).

c. On the Subnet tab, type a subnet name (mysub01),
network address (192.168.100.0/24), IP version (IPv4),
and gateway IP (192.168.100.1). Leave Disable
Gateway unchecked.

d. On the Subnet Detail tab, enter a comma-separated
range of IP addresses in the Allocation Pool box. For
my example, I chose 192.168.100.10,192.168.100.50 to hand
out a range of IP addresses to clients from 192.168.100.10 to
192.168.100.50. Get a name server suggestion from the
administrator of your OpenStack cloud or use a public DNS
server (such as Google's 8.8.8.8 or 8.8.4.4)

e. Select Create to create the new network. The new

network appears on the Networks screen.

3. Create a router. For your virtual machines to be able to access
the Internet, you need to identify a router that is attached to your
private network on one interface and a network that can reach the
public Internet on the other. Here's how to do that:

a. From the left column, select Routers.

b. Click the Create Router button.

c. Type a router name (myrouter01) and click Create
Router.

d. Select the Set Gateway button.

e. From the Set Gateway screen, click the External
Network box and choose from the available external
networks. Leave the Router Name and Router ID fields as
they are. Click Set Gateway. The new router appears on the
Routers screen.

4. Connect your network to the external router. From the
Routers screen (you should still be on that screen), select the
name of the router that you just created (myrouter1):

a. From the Router Details screen, select the Add
Interface button.

b. From the Add Interface screen, click the Subnet box
and choose the subnet you created earlier (mynet:
192.168.100.0/24 mysub01). You shouldn't have to change
Router Name or Router ID.

c. Click Add Interface.

5. View network topology. Click Network Topology from the left
column. Then, hover your mouse button over the router name
(myroute01). Figure 28.3 shows an example of what your network
configuration might look like.

With your networking in place, you can create keys to access your
virtual machines in OpenStack.

Configuring keys for remote access
The normal way to configure access to your virtual machines in a cloud
environment is to create a public/private key pair that provides secure
access to your virtual machines using ssh and related tools from your
desktop system. The private key is stored in your desktop user's home
directory, and the public key is injected into the virtual machine so
that you can log in remotely (via ssh) to the virtual machine without
entering a password. Here's how to set up your keys:

1. Select Access & Security. From the left column, select Access
& Security.

2. Create Keypairs. If you already have a keypair, you can skip to
the next step. If not, select the Keypairs tab and click the Create
Keypair button. When the Create Keypair window appears, do the
following:

a. Enter a keypair name (mycloudkey), and click the
Create Keypair button. A pop-up window asks if you want
to open or save the *.pem file.

FIGURE 28.3 View your network topology from the
OpenStack Dashboard.

b. Select Save File and click OK. When prompted where to
save it, save it to the .ssh directory in your home directory.

You are ready to deploy an OpenStack instance (cloud-based virtual
machine).

Launching a virtual machine in OpenStack
To begin launching a new cloud virtual machine instance, go to the left
column and select Instances. Then click the Launch instance button.
The Launch Instance screen appears. To fill in the information that
you need to launch the instance, follow these steps:

1. Select Details. From the Details tab, select the following items:

a. Availability Zone. An availability zone consists of a group
of compute hosts. Separate zones are sometimes created to
identify a group of computers that are physically together
(such as on the same rack) or that have the same hardware

features (so they could be used for the same types of
applications). Choose one of the zones from the list.

b. Instance Name. Give the instance any name that helps you
remember what it is.

c. Flavor. By choosing a flavor, you allocate a set of resources
to your virtual machine instance. The resources include the
number of virtual CPU cores, the amount of memory
available, the disk space assigned, and ephemeral disk space
available. (Ephemeral space is space available from the local
disk while the instance is running but is not saved when the
instance shuts down.) Default flavors include m1.tiny,
m1.small, m1.medium, m1.large, and m1.xlarge. Other flavors
can be added by your cloud administrator.

d. Instance Count. By default, this is set to 1, meaning to start
one instance. Change the number to start more instances if
you like.

e. Instance Boot Source. The instance can be booted from an
image, a snapshot, a volume, an image that includes a new
volume, or a volume snapshot that includes a new volume.

f. Image Name. Select the image that you want to start. The
names typically include the names of the operating systems
that you are booting.

g. Device size and Device Name (optional). If you selected
to include a new volume when you chose your instance boot
source, you set the size (in GB) and device name for the
volume in these fields. For the device name, if you choose vda
as the device name (for the first disk on a virtual machine),
the device representing that device would be /dev/vda.

2. Select Access & Security. Select the Access & Security tab and
choose the keypair that you created earlier.

3. Select Networking. Select the Networking tab. From the list of
available networks, grab the one that you want with your mouse
and drag it into the Selected Networks box.

4. Add Post-Creation settings. You can add commands and
scripts that configure the system further after it is booted. This is
where you can add the kinds of information you added in the
user-data files described in the sections on cloud-init earlier in
this chapter.

Select Launch to start up the virtual machine. With the virtual
machine running, you can log in to that system by selecting the
instance and clicking the Console tab. The virtual machine's console
window should present you with a login prompt. If you want to be able
to gain access to the virtual machine using ssh over the network, go on
to the next section.

Accessing the virtual machine via ssh
With your public key injected into your running virtual machine, it is
ready for you to log in using ssh. However, before you can do that, you
must take these steps:

1. Add floating IP address. From the OpenStack Dashboard,
select the instances, click More on the entry containing the
instance, and click Associate Floating IP. Select the plus sign (+)
next to the IP Address box, select a pool that has floating IPs
available, and click Allocate IP. The allocated address should
appear in the IP Address field. Select the port to be associated and
click Associate.

2. Use ssh to access instance. From a Linux system that has
access to the network on which the floating address was assigned,
run the ssh command to log in. Assuming that your key's .pem file
was called mycloud.pem, the default user on the instance is cloud-
user, and the IP address is 10.10.10.100, you could enter the
following to log in:

ssh -i mycloud.pem cloud-user@10.10.10.100

You should be able to log in now without a password. To do
administration on the system, you can use the sudo command as the
default user.

Using Amazon EC2 to Deploy Cloud Images
Amazon Elastic Computer Cloud (Amazon EC2) is a cloud platform
that is particularly suited for pay-as-you-go cloud computing. Like
OpenStack, it lets you choose from preconfigured virtual machine
images and configure them as you need.

To start using Amazon EC2 to launch virtual machines, go to the
Getting Started with Amazon Web Services page and follow links to
create a new account (http://aws.amazon.com/getting-started/). After
you log in, the full range of AWS services is displayed. Select Sign In to
the Console, and you will see the AWS Management Console, as shown
in Figure 28.4:

FIGURE 28.4 Launch cloud instances using the Amazon EC2
Management Console.

To start your first Linux virtual machine instance, do the following:

1. Select Launch a Virtual Machine. You are then given a choice
of Linux (Red Hat Enterprise Linux, SUSE Linux, Ubuntu, and so
on) and Windows AMIs (Amazon Machine Images) to start up.

2. Find the image that you want, and click the Select

http://aws.amazon.com/getting-started/

button.

3. From the Choose an Instance Type page, select the
particular instance type that you want. Make that selection
based on the number of CPUs, amount of memory, type of
storage, and networking features.

4. With the instance type selected, click Next: Configure
Instance Details.

5. From the Configure Instance Details screen, select an
existing VPC, or create a new one. Then change any other
settings. For example, select Enable under Auto-assign Public IP
to be able to log in to your instance over the Internet.

6. Select Review and Launch. The Review Instance Launch
screen appears.

7. Review the instance settings and select Launch to start
the instance. Figure 28.5 shows an example of a RHEL 8
instance ready to launch.

8. Select an existing key pair or choose Create a New Key
Pair to create a private and public key to use to ssh into
the instance.

9. Select Launch Instances to start the instance.

10. Select View Instances to see a list of running instances.
Use the search box to search for a string in the instance name if
there is a long list from which to choose.

FIGURE 28.5 Configure and launch a RHEL 8 instance on AWS.

11. Select your instance and then select the Connect button.
Follow the instructions to use ssh to log into the public IP address
you created. For example, the command to log in to the AWS
instance would look similar to the following:

ssh -i "youraws.pem" ec2-user@ec2-w-xx-yyy-zz.us-east-

2.compute.amazonaws.com

12. When you are done with the instance, you can terminate
it by selecting the instance from the Instances page and
then selecting Actions ➪ Instance State ➪ Terminate.
When prompted, select Yes, Terminate to remove the instance
and its associated storage.

It is important to remember to get rid of the instance when you are
done or you will continue to be charged for it.

Summary
Understanding how cloud computing differs from simply installing an
operating system directly on computer hardware will help you to adapt
as more and more data centers move toward cloud computing. In the
beginning of this chapter, I encouraged you to get your hands on some
cloud images, combine them with data, and launch them on a local
Linux hypervisor to understand how cloud images work.

After that, I demonstrated how you can launch your own virtual
images in an OpenStack cloud platform. That included configuring
network interfaces, choosing how the virtual instance would run, and
launching the virtual image. I also quickly introduced the Amazon
Elastic Compute Cloud service, where you can pay to use cloud storage
and processing time if you don't have enough computing resources of
your own.

The next chapter describes how to use Ansible to automate the
deployment of host systems and applications to your data center.

Exercises
The exercises in this section assume that you have already set up a
host system as a hypervisor (KVM host computer). You need to use
that hypervisor to run the virtual machine created in the exercises. If
you are stuck, solutions to the tasks are shown in Appendix B. Keep in
mind that the solutions shown in Appendix B are usually just one of
multiple ways to complete a task.

1. To be able to create a custom virtual machine image, install the
genisoimage, cloud-init, qemu-img, and virt-viewer packages.

2. Obtain a cloud image from the Fedora project.

3. Use qemu-img to create a snapshot of that image in qcow2 format
called myvm.qcow2, which you can use later to combine with your
own data.

4. Create a cloud-init meta data file named meta-data that sets the
instance-id to myvm and local-hostname to myvm.example.com.

5. Create a cloud-init user data file called user-data that sets the
default user's password to test and sets chpasswd never to expire
with {expire: False}.

6. Run the genisoimage command to combine the meta-data and
user-data files to create a mydata.iso file that you can combine
with a virtual machine image later.

7. Use the virt-install command to combine the myvm.qcow2 virtual
machine image with the mydata.iso image to create a new virtual
machine image named newvm that starts running on your
hypervisor.

8. Use virt-viewer to open a console to the newvm virtual machine.

9. Log into the newvm virtual machine, using the fedora user and test
password that you set earlier.

http://myvm.example.com

CHAPTER 29
Automating Apps and Infrastructure with
Ansible

IN THIS CHAPTER
Understanding Ansible

Installing Ansible

Stepping through a deployment

Running ad-hoc commands

To this point in the book, we have mostly focused on manually
configuring individual Linux systems. You have learned how to install
software, edit configuration files, and start services directly on the
machines where they run. While knowing how to work on individual
Linux hosts is foundational to managing Linux systems, by itself it
doesn't scale well. That's where Ansible comes in.

Ansible changes the mindset of Linux administration from a focus on
single systems to groups of systems. It moves configuration of those
nodes from each individual machine to a control node. It replaces the
user interface of a shell on each machine with Ansible playbooks that
run tasks on other machines over a network.

Although our focus here is on managing Linux systems, Ansible can
manage many things around those Linux systems as well. There are
Ansible modules for making sure that machines are powered on, that
network devices are properly configured, and that remote storage is
accessible

In all but the smallest data centers, knowing how to deploy and
manage Linux systems and surrounding infrastructure automatically
is becoming a requirement for many IT jobs these days. For fully
containerized data centers, Kubernetes-based application platforms

such as OpenShift are becoming the industry standard for container
orchestration and automation (see Chapter 30, “Deploying
Applications as Containers with Kubernetes”). For infrastructure and
more traditional application deployments, Ansible is becoming a
leader.

This chapter takes you through what you should know about Ansible
to get started. It then steps you through deploying an application
across a set of Linux systems with Ansible and shows you how to work
with those systems later by redeploying playbooks and running ad-hoc
commands.

Understanding Ansible
Ansible extends, rather than replaces, what you have already learned
about Linux. At its most basic level, Ansible comprises the following:

An automation language that describes the tasks that you want to
perform to reach a particular state. These are gathered into
playbooks.

The automation engine that is used to run the playbooks.

Interfaces you can use to manage and secure playbooks and other
automation components, implemented with commands and
RESTful APIs.

Using inventories (that define sets of hosts) and playbooks (that define
sets of actions to take on those hosts), Ansible configures host systems
in the following ways:

Simple feature configuration: You create inventories and
playbooks as plain-text files, where you identify Linux
components that are acted upon by modules. No coding
experience is required.

Setting the results that you want: What you describe here are
resources that define the state you want a feature to be in on a
node. That state can be a systemd service running, a network
interface with particular addresses set, or a disk partition of a
certain size created. If, for some reason, the state changes for a
feature, you can run a playbook again to have Ansible return a
node to the intended state.

SSH connections: By default, each host node must be running
an SSH service that is configured to allow Ansible to communicate
to it from the control node. Key-based authentication to regular
user accounts allows this to happen, with sudo available when root
privilege escalation is needed. Because you are using an SSH
service that is probably already running on the host, you don't
need to run additional agents or configure special firewall rules
for this to work.

Once you learn the basics about how Ansible works, you can do a wide
range of advanced, complex activities, such as the following:

Provisioning infrastructure: Using Ansible, you can provision
the infrastructure that your applications need, whether that is
installing operating systems on bare metal or as hypervisors
(along with their virtual machines), setting up storage devices, or
configuring network devices. In each of those cases, Ansible can
leverage your existing provisioning tools so that they can all be
managed in one place.

Deploying applications: By describing the desired state of your
applications, Ansible can not only use tasks to deploy sets of
applications across multiple nodes and devices, but it can also
replay those playbooks to return an application to its desired state
when a feature may have broken or have been changed
unintentionally.

Managing containers and operators: Recent additions to
Ansible allow it to deploy containerized applications to a
Kubernetes infrastructure such as OpenShift. Operators in
OpenShift, which can be managed by an Ansible Operator, can
not only define the state of containerized applications, but they
can also respond to changes in real time and make upgrades
easier. See the description of the Ansible Operator for details
(https://www.ansible.com/blog/ansible-operator).

Managing networking and storage: Tasks that are often
done manually to configure, test, validate, and enhance your
networking infrastructure can be automated with Ansible. Tons of
commercial and community playbooks are available that offer the
same Ansible intuitive tools that you use to deploy Linux systems,
but they are made for specific network
(https://docs.ansible.com/ansible/latest/network/index.html)
and storage
(https://docs.ansible.com/ansible/latest/modules/list_of_storage_modules.html
devices and environments.

Managing cloud environments: Just as you can deploy
infrastructures to bare metal, Ansible offers tools for provisioning

https://www.ansible.com/blog/ansible-operator
https://docs.ansible.com/ansible/latest/network/index.html
https://docs.ansible.com/ansible/latest/modules/list_of_storage_modules.html

infrastructure and applications to cloud environments. For
Amazon Web Services (AWS) alone, there are about 200 Ansible
modules available for managing infrastructure and applications.
Modules for Alibaba, Azure, Google, and a few dozen other cloud
environments are also available.

Exploring Ansible Components
When a playbook is run, it acts on one or more target host systems
(represented by inventories) and executes items referred to as plays.
Each play contains one or more tasks that are set to be achieved by
that play. To carry out a task, the task calls modules, which are
executed in the order that they appear. Before you start using Ansible,
it helps to understand a little more about these components.

Inventories
By gathering host systems (nodes) that you want to manage in what
are referred to as inventories, you can manage machines that are
similar in some way into groups. Similarities could include the
following:

Located in a similar location

Provide the same kind of service

Assigned to a particular stage in a process, such as sets of
machines for development, testing, staging, and production

Joining hosts together into more than one group allows them to be
acted on based on these different kinds of attributes. For example,
host01 might be both in a group called newyork (for its location) and a
group called ftp (for the application it provides). Tasks run on those
inventory groups might allow each host to get network settings based
on its location and the applications it runs based on its purpose,
respectively.

There are multiple ways of creating inventories. You can set a line of
static servers or create a range of systems. You can also use dynamic
lists of servers from cloud providers, such as Azure, AWS, and GCP.

Using variables, you can assign attributes to a set of hosts in an
inventory. Those variables can configure such things as the port from
which a service is available from a host, a timeout value for a service,
or the location of a service used by a host (such as a database for a
Network Time Protocol server).

Like playbooks, inventories can be simple text files. They can also be
implemented from an inventory script.

Playbooks
Playbooks are created as YAML-formatted files that describe the end
state of something. That something can cause software to be installed,
applications to be configured, or services to be launched. It can focus
on the application alone, or it can include the entire environment
(networking, storage, authentication, or other feature) surrounding
that application.

Playbooks are meant to be reusable—to deploy the same components
later, be adapted for other components, or replayed to reestablish the
original intent of a specific instance of the playbook. Because
playbooks are intended for reuse, many people keep their playbooks
under source control. In that way, you can track changes over time and
make the playbooks easily available.

Plays
Inside a playbook is one or more plays. Each play has a target, such as
a hosts identifier that tells the playbook which host systems to act on.
That can be followed by a remote_user that tells the playbook which
user to authenticate to on the host. The play can also indicate that it
needs to escalate privileges with sudo before it starts executing the
tasks. After that, there can be one or more tasks to define the actual
activity that is carried out on the hosts.

Tasks
At the most basic level, each task runs one or more modules. A task
provides a way to associate the module being run with the parameters
and return values associated with that module.

Modules
There are hundreds of Ansible modules available today, with more
being created all the time. When run, a module makes sure that a
requested state is achieved by checking that intended state, as

indicated by parameters that are provided, and if the target is not in
that state, then doing what needs to be done to get there. The Module
Index organizes those modules by category:
(https://docs.ansible.com/ansible/latest/modules/modules_by_category.html

Examples of modules include yum, mysql_db and ipmi_power. The yum
module can install, remove, or otherwise manage software packages
and repositories from the YUM facility. A mysql_db module lets you
add or remove a MySQL database from a host. The ipmi_power module
lets you check the state of computers with IPMI interfaces and make
sure they get to the requested state (on or off).

Conditionals can be applied to each task. For example, with the yum
module, you can condition whether or not to install a package by its
state. You could say that if the state of the package is installed, then
don't install the package (even if a newer version is available).
However, if you use latest, then a newer version of the package will be
installed if the current package is not the latest.

Parameters let you add information to modify the task. For example,
with the user module, when you add a user to a system, you can
identify the user's name, password, uid, and shell.

Besides setting up modules to be executed from playbooks, you can
also run modules directly from the command line. This is useful if you
want to act on a host immediately, without running an entire
playbook. For example, you can ping a set of hosts to make sure that
they are running or check the status of a service. (See the section
"Running Ad-Hoc Ansible Commands" later in this chapter for further
information.)

To learn more about a particular module, go to the Ansible
documentation website (select Modules from the
https://docs.ansible.com page) or use the ansible-doc command. For
example, to learn more about how to use the copy module to copy files
to a remote location, enter the following:

ansible-doc copy

> COPY (/usr/lib/python3.7/site-

packages/ansible/modules/files/copy.py)

https://docs.ansible.com/ansible/latest/modules/modules_by_category.html
https://docs.ansible.com

 The 'copy' module copies a file from the local or

 remote machine to a location on the remote machine…

Most modules have return values to provide information about the
results of that module's action. Common return values include
Booleans, indicating if the task was successful (failed), whether or not
the task was skipped (skipped), or if the task had to make changes
(changed).

Roles, imports, and includes
As your collection of playbooks grows, you may find that you want to
break up those playbooks into smaller pieces that you can include in
multiple playbooks. You can separate parts of a large playbook into
separate, reusable files, then call those files into the main playbook
using includes and imports. Roles are similar, but can they encompass
more things than tasks, such as modules, variables, and handlers.

For information on using includes, imports, and roles, see “Creating
Reusable Playbooks” at
https://docs.ansible.com/ansible/latest/user_guide/playbooks_reuse.html

https://docs.ansible.com/ansible/latest/user_guide/playbooks_reuse.html

Stepping Through an Ansible Deployment
To get you started using Ansible, we are going to step through a
procedure to deploy a web service to a set of hosts. After installing
Ansible, the procedure shows you how to create the inventory and
playbook which you need to deploy that service. Then it shows how to
use ansible-playbook to actually deploy the playbook.

Prerequisites
To get started, I created four virtual machines with the following
names:

ansible Used as the Ansible control node

host01 First target node

host02 Second target node

host03 Third target node

Then I ran the following steps to prepare to use those hosts with
Ansible:

1. Installed Fedora on each of the virtual machines (RHEL should
work as well).

2. For each of the three target nodes (host01, host02, and host03), I
made sure to do the following:

a. Have the SSH service running and available (opening TCP
port 22 if necessary) to the Ansible control node.

b. Create a non-root user account. Later, when you use the
playbook, add the --ask-become-pass option to be prompted
for the password that you'll need to escalate privileges.

c. Set a password for that user.

When running Ansible, I use the regular user account to connect to
each system, then I escalate to root privilege using sudo.

Setting up SSH keys to each node
Log in to the control node (ansible) and ensure that it can reach the

three other nodes that you are configuring. Either make sure that you
can reach the hosts through a DNS server or add them to the
/etc/hosts file on the control node. Then set up keys to access those
nodes. For example:

1. As root user, add the IP address and name for each node to which
you want to deploy your Ansible playbooks to the /etc/hosts file:

192.168.122.154 host01

192.168.122.94 host02

192.168.122.189 host03

2. Still on the ansible system, generate ssh keys so that you can have
passwordless communications with each host. You can run this
and the later Ansible commands as a regular user on the ansible
host system:

$ ssh-keygen

Generating public/private rsa key pair.

Enter file in which to save the key

(/home/joe/.ssh/id_rsa): <ENTER>

Created directory '/home/joe/.ssh'.

Enter passphrase (empty for no passphrase): <ENTER>

Enter same passphrase again:

Your identification has been saved in

/home/joe/.ssh/id_rsa.

Your public key has been saved in

/home/joe/.ssh/id_rsa.pub.

The key fingerprint is:

SHA256:Wz63Ax1UdZnX+qKDmefSAZc3zoKS791hfaHy+usRP7g

joe@ansible

The key's randomart image is:

+---[RSA 3072]----+

| ...*|

| . o+|

| |

| . + + |

| S..= * + |

| o+o + O.o|

| .ooB.Bo+o|

| *+O+o.o|

| ..=BEo |

+----[SHA256]-----+

3. Using ssh-copy-id, copy your public key to the root account on

each host. The following for loop steps through copying the user's
password to all three hosts:

$ for i in 1 2 3; do ssh-copy-id joe@host0$i; done

/usr/bin/ssh-copy-id: INFO: Source of key(s) to be

installed:

 "/home/joe/.ssh/id_rsa.pub"

/usr/bin/ssh-copy-id: INFO: attempting to log in with

the

new key(s), to filter out any that are already installed

/usr/bin/ssh-copy-id: INFO: 1 key(s) remain to be

installed

-- if you are prompted now it is to install the new keys

joe@host01's password: <password>

Number of key(s) added: 1

Now try logging into the machine, with: "ssh

'joe@host01'"

and check to make sure that only the key(s) you wanted

were added.

/usr/bin/ssh-copy-id: INFO: Source of key(s) to be

installed:

 "/home/joe/.ssh/id_rsa.pub"

/usr/bin/ssh-copy-id: INFO: attempting to log in with

the

new key(s), to filter out any that are already installed

/usr/bin/ssh-copy-id: INFO: 1 key(s) remain to be

installed

-- if you are prompted now it is to install the new keys

joe@host02's password: <password> ...

The next step is to install the ansible package on the control node
(ansible). From that point on, all that work is done from the control
node.

Installing Ansible
Ansible software packages are available for RHEL, Fedora, Ubuntu,
and other Linux distributions. Because Ansible playbooks are run from
a control node, there is no need to install Ansible software on any of
the nodes that it targets.

So, start by installing the ansible package on the RHEL, Fedora,
Ubuntu, or other Linux system that you want to use as your control
node. That control node must simply be able to connect to the SSH
service running on the host nodes to which you want to deploy.

Install the ansible package in one of the following ways:

RHEL 8:

subscription-manager repos \

 --enable ansible-2.9-for-rhel-8-x86_64-rpms

dnf install ansible -y

FEDORA:

dnf install ansible -y

UBUNTU:

$ sudo apt update

$ sudo apt install software-properties-common

$ sudo apt-add-repository --yes --update ppa:ansible/ansible

$ sudo apt install ansible

With Ansible installed, you can start to build the inventory that
provides the targets for the playbooks that you will run.

Creating an inventory
A simple inventory can consist of the name representing the target for
a playbook and the host systems associated with that name. To get
started, here is an inventory example that contains three groups of
static hosts:

[ws]

host01

host02

host03

[newyork]

host01

[houston]

host02

host03

Adding these entries to the /etc/ansible/hosts file makes them
available when you run Ansible commands and playbooks.

Although this procedure just deploys to the set of hosts in the ws
group, the other two groups illustrate how you might want to set up
playbooks for separate tasks based on the location of the machines
(newyork and houston).

Authenticating to the hosts
Just to make sure that you can access each host from the Ansible
system, ssh to each host. You should not have to enter a password:

$ ssh joe@host01

Last login: Wed Feb 5 19:28:39 2020 from 192.168.122.208

$ exit

Repeat for each host.

Creating a playbook
This playbook results in web server software being installed and
started on the hosts defined earlier in the ws group. Likewise, the
playbook checks that firewall software is installed and running, and
that port 80 (http port) is open in the firewall to access the web server.
I added the following content to a file called simple_web.yaml:

- name: Create web server

 hosts: ws

 remote_user: joe

 become_method: sudo

 become: yes

 tasks:

 - name: Install httpd

 yum:

 name: httpd

 state: present

 - name: Check that httpd has started

 service:

 name: httpd

 state: started

 - name: Install firewalld

 yum:

 name: firewalld

 state: present

 - name: Firewall access to https

 firewalld:

 service: http

 permanent: yes

 state: enabled

 - name: Restart the firewalld service to load in the

firewall changes

 service:

 name: firewalld

 state: restarted

The three hyphens at the beginning of the simple_web.yaml playbook
indicate the start of the YAML content in the file. Here's a breakdown
of the rest of the file:

name: The play is identified as “Create web server.”

hosts: Apply this inventory to the hosts in the ws group.

remote_user: The regular user that is used to authenticate to each
remote system. This is done because it is a good security practice
not to allow direct root login to a remote system.

become: Enabling this feature (yes) tells Ansible to become a
different user than the remote_user to run the modules in the task.

become_method: What feature to use to escalate privilege (sudo).

become_user: Which user to authenticate to (root).

tasks: Starts the section containing the tasks.

name: The name is a title given to the task. In the first case, “Install
httpd,” then “Check that httpd has started,” and so on. The next
line starts with the name of a module (yum, service, firewalld,

and so on).

For yum, it says to check if the httpd package is present, and if it is not,
then install it.

For service, it checks whether or not the httpd daemon is running
(started). If httpd is not running, Ansible starts it.

For yum, it says to check if the firewalld package is present, and if it is
not, then install it.

For firewalld, make the port for the http service (TCP 80) available
immediately (enabled) and permanently (permanent: yes) through the
firewall.

For service, restart the firewalld service (restarted) to enable access
to the new http service firewall port.

Run the playbook
Use the ansible-playbook command to run the playbook. To test the
playbook before running it live, use the -C option. To see more details
(at least until you are sure that it’s working), add the -v option to see
verbose output.

Keep in mind that if you run a playbook with -C, it cannot fully test the
playbook to make sure that it is correct. The reason is that a later step
might require that an earlier step be completed before it can be done.
In this example, the httpd package would need to be installed before
the httpd service can be running.

Here’s an example of running the Ansible playbook in verbose mode:

$ ansible-playbook -v simple_web.yaml

Using /etc/ansible/ansible.cfg as config file

PLAY [Create web server]

**

TASK [Gathering Facts]

**

ok: [host03]

ok: [host02]

ok: [host01]

TASK [Install httpd]

**

changed: [host01] => {"changed": true, "msg": "", "rc": 0,

 "results": ["Installed: httpd", …

changed: [host02] => {"changed": true, "msg": "", "rc": 0,

 "results": ["Installed: httpd", …

changed: [host03] => {"changed": true, "msg": "", "rc": 0,

 "results": ["Installed: httpd", …

TASK [Check that httpd has started]

changed: [host03] => {"changed": true, "name": "httpd",

 "state": "started", "status":

changed: [host02] => {"changed": true, "name": "httpd",

 "state": "started", "status": …

changed: [host01] => {"changed": true, "name": "httpd",

 "state": "started", "status": …

…

TASK [Install

firewalld]***

changed: [host03] => {"changed": true, "msg": "", "rc": 0,

"results":

 ["Installed: firewalld", "Installed: python3-decorator…

changed: [host02] => {"changed": true, "msg": "", "rc": 0,

"results":

 ["Installed: firewalld", "Installed: python3-decorator…

changed: [host01] => {"changed": true, "msg": "", "rc": 0,

"results":

 ["Installed: firewalld"…

TASK [Firewall access to

https]**

ok: [host03] => {"changed": false, "msg": "Permanent

operation,

 (offline operation: only on-disk configs were altered)"}

ok: [host02] => {"changed": false, "msg": "Permanent

operation,

 (offline operation: only on-disk configs were altered)"}

ok: [host01] => {"changed": false, "msg": "Permanent

operation,

 (offline operation: only on-disk configs were altered)"}

PLAY RECAP

**

host01: ok=6 changed=4 unreachable=0 failed=0 skipped=0

rescued=0 ignored=0

host02: ok=6 changed=4 unreachable=0 failed=0 skipped=0

rescued=0 ignored=0

host03: ok=6 changed=4 unreachable=0 failed=0 skipped=0

rescued=0 ignored=0

The output from ansible-playbook steps through each task. The first
task (Gathering Facts) shows that all three host systems in the ws
inventory are accessible. What you can't see is that it is using the
credentials to connect to each system and then escalating that user to
root privilege before completing each subsequent task.

The “Install httpd” task checks to see if the httpd package is yet
installed on each host. If it is not, Ansible asks to install the package,
along with any dependent packages. Next, Ansible checks the status of
the httpd service on each host and, if it is not running, then starts it.

After that, each host is checked to see if the firewalld package is
installed and installs it if it is not there. Then Ansible adds a firewall
rule to each host to allow access to the http service (TCP port 80) and
makes that setting permanent.

The PLAY RECAP then shows you the results of all of the tasks. Here you
can see that all six tasks on all hosts were ok. If there had been any
failed, skipped, rescued, or ignored tasks, they would be listed.

You can rerun this playbook if you think that something may have
gotten out of place or if you made a modification to it. You could also
use it later to deploy the playbook on different systems.

Although you have seen how Ansible is good at deploying multiple
tasks in playbooks, it can also be used for one-off actions. In the next
section, I show how to run some ad-hoc Ansible commands to query
and further modify the hosts that we just deployed.

Running Ad-Hoc Ansible Commands
There may be times when you want to do one-off tasks on your
Ansible-managed nodes. You can do those tasks using ad-hoc
commands. With an ad-hoc command, you can directly call a module
from the Ansible command line and have it act on an inventory. Some
of those tasks could include the following:

Installing RPM software packages

Managing user accounts

Copying files to and from nodes

Changing permissions on a file or directory

Rebooting a node

Just as when you run playbooks, running ad-hoc commands focuses
on reaching a desired state. The ad-hoc command takes a declarative
statement, figures out what is being requested, and does what it needs
to do to reach the requested state.

To try these examples of ad-hoc Ansible commands, you can use the ws
inventory created earlier.

Trying ad-hoc commands
When you run an ad-hoc Ansible command, you take some action
using an Ansible module. The command module is used by default if
no other module is indicated. Using the module, you indicate which
command and options you want to run on a group of nodes as a one-
time activity.

Check that an inventory is up and running. Here, you see that hosts
are all running in the ws inventory:

$ ansible ws -u joe -m ping

host03 | SUCCESS => {

 "ansible_facts": {

 "discovered_interpreter_python": "/usr/bin/python"

 },

 "changed": false,

 "ping": "pong"

}

host02 | SUCCESS => { …

host01 | SUCCESS => { …

You can find out if the httpd service is running on the hosts in the ws
inventory by checking the state of that service with this ansible
command as follows:

$ ansible ws -u joe -m service \

 -a "name=httpd state=started" --check

host02 | SUCCESS => {

 "ansible_facts": {

 "discovered_interpreter_python": "/usr/bin/python"

 },

 "changed": false,

 "name": "httpd",

 "state": "started",

 "status": { …

host 01 | SUCCESS => { …

At the moment, there is no content on the web servers. To add an
index.html file (containing the text “Hello from your web server!”) to
all of the hosts in the ws inventory, you could run this command (type
the root password when prompted):

$ echo "Hello from your web server!"> index.html

$ ansible ws -m copy -a \

 "src=./index.html dest=/var/www/html/ \

 owner=apache group=apache mode=0644" \

 -b --user joe --become --ask-become-pass

BECOME password: *********

host01 | CHANGED => {

 "ansible_facts": {

 "discovered_interpreter_python": "/usr/bin/python"

 },

 "changed": true,

 "checksum": "213ae4bb07e9b1e96fbc7fe94de372945a202bee",

 "dest": "/var/www/html/index.html",

 "gid": 48,

 "group": "apache",

 "md5sum": "495feb8ad508648cfafcf69681d94f97",

 "mode": "0644",

 "owner": "apache",

 "secontext": "system_u:object_r:httpd_sys_content_t:s0",

 "size": 52,

 "src": "/home/joe/.ansible/tmp/ansible-tmp-

1581027374.649223-

29961128730253/source",

 "state": "file",

 "uid": 48

host02 | CHANGED => { …

host03 | CHANGED => { …

You can see that the index.html file is created with the apache owner
(UID 48) and apache group (GID 48) in the /var/www/html directory on
host01. The copy was then repeated to host02 and host03. You can
check that everything is working by trying to access that file from the
ansible host through the web server using the curl command:

$ curl host01

Hello from your web server!

Automating Tasks with Ansible Tower
Automation Framework
Although running Ansible playbooks and commands are great for
automating and later modifying sets of hosts, for a fully managed
enterprise, you can go even further with Ansible. Using Ansible Tower,
you can add a larger framework to your Ansible deployments.

Ansible Tower provides a web-based interface for managing your
entire IT infrastructure with Ansible playbooks and other components.
By centralizing your Ansible assets in one place, you have a single
place to receive notifications. You can manage different administrative
roles across your enterprise.

The Ansible Tower interface makes it easy to update your provisioned
assets continuously. Instead of having to remember command-line
options, you can just click to configure and launch your Ansible tasks.
Inventory management is graphical and job scheduling can be done in
intuitive, visual ways.

A REST API is available with Ansible Tower that can help you embed
your existing infrastructure tools into Ansible. So, you can usually just
continue the processes that you already have in place but manage
them with Ansible instead.

You can learn more about Ansible Tower from the Ansible Tower site
(https://www.ansible.com/products/tower).

https://www.ansible.com/products/tower

Summary
Ansible provides a unique formatting language and set of tools to
automate many of the tasks that you have learned in other parts of this
book. Once you know how to build an Ansible playbook, you can
identify the exact configuration that you want on a system and then
easily deploy that configuration to one or more host systems.

With Ansible playbooks, you define the exact state of an application
and surrounding components and then apply that state to Linux host
systems, network devices, or other targets. You can save those
playbooks and reuse them to produce similar results on other systems
or adapt them to create new and different results.

Ansible can also use ad-hoc commands to update systems. From the
ansible command line, you can add users, copy files, install software,
or do almost anything else you can do with playbooks. With those
commands, you can quickly apply a set of changes across multiple
hosts or respond to a problem that requires a quick fix that needs to be
made immediately to a set of hosts.

In this chapter, you learned about the different components that make
up an Ansible toolset. You created your own playbook for deploying a
simple web server. Then you ran some ad-hoc commands to modify
the systems to which you deployed your playbook.

Exercises
These exercises test your ability to get Ansible installed on your
system, create your first Ansible playbook, and run a few ad hoc
Ansible commands. These tasks assume that you are running a Fedora
or Red Hat Enterprise Linux system (although some tasks work on
other Linux systems as well).

Although Ansible is meant to deploy tasks to remote systems, the
exercises here will just let you try out a playbook and a few commands
on a single system. If you are stuck, solutions to the tasks are shown in
Appendix B (although in Linux, you can often complete a task in
multiple ways).

1. Install Ansible on your Fedora or RHEL system.

2. Add sudo privilege for the user that you want to use to do these
exercises.

3. Create a start to an Ansible playbook (call it my_playbook.yaml)
that includes the following content.

- name: Create web server

 hosts: localhost

 tasks:

 - name: Install httpd

 yum:

 name: httpd

 state: present

4. Run ansible-playbook on the my_playbook.yaml in check mode to
see if there is a problem completing the playbook (hint: there is).

5. Modify my_playbook.yaml to escalate privileges so that the tasks
are run as the root user.

6. Run ansible-playbook again until the httpd package successfully
installs on your system.

7. Modify my_playbook.yaml again to start the httpd service, and set
it so that it will start every time the system boots.

8. Run an ansible command that checks whether or not the httpd
service is up on localhost.

9. Create an index.html file that contains the text “Web server is up,”
and use the ansible command to copy that file to the
/var/www/html directory on localhost.

10. Use the curl command to view the contents of the file that you
just copied to the web server.

CHAPTER 30
Deploying Applications as Containers with
Kubernetes

IN THIS CHAPTER
Understanding Kubernetes

Trying Kubernetes

Running the Kubernetes Basics Tutorials

Enterprise-quality Kubernetes with OpenShift

Linux containers separate the applications they contain from the
operating systems on which they run. Built properly, a container will
hold a discrete set of software that can be transported and run
efficiently. But the story doesn't end there. Once you have some
containers, the next step is to engage them with a platform like
Kubernetes that allows you to do the following:

Group sets of containers together to form a larger application. For
example, deploy a web server, a database, and monitoring tools
together.

Scale up your containers as the demand requires. In fact, you
want to be able to scale each component of the larger application
individually, without having to scale up everything.

Set the state of your application and not just run it. What this
means is that, instead of just saying to run a container, you want
to be able to say something like “run three copies of container X,
and if one goes down, be sure to start another one to replace it.”

Recover from host computers going down or becoming
overloaded. If the host running a container fails, you want the
container to recover quickly and start up on another host

computer.

Not be concerned about the infrastructure. You want your
application to connect to the services that it needs without having
to know the hostnames, IP addresses, or port numbers associated
with those services.

Upgrade your containerized applications without downtime.

Kubernetes offers all of those features and more. While at first there
were others competing to be the platform of choice for orchestrating
containers, such as Mesos and Docker Swarm, Kubernetes has become
the undisputed leader in orchestrating, deploying, and managing
containerized applications.

This chapter introduces you to Kubernetes and the enterprise-quality
Kubernetes platform called OpenShift. The best way to learn
Kubernetes is to start up a Kubernetes cluster and run commands in
order to explore Kubernetes and deploy a containerized application.
Before you do that, you should understand a bit about what a
Kubernetes cluster is and what components you need to deploy an
application to a cluster.

Understanding Kubernetes
A Kubernetes cluster is made up of master and worker nodes. You can
run all master and worker services on the same system for personal
use. For example, with Minikube, as described later in this chapter,
you can run a Kubernetes cluster from a virtual machine on your
laptop (https://kubernetes.io/docs/tasks/tools/install-minikube).

In a production environment, you would spread Kubernetes across
multiple physical or virtual systems. Here are the different
components you need to consider if you were to set up a production-
quality Kubernetes infrastructure:

Masters: A master node manages the components running in the
Kubernetes cluster. It manages communications between
components, schedules applications to run on the workers, scales
up the applications as needed, and makes sure that the proper
number of containers (distributed in pods) are running. You
should have at least one master node, but you would typically
have three or more available to make sure there is always at least
one available master.

Workers: A worker node is where the deployed containers
actually run. The number of workers that you need depends on
your workload. For a production environment, you would
certainly want more than one worker in case one failed or needed
maintenance.

Storage: Networked storage allows containers to access the same
storage, regardless of the node that runs them.

Other services: To integrate a Kubernetes environment into an
existing data center, you might want to tap into existing services.
For example, you would probably use your company's DNS server
for the hostname to address resolution, LDAP or Active Directory
service for user authentication, and a Network Time Protocol
(NTP) server to synchronize time.

In Kubernetes, the smallest unit with which you can deploy a

https://kubernetes.io/docs/tasks/tools/install-minikube

container is referred to as a pod. A pod can hold one or more
containers, along with metadata describing its containers. Although a
pod can hold only one container, it is sometimes appropriate for a pod
to have more than one. For example, a pod might contain a sidecar
container, which is meant to monitor the service running in the
primary container in the pod.

Kubernetes masters
A Kubernetes master node directs the activities of a Kubernetes
cluster. Master nodes oversee all of the activities of the cluster through
a set of services. The centerpiece of a Kubernetes master is the API
server (kube-apiserver), which receives object requests.
Communications between all of the nodes in the cluster pass through
the API server.

When a Kubernetes master is presented with an object, such as a
request that a certain number of pods be running, the Kubernetes
scheduler (kube-scheduler) finds available nodes to run each pod and
schedules them to run on those nodes. To make sure that each object
remains in the prescribed state, Kubernetes controllers (kube-
controller-manager) run continuously to do things such as to make
sure that namespaces exist, that defined service accounts are available,
that the right number of replicas are running, and that defined
endpoints are active.

Kubernetes workers
At the heart of each Kubernetes worker node is the kubelet service. A
kubelet registers its worker node with the API server. The API server
then directs the kubelet to do things like run a container that is
requested from the API server through a PodSpec and make sure that
it continues to run in a healthy state.

Another service that runs on each node is a container engine (often
referred to as a runtime). Originally, the docker service was by far the
most popular container engine used to launch, manage, and delete
containers as required by the PodSpec. However, other container
engines are now available, such as the CRI-O container engine

(https://cri-o.io/), which is used with some commercial Kubernetes
platforms such as OpenShift.

Worker nodes are meant to be as generic as possible so that you can
simply spin up a new node when additional capacity is needed and it
will be configured to handle most requests to run containers. There
are, however, ways in which a container might not be appropriate to
run on a particular node. For example, a pod might request to run on a
node that has a minimum amount of memory and CPU available, or it
might request to run on a node that is running a related container.
Likewise, if a pod requires something special to run, such as a
particular computer architecture, hardware, or operating system, there
are ways to schedule pods on workers that meet those needs.

Kubernetes applications
In Kubernetes, applications are managed by defining API objects that
set the state of resources on the cluster. For example, you can create a
Deployment object in a YAML file that defines pods that each run one or
more containers, along with the namespace in which it runs and the
number of replicas of each pod it runs. That object could also define
the ports that are open and any volumes that are mounted for each
container. Kubernetes master nodes respond to those kinds of
requests and make sure that the requests are carried out on the
Kubernetes worker nodes.

Kubernetes uses the concept of services to separate the location of an
application from its actual IP address and port number. By assigning a
service name to the set of pods that provide that service, the exact
location of each pod does not need to be known outside of the cluster.
Instead, it is up to Kubernetes to direct a request for that service to an
available pod.

IP addresses associated with active pods are not directly addressable
from outside the cluster by default. It is up to you to define how you
want to expose a service associated with a set of pods outside of the
cluster. Using a Service object, you can expose services in different
ways.

By default, exposing a service via a ClusterIP service type makes it

https://cri-o.io/

available only to other components within the cluster. To expose the
service outside of the cluster, you can use NodePort, which makes the
pod providing the service accessible through the same Kubernetes-
assigned port on an external IP address from each node on which the
pod is running.

A third method is to use LoadBalancer to assign an external, fixed IP
address that acts as a load balancer to the pods providing the service.
With LoadBalancer, a cloud's external load balancer directs traffic to
the backend pods. Finally, you can expose the service with
ExternalName, which associates the service with a particular DNS
CNAME record.

Regardless of how you expose a Kubernetes service, when there is a
request for that service, Kubernetes acts to route communications to
the set of pods that provide that service. In that way, pods can come up
and down without disrupting the clients using the service.

Kubernetes interfaces
Kubernetes has both command-line and web console interfaces for
accessing a Kubernetes cluster. The examples in this chapter focus on
command-line tools. Commands include minikube, which is used to
manage the Kubernetes virtual machine and bring the cluster up and
down, and kubectl, which is the general-purpose tool for managing the
Kubernetes cluster.

Trying Kubernetes
Because setting up your own production-quality Kubernetes cluster
requires some forethought, this chapter will focus on a couple of easy
ways to get a personal Kubernetes cluster running and accessible
quickly. In particular, here are two different ways that you can gain
access to a Kubernetes cluster:

Kubernetes Tutorials: The official Kubernetes site offers
interactive, web UI tutorials, where you can start up your own
cluster and try out Kubernetes. From Kubernetes Tutorials
(https://kubernetes.io/docs/tutorials/), you can choose from
basic, configuration, stateless applications, and other tutorial
topics.

Minikube: With Minikube, you can run Kubernetes on your own
computer. A Linux, MacOS, or Windows system that can run
virtual machines can get the Minikube VM and have a Kubernetes
cluster running on a laptop or desktop system within a few
minutes.

Docker Desktop: Another option (not detailed here) is Docker
Desktop, which lets you enable a pre-configured Kubernetes
cluster that runs a master and worker node on your workstation.

To get you started, I'll step you through some of the Kubernetes
tutorials and explain the concepts behind what they are doing. You can
follow along in the tutorial or run the same commands on your own
Minikube setup. I describe how to get Kubernetes in one of these two
ways next.

https://kubernetes.io/docs/tutorials/

NOTE
If you have an OpenShift environment up and running, you can
follow most of these steps in OpenShift as well. In most case, you
can use the kubectl command, but typically the same options and
arguments can be used by the oc command for OpenShift.

Getting Kubernetes
The following descriptions tell you how to access a Kubernetes cluster
either through the Kubernetes Basics Tutorial or by installing and
starting Minikube.

Starting the Kubernetes Basics Tutorial
To start up the Kubernetes project basic interactive tutorial, visit the
following URL from your web browser:
https://kubernetes.io/docs/tutorials/kubernetes-basics/create-

cluster/cluster-interactive

Figure 30.1 shows the start of the Kubernetes Basics Tutorial.

https://kubernetes.io/docs/tutorials/kubernetes-basics/create-cluster/cluster-interactive

FIGURE 30.1 Step through the Kubernetes project tutorials

At this point, you can follow the prompts through the tutorial. Because
the tutorial starts a live cluster, you can use that interface to try other
commands as well.

Starting Minikube
Getting Minikube running on your personal computer requires a few
things. This includes the following:

The computer needs to be configured as a hypervisor, so it can
run the Minikube virtual machines.

You need to install the kubectl command (used to access and
work with the cluster) and the Minikube VM itself.

For Linux, MacOS, and Windows systems, go here to find the latest
instructions:

https://kubernetes.io/docs/tasks/tools/install-minikube/

You can install Minikube as root user, but you need to run it later from
a regular user account. The steps for installing Minikube on a Fedora,

RHEL, Ubuntu, or other Linux system are as follows (refer to the
install-minikube page if something has changed):

1. Install the kubectl command: Get a version of the kubectl
command that is within one version of Kubernetes in your
Minikube. Installing the latest versions of kubectl and minikube
should take care of that. Enter the following (all on one line):

curl -LO \

https://storage.googleapis.com/kubernetes-

release/release/`curl \

-s https://storage.googleapis.com/kubernetes-

release/release/stable.txt \

`/bin/linux/amd64/kubectl

2. Copy kubectl to a bin directory: Copy the kubectl command to
an accessible bin directory and make it executable. For example:

mkdir /usr/local/bin

cp kubectl /usr/local/bin

chmod 755 /usr/local/bin/kubectl

3. Configure hypervisor: Configure your Linux system as a
hypervisor. For KVM, use the descriptions found in the section
“Configuring hypervisors” in Chapter 27.

4. Get minikube: Get the minikube executable, and enter the
following (on one line):

curl -Lo minikube \

https://storage.googleapis.com/minikube/releases/latest/minikube-

linux-amd64 \

&& chmod +x minikube

5. Install Minikube: Enter the following:

install minikube /usr/local/bin/

6. Run Minikube: As a regular user, enter the following
commands to identify the driver if your hypervisor is KVM (see
https://minikube.sigs.k8s.io/docs/reference/drivers if you are
using a different hypervisor):

$ minikube config set vm-driver kvm2

https://minikube.sigs.k8s.io/docs/reference/drivers

$ minikube start --vm-driver=kvm2

7. Start using Minikube: You can start using Minikube by
running some minikube and kubectl commands. Examples of how
to do that are shown in the next tutorial.

Running the Kubernetes Basics tutorial
The Kubernetes Basics Tutorial take you through a good set of
commands to start familiarizing yourself with Kubernetes:
https://kubernetes.io/docs/tutorials/kubernetes-basics/create-

cluster/cluster-interactive

The following text walks you through the first five modules of the
Kubernetes Basics Tutorial.

If you are running through this procedure directly from the
Kubernetes tutorials page, go ahead and start Minikube (minikube
start). If you are using Minikube from a VM already running on your
laptop, you can still follow this procedure. The steps are the same
since both use Minikube.

Get information about your cluster
Run these commands to get basic information about your cluster.

1. List Minikube version: To see the version of minikube you are
using, enter the following:

$ minikube version

minikube version: v1.7.2

commit: 50d543b5fcb0e1c0d7c27b1398a9a9790df09dfb

2. List cluster information: To see the URL from which the
Kubernetes master and DNS services are available, enter the
following:

$ kubectl cluster-info

Kubernetes master is running at https://192.168.39.150:8443

KubeDNS is running at

https://192.168.39.150:8443/api/v1/namespaces/kube-system/

services/kube-dns:dns/proxy

To further debug and diagnose cluster problems, use

'kubectl cluster-info dump'.

https://kubernetes.io/docs/tutorials/kubernetes-basics/create-cluster/cluster-interactive

3. List node information: To see the number of nodes running
(just one master node for Minikube) and their status, enter the
following:

$ kubectl get nodes

NAME STATUS ROLES AGE VERSION

minikube Ready master 23m v1.17.2

4. List cluster and client versions: To list the versions of the
kubectl client and Kubernetes cluster (to make sure that they are
within one version of each other), enter the following:

$ kubectl version

Client Version: version.Info{Major:"1", Minor:"17",

GitVersion:"v1.17.2",

GitCommit:"59603c6e503c87169aea6106f57b9f242f64df89",

GitTreeState:"clean", BuildDate:"2020-01-18T23:30:10Z",

GoVersion:"go1.13.5", Compiler:"gc", Platform:"linux/amd64"}

Server Version: version.Info{Major:"1", Minor:"17",

GitVersion:"v1.17.2",

GitCommit:"59603c6e503c87169aea6106f57b9f242f64df89",

GitTreeState:"clean", BuildDate:"2020-01-18T23:22:30Z",

GoVersion:"go1.13.5", Compiler:"gc", Platform:"linux/amd64"}

Deploy a Kubernetes application
Requests to run and manage containerized applications (in the form of
pods) on a Kubernetes cluster is known as a deployment. Once a
deployment is created, it is up to the Kubernetes cluster to make sure
that the requested pods are always running. It does this by doing the
following:

Accepting the deployment creation through the API server

Asking the scheduler to run the requested containers from each
pod on available worker nodes

Watching the pods to make sure they continue to run as requested

Starting a new instance of a pod (on the same or different node) if
the pod fails (for example, if the container stops running)

The tutorial shows an example of how to create a simple deployment
from a container image. In this example, you just give it a name and

identify the container image to use. The rest of the deployment
settings are filled in from defaults.

1. Create a deployment: To start the deployment that pulls the
kubernetes-bootcamp container with a deployment name of
kubernetes bootcamp, enter the following:

$ kubectl create deployment kubernetes-bootcamp \

 --image=gcr.io/google-samples/kubernetes-bootcamp:v1

deployment.apps/kubernetes-bootcamp created

2. List deployments: To see that the deployment exists (and has
one instance requested and one running), enter the following.

$ kubectl get deployments

NAME READY UP-TO-DATE AVAILABLE AGE

kubernetes-bootcamp 1/1 1 1 4m38s

3. Describe the deployment: To see details about the
deployment, enter the following:

$ kubectl describe deployments kubernetes-bootcamp

Name: kubernetes-bootcamp

Namespace: default

…

Replicas: 1 desired | 1 updated | 1 total | 1 available |

0 unavailable

…

Pod Template:

 Labels: app=kubernetes-bootcamp

 Containers:

 kubernetes-bootcamp:

 Image: gcr.io/google-samples/kubernetes-

bootcamp:v1

 Port: <none>

 Host Port: <none>

 Environment: <none>

 Mounts: <none>

 Volumes: <none>

…

In the kubernetes-bootcamp deployment, notice that it just set one
instance (replica) of the pod associated with the deployment to be
available. The deployment runs in the current namespace, which
happens to be default. Notice also that there are no ports open or

volumes mounted by default for the pods.

Get information on the deployment's pods
With the deployment created, you can ask for information about the
pod created from that deployment and expose the Kubernetes API
from the VM to your local system, via a proxy service, to connect to the
pod directly.

1. Expose the Kubernetes API to the local system: To open a
proxy from your system to the Kubernetes API running in
Minikube (kubectl proxy), enter the following:

$ kubectl proxy

Starting to serve on 127.0.0.1:8001

2. Query the Kubernetes API: Open a second terminal, and query the
Kubernetes API running on Minikube by entering the following:

$ curl http://localhost:8001/version

{

 "major": "1",

 "minor": "17",

 "gitVersion": "v1.17.2",

 "gitCommit": "59603c6e503c87169aea6106f57b9f242f64df89",

 "gitTreeState": "clean",

 "buildDate": "2020-01-18T23:22:30Z",

 "goVersion": "go1.13.5",

 "compiler": "gc",

 "platform": "linux/amd64"

3. Get pod information: The name of the pod used in this
deployment is kubernetes-bootcamp, followed by a unique string of
characters. Enter these commands to output the name of the pod
and then list a description of that pod:

$ kubectl get pods

NAME READY STATUS

RESTARTS AGE

kubernetes-bootcamp-69fbc6f4cf-njc4b 1/1 Running 0

12m

$ kubectl describe pod kubernetes-bootcamp-69fbc6f4cf-njc4b

Name: kubernetes-bootcamp-69fbc6f4cf-njc4b

Namespace: default

Priority: 0

Node: minikube/192.168.39.150

…

Containers:

 kubernetes-bootcamp:

 Container ID:

docker://dd24fd43ff19d6cf12f5c759036cee74adcf2d0e2c55a42e…

 Image: gcr.io/google-samples/kubernetes-

bootcamp:v1

 Image ID: docker-pullable://gcr.io/google-samples…

…

Events:

 Type Reason Age From Message

 ---- ------ ---- ---- -------

 Normal Scheduled 14m default-scheduler Successfully

assigned

default/kubernetes-bootcamp-69fbc6f4cf-njc4b to minikube

 Normal Pulled 14m kubelet, minikube Container

image

"gcr.io/google-samples/kubernetes-bootcamp:v1"

already present on machine

 Normal Created 14m kubelet, minikube Created

container

kubernetes-bootcamp

 Normal Started 14m kubelet, minikube Started

container

kubernetes-bootcamp

From the trimmed output, you can see the name of the pod, the
namespace it is in (default), and the node on which it is running
(minikube/192.168.39.150). Under Containers, you can see the
name of the running container (docker://dd24fd43ff19 …), the
image it came from (… kubernetes-bootcamp:v1), and the image
ID for that image. Under Events, starting from the bottom, you
can see the kubelet on the node minikube, starting and creating
the container. It goes to pull the image and finds that it is already
on the node. Then it assigns the pod to run on that node.

4. Connect to the pod: Use the curl command to contact the pod
and get it to respond to your request for information:

$ export POD_NAME=$(kubectl get pods -o go-template --

template \

 '{{range .items}}{{.metadata.name}}{{"\n"}}{{end}}') ; \

echo Name of the Pod: $POD_NAME

Name of the Pod: kubernetes-bootcamp-69fbc6f4cf-njc4b

$ curl \

 h

ttp://localhost:8001/api/v1/namespaces/default/pods/$POD_NAME/proxy/

Hello Kubernetes bootcamp!|Running on:kubernetes-bootcamp-

5b48cfdcbd-lf9t2|v=1

5. View the logs: To see the logs for any container that is running
inside the selected pod, run the following command:

$ kubectl logs $POD_NAME

Kubernetes Bootcamp App Started At: 2020-02-13T21:29:21.836Z

| Running On: kubernetes-bootcamp-5b48cfdcbd-lf9t2

Running On: kubernetes-bootcamp-5b48cfdcbd-lf9t2 | Total

Requests:

1 | App Uptime: 34.086 seconds | Log Time: 2020-02-

13T21:29:55.923Z

6. Execute commands on the pod: Use kubectl exec to run
commands inside the pod. The first command runs env in order to
view shell environment variables from inside of the pod, and the
second opens a shell inside the pod so you can run the following
commands:

$ kubectl exec $POD_NAME env

PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

HOSTNAME=kubernetes-bootcamp-5b48cfdcbd-lf9t2

KUBERNETES_SERVICE_HOST=10.96.0.1

KUBERNETES_SERVICE_PORT=443

…

$ kubectl exec -ti $POD_NAME bash

root@kubernetes-bootcamp-5b48cfdcbd-lf9t2:/# date

Thu Feb 13 21:57:18 UTC 2020

kubernetes-bootcamp-5b48cfdcbd-lf9t2:/# ps -ef

UID PID PPID C STIME TTY TIME CMD

root 1 0 0 21:29 ? 00:00:00 /bin/sh -c

node server.js

root 6 1 0 21:29 ? 00:00:00 node

server.js

root 115 0 0 21:55 pts/0 00:00:00 bash

root 123 115 0 22:01 pts/0 00:00:00 ps -ef

root@kubernetes-bootcamp-5b48cfdcbd-lf9t2:/# curl

localhost:8080

Hello Kubernetes bootcamp!|Running on:kubernetes-bootcamp-

5b48cfdcbd-lf9t2|v=1

root@kubernetes-bootcamp-5b48cfdcbd-lf9t2:/# exit

After starting a shell, you can see output from the date and ps
commands. From ps, you can see that the first process run in the
container (PID 1) is the server.js script. After that, the curl command
is able to communicate successfully with the container on localhost
port 8080.

Expose applications with services
To expose the kubernetes-bootcamp pod described in these procedures
so that it is accessible from an external IP address from the worker
node on which it is running, you can create a NodePort object. Here is
one way to do that:

1. Check that the pod is running: Enter the following to see that
the kubernetes-bootcamp pod is running.

$ kubectl get pods

NAME READY STATUS

RESTARTS AGE

kubernetes-bootcamp-765bf4c7b4-fdl96 1/1 Running 0

26m

2. Check the services: Enter the following to see the services
running in the default namespace. Notice that only the
kubernetes service is available and that there is no service
exposing the kubernetes-bootcamp pod outside of the cluster:

$ kubectl get services

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)

AGE

kubernetes ClusterIP 10.96.0.1 <none> 443/TCP

31m

3. Create a service: Create a service that uses NodePort to make
the pod available from an IP address on the host at a specific port
number (8080). For example, enter the following:

$ kubectl expose deployment/kubernetes-bootcamp \

 --type="NodePort" --port 8080

service/kubernetes-bootcamp exposed

4. View the new service: Type the following to see the IP address
(10.96.66.230) and port number (8080) from which the service is
made available on the host:

$ kubectl get services

NAME TYPE CLUSTER-IP EXTERNAL-IP

PORT(S) AGE

kubernetes ClusterIP 10.96.0.1 <none>

443/TCP 33m

kubernetes-bootcamp NodePort 10.96.66.230 <none>

8080:32374/TCP 5s

$ kubectl describe services/kubernetes-bootcamp

Name: kubernetes-bootcamp

Namespace: default

Labels: app=kubernetes-bootcamp

Annotations: <none>

Selector: app=kubernetes-bootcamp

Type: NodePort

IP: 10.96.66.230

Port: <unset> 8080/TCP

TargetPort: 8080/TCP

NodePort: <unset> 30000/TCP

Endpoints: 172.17.0.6:8080

Session Affinity: None

External Traffic Policy: Cluster

5. Get the assigned node port: To get the port assigned to the
service and set the $NODE_PORT variable to that value, enter the
following:

$ export NODE_PORT=$(kubectl get services/kubernetes-

bootcamp \

-o go-template='{{(index .spec.ports 0).nodePort}}')

$ echo NODE_PORT=$NODE_PORT

NODE_PORT=30000

6. Access the service: To check that the service is available from
the NodePort, use the following curl command (using the IP
address for your Minikube instance):

$ curl $(minikube ip):$NODE_PORT

Hello Kubernetes bootcamp!|Running on:kubernetes-bootcamp-

765bf4c7b4-fdl96|v=1

Label a service
Use this procedure to add a label to an existing service.

1. Check the pod's label: So far, kubernetes-bootcamp is the only
label assigned to the pod. To make sure, enter the following:

$ kubectl describe deployment

Name: kubernetes-bootcamp

Namespace: default

CreationTimestamp: Fri, 14 Feb 2020 05:43:49 +0000

Labels: run=kubernetes-bootcamp

Annotations: deployment.kubernetes.io/revision: 1

…

2. Add another label: To add an additional label (v1) to the pod,
get the name of the pod and add the new label as follows:

$ export POD_NAME=$(kubectl get pods -o go-template --

template \

 '{{range .items}}{{.metadata.name}}{{"\n"}}{{end}}') ; \

echo Name of the Pod: $POD_NAME

Name of the Pod: kubernetes-bootcamp-765bf4c7b4-fdl96

$ kubectl label pod $POD_NAME app=v1

pod/kubernetes-bootcamp-765bf4c7b4-fdl96 labeled

3. Check and use the label: Check that the v1 label has been
assigned to the pod, and then use that label to list information
about the pod:

$ kubectl describe pods $POD_NAME

Name: kubernetes-bootcamp-765bf4c7b4-fdl96

Namespace: default

Priority: 0

Node: minikube/172.17.0.62

Start Time: Fri, 14 Feb 2020 05:44:08 +0000

Labels: app=v1

 pod-template-hash=765bf4c7b4

 run=kubernetes-bootcamp

$ kubectl get pods -l app=v1

NAME READY STATUS

RESTARTS AGE

kubernetes-bootcamp-765bf4c7b4-fdl96 1/1 Running 0

60m

Delete a service
If you are done using the service, you can delete it. This removes
access to the service from the NodePort, but it does not delete the
deployment itself.

1. Check the service: Make sure that the kubernetes-bootcamp
service still exists:

$ kubectl get services

NAME TYPE CLUSTER-IP EXTERNAL-IP

PORT(S) AGE

kubernetes ClusterIP 10.96.0.1 <none>

443/TCP 63m

kubernetes-bootcamp NodePort 10.96.66.230 <none> 8

080:32374/TCP 30m

2. Delete the service: Using the label name, delete the service:

$ kubectl delete service -l run=kubernetes-bootcamp

service "kubernetes-bootcamp" deleted

3. Check the service and deployment: Make sure the service
has been deleted but the deployment still exists:

$ kubectl get services

NAME TYPE CLUSTER-IP EXTERNAL-IP

PORT(S) AGE

kubernetes ClusterIP 10.96.0.1 <none>

443/TCP 64m

$ kubectl get deployment

NAME READY UP-TO-DATE AVAILABLE AGE

kubernetes-bootcamp 1/1 1 1 65m

Scale up an application
One of the most powerful features of Kubernetes is its ability to scale
up an application as the demand requires it. This procedure starts with
the kubernetes-bootcamp deployment, which is running one pod, and
scales it up to have additional pods running using the ReplicaSet
feature and a different means of exposing the application to outside

access.

1. Get the deployment: List information about the kubernetes-
bootcamp deployment, and note that it is set to have only one
replica set (rs) active:

$ kubectl get deployments

NAME READY UP-TO-DATE AVAILABLE AGE

kubernetes-bootcamp 1/1 1 1 107s

$ kubectl get rs

NAME DESIRED CURRENT READY

AGE

kubernetes-bootcamp-5b48cfdcbd 1 1 1

3m4s

2. Scale up the replicas: To scale the deployment up to four
replica sets, enter the following:

$ kubectl scale deployments/kubernetes-bootcamp --replicas=4

deployment.extensions/kubernetes-bootcamp scaled

3. Check the new replicas: List the deployments to make sure
that there are now four replicas ready and available:

$ kubectl get deployments

NAME READY UP-TO-DATE AVAILABLE AGE

kubernetes-bootcamp 4/4 4 4 8m44s

4. Check the pods: There should now also be four kubernetes-
bootcamp pods running, each with its own IP address inside the
cluster. To make sure, enter the following:

$ kubectl get pods -o wide

NAME READY STATUS RESTARTS AGE

IP

 NODE NOMINATED NODE READINESS GATES

kubernetes-bootcamp-5b4… 1/1 Running 0 8m43s

172.18.0.4

 minikube <none> <none>

kubernetes-bootcamp-5b4… 1/1 Running 0 12s

172.18.0.8

 minikube <none> <none>

kubernetes-bootcamp-5b4… 1/1 Running 0 12s

172.18.0.6

 minikube <none> <none>

kubernetes-bootcamp-5b4.. 1/1 Running 0 12s

172.18.0.7

 minikube <none> <none>

5. View deployment details: To see details of the increased
replicas in the deployment, enter the following:

$ kubectl describe deployments/kubernetes-bootcamp

Name: kubernetes-bootcamp

Namespace: default

…

Replicas: 4 desired | 4 updated | 4 total | 4 available |

0 unavailable

…

NewReplicaSet: kubernetes-bootcamp-5b48cfdcbd (4/4

replicas created)

Events:

 Type Reason Age From

Message

 ---- ------ ---- ---- -

 Normal ScalingReplicaSet 17m deployment-controller

Scaled up

 replica set kubernetes-bootcamp-5b48cfdcbd to 1

 Normal ScalingReplicaSet 9m25s deployment-controller

Scaled up

replica set kubernetes-bootcamp-5b48cfdcbd to 4

Check the load balancer
To check that traffic is being distributed across all four replicated
pods, you can get the NodePort and then use the curl command to
make sure that multiple connections to the NodePort result in
different pods being accessed:

1. List details about the service: To see details about the
kubernetes-bootcamp service, enter the following:

$ kubectl describe services/kubernetes-bootcamp

Name: kubernetes-bootcamp

Namespace: default

Labels: run=kubernetes-bootcamp

Annotations: <none>

Selector: run=kubernetes-bootcamp

Type: NodePort

IP: 10.99.183.8

Port: <unset> 8080/TCP

TargetPort: 8080/TCP

NodePort: <unset> 31915/TCP

Endpoints:

172.18.0.4:8080,172.18.0.6:8080,172.18.0.7:8080 + 1 more…

Notice that each pod has its own IP address and port
(172.18.0.4:8080, 172.18.0.4:8080, and so on).

2. Get the NodePort: Enter the following to set $NODE_PORT to the
value of the port number assigned to the service:

$ export NODE_PORT=$(kubectl get services/kubernetes-

bootcamp \

 -o go-template='{{(index .spec.ports 0).nodePort}}')

$ echo NODE_PORT=$NODE_PORT

NODE_PORT=31915

3. Run curl: Run the curl command a few times to query the
service. If you run it a few times, you should see that it is
accessing different pods. That is how you know that the load
balancer is working:

$ curl $(minikube ip):$NODE_PORT

Hello Kubernetes bootcamp!|Running on:kubernetes-bootcamp-

5b48cfdcbd-9j4xp|v=1

Scale down an application
To scale the number of ReplicaSets defined in your deployment,
simply change the number of replicas to a lower number.

1. Scale down replicas: Enter the following to change the number
of replicas for the deployment to 2:

$ kubectl scale deployments/kubernetes-bootcamp –replicas=2

deployment.extensions/kubernetes-bootcamp scaled

2. Check the deployment: To see that the deployment is set to 2,
and that only two pods are running, enter the following:

$ kubectl get deployments

NAME READY UP-TO-DATE AVAILABLE AGE

kubernetes-bootcamp 2/2 2 2 52m

$ kubectl get pods -o wide

NAME READY STATUS RESTARTS AGE

IP

 NODE NOMINATED NODE READINESS GATES

kubernetes-bootcamp-5b4… 1/1 Running 0 8m43s

172.18.0.4

 minikube <none> <none>

kubernetes-bootcamp-5b4… 1/1 Running 0 12s

172.18.0.8

At this point, you should feel comfortable manually querying your
Kubernetes cluster in various ways and starting up and working with
deployments, pods, and replicas. To continue with more advanced
Kubernetes tutorials, return to the main Kubernetes Tutorials page
(https://kubernetes.io/docs/tutorials/). I also recommend the
Kubernetes By Example site for more information on using
Kubernetes (https://kubernetesbyexample.com).

https://kubernetes.io/docs/tutorials/
https://kubernetesbyexample.com

Enterprise-Quality Kubernetes with OpenShift
Red Hat OpenShift Container Platform (www.openshift.com) is a
product that is designed to deliver an enterprise-quality Kubernetes
platform that can be used for mission-critical applications. As a hybrid
cloud platform, OpenShift is built to be deployed in both bare metal
and cloud environments.

While Kubernetes is an open source project that can be built and run
in a tremendous number of ways, Kubernetes-based products, such as
OpenShift, are meant to be used when you need a solid, supported
platform upon which your business can rely. OpenShift also comes in
different variants, which can be installed in your own data center and
in cloud environments, such as AWS and Azure, or simply used from a
dedicated OpenShift cluster maintained for you by Red Hat.

When you lock down the Kubernetes features that Red Hat builds into
OpenShift, those features can be thoroughly tested and supported.
Training and documentation can be built around those features. Also,
more complex features can be built in, such as advanced government
compliance features and tight integrations with various cloud
environments.

With an intuitive web console, Red Hat OpenShift is made to be easier
to use for people starting with Kubernetes. An example of the
OpenShift console is shown in Figure 30.2.

https://www.openshift.com

FIGURE 30.2 OpenShift features an intuitive web UI for deploying
and managing Kubernetes objects.

There are free trials of OpenShift available from
https://try.openshift.com. There is also an open source upstream
project for OpenShift, called OKD, which you can get for free as well
(www.okd.io).

https://try.openshift.com
http://www.okd.io

Summary
In the past few years, Kubernetes has become the platform of choice
for deploying containerized applications across large data centers. A
Kubernetes cluster consists of master nodes (that direct the activities
of a cluster) and worker nodes (that actually run the containerized
payloads).

As someone using Kubernetes to run containerized applications, you
can create deployments that define the state of the application you are
running. For example, you can deploy an application that is configured
to run multiple replicas of the pods representing that application. You
can identify the application as a service and set up the application to
be available from defined ports on the nodes from which they are run.

Products based on Kubernetes are available when you need to run
mission-critical applications in environments that are stable and
supported. One such product is the Red Hat OpenShift Container
Platform. With OpenShift, you can run supported Kubernetes-based
cluster configurations that run in a variety of environments, including
bare metal and various cloud environments.

Exercises
The exercises in this section describe tasks related to trying out
Kubernetes, either online or by setting up Minikube on a computer. If
you are stuck, solutions to the tasks are shown in Appendix B. Keep in
mind that the solutions shown in Appendix B are usually just one of
many ways to complete a task.

1. Install Minikube on your local system or access a Minikube
instance externally (such as through the Kubernetes.io Tutorials).

2. View your version of Minikube, as well as the versions of your
kubectl client and Kubernetes service.

3. Create a deployment that manages a pod running the hello-node
container image (gcr.io/hello-minikube-zero-install/hello-
node).

4. Use the appropriate kubectl commands to view the hello-node
deployment and describe the deployment in detail.

5. View the current replica set associated with your hello-node
deployment.

6. Scale up the hello-node deployment to three (3) replicas.

7. Expose the hello-node deployment outside of the Kubernetes
cluster using LoadBalancer.

8. Get the IP address of your Minikube instance and the port
number of the exposed hello-node service.

9. Use the curl command to query the hello-node service using the
IP address and port number from the previous step.

10. Use the kubectl commands to delete the hello-node service and
deployment, and then use the minikube command to stop the
Minikube virtual machine.

Part VII
Appendixes

IN THIS PART
Appendix A Media

Appendix B Exercise Answers

APPENDIX A
Media

IN THIS APPENDIX
Getting Linux distributions

Creating a bootable CD or DVD

Unless you bought a computer with Linux preinstalled or had someone
install it for you, you need to find a way to get a Linux distribution and
then either install or run it live on your computer. Fortunately, Linux
distributions are widely available and come in a variety of forms.

In this appendix, you learn how to do the following:

Get a few different Linux distributions

Create a bootable disk to install your distribution

Boot Linux from a USB drive

To use this book effectively, you should have a Linux distribution in
front of you to work on. It's important to be able to experience Linux
as you read. So, try the examples and do the exercises.

Linux distributions are most commonly available from the websites of
the organizations that produce them. The following sections describe
websites associated with Linux distributions that offer ISO images you
can download.

NOTE
An ISO is a disk image that is formatted in the ISO 9660 filesystem
format, a format that is commonly used with CD and DVD images.
Because this is a well-known format, it is readable by Windows,
Mac, and Linux systems.

An ISO image can be used to create a bootable USB flash drive, CD,
or DVD medium, depending on the size of the image. An ISO
image in your filesystem can be mounted in Linux in loopback
mode, so you can view or copy its contents.

When an ISO image contains a Linux Live CD or installation
image, the images are bootable. This means that instead of starting
up an operating system, such as Windows or Linux, from the
computer's hard drive, you can tell your computer to boot from the
CD or DVD instead. This enables you to run a totally different
operating system than is installed on your hard drive without
changing or damaging the data on that drive.

Getting Fedora

NOTE
I recommend downloading the Fedora Workstation Live Image to
use along with this book because most of the book works with that
distribution. You can run it live without committing to overwriting
your computer's hard disk until you feel comfortable enough to
install it permanently.

To test the examples in this book, I used Fedora 30 and 31, 64-bit
Fedora Workstation images, which you can get from GetFedora.org
(https://getfedora.org/en/workstation/download). If you have a 64-
bit machine, you must use the 64-bit ISO.

Later versions of Fedora that come with a GNOME desktop should
work as well. Here's a link to the exact ISO used for the Fedora 31
Workstation:

https://download.fedoraproject.org/pub/fedora/linux/releases/31/Workstation/x86_64/iso/Fedora-
Workstation-Live-x86_64-31-1.9.iso

Keep in mind that the latest Fedora Workstation ISO image does not
fit on a CD, so you must burn it to a DVD or USB flash drive. See the
descriptions of CD/DVD burning tools available for Windows, MacOS,
and Linux later in this appendix.

Figure A.1 shows an example of the Get Fedora page.

http://getfedora.org
https://getfedora.org/en/workstation/download
https://download.fedoraproject.org/pub/fedora/linux/releases/31/Workstation/x86_64/iso/Fedora-Workstation-Live-x86_64-31-1.9.iso

FIGURE A.1 Download Fedora ISO images from the Get Fedora
page.

Today, the default download is an ISO image of a 64-bit PC-type
Fedora Workstation (GNOME) Live DVD. You can boot this image on
your computer, and if you choose, you can permanently install it to
your computer's hard drive. To download this image, do the following:

1. Select Workstation or Server from GetFedora.org. I recommend
Workstation to follow along with this book.

2. Select the Download Now button and click the Download button.
A pop-up should appear, asking what you want to do with the ISO.

3. Select to save the ISO. Depending on your settings, either you are
asked where you want to download it or it simply begins
downloading to a default folder (in Linux, it is probably a
Downloads folder).

4. If you are prompted for where to put the ISO, select a folder that
has enough space to hold it. Remember where this folder is
located, because you need to find the ISO when you go to burn it
later.

If you need more information about what to do with the downloaded
image, there are links to help you on the Fedora page that appears. At
the time of this writing, the Learn Here link takes you to descriptions

http://getfedora.org

of how to create live installation media. The exact instructions might
change as the website is updated.

You have other choices for downloading ISOs from Fedora. From the
bottom of the GetFedora.org page, you can download specially
configured Fedora ISO images called spins
(https://spins.fedoraproject.org). Here are some special types of
Fedora spins that might interest you:

KDE desktop spin: People who prefer the KDE desktop to the
GNOME desktop can download the Plasma KDE spin.

Lightweight desktop spin: If you are trying Linux on a
computer with less memory or processing power, consider Xfce
and LXQt spins (representing lightweight desktops of the same
name).

Desktop effects spin: The MATE-Compiz spin offers more of
the other extreme to the lightweight desktops, with desktop
effects like wobbly windows and desktops that rotate on a cube.

Child-friendly desktop spin: The SOAS desktop is a spin of
the Sugar Learning Platform, made to provide a simplified setup
and a child-friendly graphical interface. SOAS can be transported
on a USB drive and run on any available computer.

http://getfedora.org
https://spins.fedoraproject.org

Getting Red Hat Enterprise Linux
Many large corporations, government agencies, and universities use
Red Hat Enterprise Linux to run their mission-critical applications.
While most of the procedures in this book will run well on Fedora,
there are many references to how things are done differently in Red
Hat Enterprise Linux because, when you go to get a job as a Linux
system administrator, you will, in most cases, be working with Red
Hat Enterprise Linux systems.

Although the source code for Red Hat Enterprise Linux is freely
available, the ISOs containing the packages you install (often referred
to as the binaries) are available only to those who have accounts on
the Red Hat customer portal (https://access.redhat.com) or through
evaluation copies.

If you don't have an account, you can try signing up for a 30-day trial.
If either you or your company has an account with Red Hat, you can
download the ISOs that you need. Go to the following site and follow
the instructions to download a Red Hat Enterprise Linux server ISO or
sign up to get an evaluation copy:
https://access.redhat.com/downloads.

Red Hat does not offer live versions of Red Hat Enterprise Linux.
Instead, you can download installation DVDs that you can install as
described in Chapter 9, “Installing Linux,” of this book.

https://access.redhat.com
https://access.redhat.com/downloads

NOTE
If you are unable to obtain a Red Hat Enterprise Linux installation
DVD, you can get a similar experience using the CentOS
installation DVD. CentOS is not exactly the same as RHEL.
However, if you download the CentOS installation DVD for CentOS
8.x from links on the CentOS site
(http://www.centos.org/download/), the installation procedure is
similar to the one described for Red Hat Enterprise Linux in
Chapter 9.

http://www.centos.org/download/

Getting Ubuntu
Many people new to Linux begin by downloading and installing
Ubuntu. Ubuntu has a huge fan base and many active contributors. If
you have problems with Ubuntu, there are large, active forums where
many people are willing to help you overcome problems.

If you already have an Ubuntu system installed, you can follow along
with most of this book. You can get Ubuntu with a GNOME desktop,
and its default dash shell is similar to bash (or you can switch to bash
in Ubuntu to match the shell examples in this book). Although most of
the examples of this book focus on Fedora and RHEL, I have added
many more references to Ubuntu throughout the book in this edition.

To get Ubuntu, you can download a Live ISO image or installation
medium from the Download Ubuntu page:
http://www.ubuntu.com/download/ubuntu.

Figure A.2 shows an example of the Download Ubuntu Desktop page.

FIGURE A.2 Download Ubuntu Live ISO images, or choose an
alternative download.

http://www.ubuntu.com/download/ubuntu

As with Fedora, the easiest way to download Ubuntu is to select the
64-bit Ubuntu Live image, download it, and burn it. Here's how to do
that from the Download Ubuntu page:

1. Click the Download button. By default, this downloads the most
recent 64-bit Ubuntu desktop Live ISO image.

2. Either you are asked where you want to download the ISO image,
or it simply begins downloading to a default folder.

3. If you are asked where to put the ISO, select a folder that has
enough space to hold the ISO. Remember where this folder is
located because you need to find the ISO when you go to burn it
later.

After the download is complete, burn the ISO image to a DVD using
procedures described in the section “Creating Linux CDs and DVDs”.

Other types of Ubuntu installation media are also available. To find
other Ubuntu media, go to the Alternative Downloads page
(http://www.ubuntu.com/download/alternative-downloads). From this
site, you can get media that contains a variety of desktop and server
installs.

http://www.ubuntu.com/download/alternative-downloads

Booting Linux from a USB Drive
Instead of burning ISO images to a CD or DVD, you can put your
Linux system on a USB drive. USB drives offer the advantage of being
writable as well as readable, so you can save your content between
sessions. Most modern computers can boot from a USB drive,
although you may have to interrupt the boot process to tell the BIOS to
boot from a USB drive instead of hard drive or CD/DVD drive.

You can find procedures for putting Fedora and Ubuntu on a USB
drive in the following locations:

Fedora on a USB drive: Using a tool called Live USB Creator,
you can install a Fedora ISO image to a USB drive in either
Windows or Linux. To run Fedora from that drive, insert it into a
USB port on your computer, reboot the computer, interrupt the
BIOS as it is booting (possibly F12), and select to boot from a USB
drive. The procedure for using Live USB creator is located at
https://docs.fedoraproject.org/en-US/quick-docs/creating-

and-using-a-live-installation-image/index.html

Ubuntu on a USB drive: Ubuntu has procedures for creating a
bootable USB drive with Ubuntu on it that work from Windows,
MacOS, or Linux. To find out how to do this, go to the Ubuntu
Download page, and under “Easy ways to switch to Ubuntu,” look
for the appropriate “How to create a bootable USB stick…”
procedure for Ubuntu, Windows, or MacOS:
https://ubuntu.com/tutorials/tutorial-create-a-usb-stick-on-

ubuntu#1-overview

https://docs.fedoraproject.org/en-US/quick-docs/creating-and-using-a-live-installation-image/index.html
https://ubuntu.com/tutorials/tutorial-create-a-usb-stick-on-ubuntu#1-overview

Creating Linux CDs and DVDs
After you have downloaded a Linux CD or DVD image, you can use
several tools to create bootable CDs or DVDs for either installing or
just running Linux live from those media. Before you begin, you must
have the following:

DVD or CD ISO images: Download the ISO images to your
computer that represent the physical DVD or CD you will
ultimately burn. Today, most Linux ISO images are too big to fit
on a CD (including those for RHEL, Fedora, and Ubuntu).

Blank DVDs/CDs: You need blank DVDs or CDs to burn the
images to. CDs hold up to about 700MB; DVDs hold up to about
4.7GB (single layer).

CD/DVD burner: You need a drive that is capable of burning
CDs or DVDs, depending on which you are burning. Not all
CD/DVD drives can burn DVDs (especially older ones). So, you
may need to find a computer with a drive that has that capability.

The following sections describe how to burn bootable CDs and DVDs
from Windows, MacOS, and Linux systems.

Burning CDs/DVDs in Windows
If you have downloaded your Linux ISO image to a Windows system,
you can burn that image to CD or DVD in different ways. Here are
some examples:

Windows: In the latest Windows releases, the function of
burning ISO images to CD or DVD is built into Windows. After an
ISO image is downloaded, simply insert the appropriate CD or
DVD into your computer's drive (assuming the drive is writeable),
right-click the ISO image icon from the folder to which you
downloaded it, and select Burn Disc Image. When the Windows
Disc Image Burner window appears, select Burn to burn the
image.

Roxio Creator: This third-party Windows application contains

many features for ripping and burning CDs and DVDs. You can
read about the product here:
http://www.roxio.com/en/products/creator/.

Nero CD/DVD Burning ROM: Nero is another popular
CD/DVD burning software product for Windows systems. You can
find out more about Nero here: http://www.nero.com.

Burning CDs/DVDs on a MacOS system
Like Windows, MacOS has CD/DVD burning software built into the
operating system. To burn an ISO image to disk on a MacOS system,
follow these steps:

1. Download the ISO image you want on your MacOS system. An
icon representing the ISO should appear on your desktop.

2. Insert a blank CD or DVD into your CD/DVD burner, as
appropriate for the size of the image.

3. Right-click the icon representing the Linux ISO that you just
downloaded and select Burn “Linux” to Disk. A pop-up window
appears, asking if you are sure you want to burn the image.

4. Fill in the name that you want to give the ISO and the write speed
and then select Burn. The image begins burning to disk.

5. After the image has been burned, eject the disk; you are ready to
boot the CD or DVD on an appropriate computer.

Burning CDs/DVDs in Linux
Linux has both graphical and command-line tools for burning CD and
DVD images to physical media. Examples in this section show how to
use K3b from the desktop or cdrecord (or wodim) to burn ISO images to
CD or DVD. If they are not installed, you can install either one as
follows:

For Fedora or RHEL

 # yum install k3b

 # yum install wodim

For Debian or Ubuntu

http://www.roxio.com/en/products/creator/
http://www.nero.com

 # apt-get install k3b

 # apt-get install wodim

Burning CDs or DVDs from a Linux desktop
Here's how to create bootable Linux CDs or DVDs from a running
Linux system (such as Fedora) using K3b. K3b comes with the KDE
desktop but runs on the GNOME desktop as well.

1. Download the ISO images that you want to your computer's hard
drive. (A CD image is under about 700MB in size. Single-layer
DVD images are under 4.7GB.)

2. Open a CD/DVD burning application. For this procedure, I
recommend K3b CD and DVD Kreator (http://www.k3b.org). In
Fedora, select Activities and type K3b (or type k3b from a
Terminal window). The “K3b – The CD and DVD Kreator”
window appears.

3. From the K3b window, select Tools ➪ Burn Image to burn a CD
or DVD ISO Image. You are asked to choose an image file.

4. Browse to the image that you just downloaded or copied to hard
drive and select it. After you select the image that you want, the
Burn Image window appears, as does a checksum on the image.
Figure A.3 shows the K3b window ready to select an image of
Fedora.

http://www.k3b.org

FIGURE A.3 Use K3b to burn your Linux CDs or DVDs.

5. Insert a blank CD or DVD into the CD/DVD drive, which may be a
combination CD/DVD drive. (If a CD/DVD Creator window pops
up, you can close it.)

6. Check the settings in the Burn Image window (often, the defaults
are fine, but you may want to slow down the speed if you get some
bad burns). You can also select the Simulate check box to test the
burn before actually writing to the CD/DVD. Click Start to
continue.

7. When the CD/DVD is finished burning, eject it (or it may eject
automatically) and mark it appropriately (information such as the
distribution name, version number, date, and name of the ISO
image).

Now you're ready to begin installing (or booting) the Linux
distribution you just burned.

Burning CDs or DVDs from a Linux command line
If you have no GUI, or you don't mind working from the shell, you can
use the cdrecord command to burn the ISOs. With a blank CD or DVD
inserted and the ISO image you want to burn in the current directory,
you can use the following simple command line for burning a CD
image to CD or DVD using cdrecord:

cdrecord -v whatever.iso

See the cdrecord man page (man cdrecord) for other options available
with the cdrecord command.

APPENDIX B
Exercise Answers
This appendix provides answers to each of the chapter exercises. There
are many ways to accomplish tasks in Linux. Suggested answers are
provided herein.

Some of the exercises require that you modify system files that could
change the basic functioning of your system, or even make your
system unbootable. Therefore, I recommend that you do the exercises
on a Linux system that you are free to modify and erase if something
should go wrong. Using virtual machines, that you can discard when
you are done, is an excellent option.

Chapter 1: Starting with Linux
There are no exercises in Chapter 1.

Chapter 2: Creating the Perfect Linux Desktop
This section details some ways that these tasks can be completed on
both the GNOME 2 and GNOME 3 desktops.

1. To get started, you need a Linux system in front of you to do the
procedures in this book. An installed system is preferable, so you
don't lose your changes when you reboot. To start out, you can use
a Fedora Live CD (or installed system), an Ubuntu installed
system, or a Red Hat Enterprise Linux installed system. Here are
your choices:

a. Fedora Live CD (GNOME 3): Get a Fedora Live CD as
described in Appendix A. Run it live, as described in the
section “Starting with the Fedora GNOME Desktop Live
image” in Chapter 2, or install it and run it from hard disk as
described in Chapter 9, “Installing Linux.”

b. Ubuntu (GNOME 3): Install Ubuntu and the GNOME
Shell software, as described at the beginning of Chapter 2.

c. Red Hat Enterprise Linux 8 (GNOME 3): Install Red
Hat Enterprise Linux 7, as described in Chapter 9.

d. Red Hat Enterprise Linux 6 or earlier (GNOME 2):
Install Red Hat Enterprise Linux 6.

2. To launch the Firefox web browser and go to the GNOME home
page (http://gnome.org), there are some easy steps to take. If
your network is not working, refer to Chapter 14, “Administering
Networking,” for help on connecting to wired and wireless
networks.

GNOME 3
For GNOME 3, you can press the Windows key to get to the
Overview screen. Then type Firefox to highlight just the
Firefox web browser icon. Press Enter to launch it. Type
http://gnome.org in the location box, and press Enter.

http://gnome.org

GNOME 2
For GNOME 2, select the Firefox icon from the top menu bar.
Type http://gnome.org in the location box, and press Enter.

3. To pick a background that you like from the GNOME art site
(http://gnome-look.org), download it to your Pictures folder, and
select it as your current background. On both GNOME 2 and
GNOME 3 systems, do the following:

a. Type http://gnome-look.org/ in the Firefox location box and
press Enter.

b. Find a background that you like and select it. Then click the
Download button and download it to your Pictures folder.

c. Open your Pictures folder, right-click the image, and select
Set as Wallpaper. The image is used as your desktop
background.

4. To start a Nautilus File Manager window and move it to the
second workspace on your desktop, do the following:

For GNOME 3
a. Press the Windows key.

b. Select the Files icon from the Dash (left side). A new instance
of Nautilus starts in the current workspace.

c. Right-click the title bar in the Files window and select Move
to Monitor Down. The Files window moves to the second
workspace.

For GNOME 2
a. Open the Home folder from the GNOME 2 desktop (double-

click).

b. Right-click in the Nautilus title bar that appears, and select
either Move to Workspace Right or Move to Another
Workspace. (You can select which workspace you want from
the list.)

http://gnome-look.org

5. To find the image that you downloaded to use as your desktop
background and open it in any image viewer, first go to your
Home folder, then open the Pictures folder. Double-click the
image to open it in an image viewer.

6. Moving back and forth between the workspace with Firefox on it
and the one with the Nautilus file manager is fairly
straightforward.

If you did the previous exercises properly, Nautilus and Firefox
should be in different workspaces. Here's how you can move
between those workspaces in GNOME 3 and GNOME 2:

GNOME 3
Press the Windows key, and select the workspace that you
want in the right column. As an alternative, you can go
directly to the application that you want by pressing Alt+Tab
and pressing Tab again and also arrow keys to highlight the
application that you want to open.

GNOME 2
Select the workspace that you want with your mouse by
clicking the small representation of the workspace in the
right side of the lower panel. If you happen to have Desktop
Effects enabled (System ➪ Preferences Desktop Effects ➪
Compiz), try pressing Ctrl+Alt+right arrow (or left arrow) to
spin to the next workspace.

7. To open a list of applications installed on your system and select
an image viewer to open from that list using as few clicks or
keystrokes as possible, do the following:

In GNOME 3
Move the mouse to the upper-left corner of the screen to get
to the Overview screen. Select Applications, then select
Utilities from the right column, and then select Image
Viewer.

In GNOME 2
Select Applications ➪ Graphics ➪ Image Viewer to open an
image viewer window on the desktop.

8. To change the view of the windows on your current workspace to
smaller views of those windows that you can step through, do the
following:

In GNOME 3
With multiple windows open on multiple workspaces, press
the Alt+Tab keys. While continuing to hold the Alt key, press
Tab until you highlight the application that you want. Release
the Alt key to select it.

In GNOME 2
With multiple windows open on multiple workspaces, press
and hold the Ctrl+Alt+Tab keys. While continuing to hold the
Ctrl+Alt keys, press Tab until you have highlighted the
application that you want. Release the Ctrl and Alt keys to
select it.

9. To launch a music player from your desktop using only the
keyboard, do the following:

In GNOME 3
a. Press the Windows key to go to the Overview screen.

b. Type Rhyth (until the icon appears and is highlighted) and
press Enter. (In Ubuntu, if you don't have Rhythmbox
installed, type Bansh to open the Banshee Media Player.)

In GNOME 2
Press Alt+F2. From the Run Application box that appears.
Then type rhythmbox and press Enter.

10. To take a picture of your desktop using only keystrokes, press the
Print Screen key to take a screen shot of your entire desktop in
both GNOME 3 and GNOME 2. Press Alt+Print Screen to take a

screen shot of just the current window. In both cases, the images
are saved to the Pictures folder in your home folder.

Chapter 3: Using the Shell
1. To switch virtual consoles and return to the desktop in Fedora or

Ubuntu (this feature is disabled in some RHEL systems), do the
following:

a. Hold Ctrl+Alt and press F2 (Ctrl+Alt+F2). A text-based
console should appear.

b. Type your username (press Enter) and password (press
Enter).

c. Type a few commands, such as id, pwd, and ls.

d. Type exit to exit the shell and return to the login prompt.

e. Press Ctrl+Alt+F1 to return to the virtual console that holds
your desktop. (On different Linux systems, the desktop may
be on different virtual consoles. Ctrl+Alt+F7 and Ctrl+Alt+F2
are other common places to find it.)

2. For your Terminal window, make the font red and the background
yellow.

a. From the GNOME desktop, select Applications ➪ System
Tools ➪ Terminal to open a Terminal window.

b. From the Terminal window, select Edit ➪ Profile
Preferences.

c. Select the Colors tab and deselect “Use colors from system
theme” box.

d. Select the box next to Text Color, click the color red that you
want from the available selections, and click Select.

e. Select the box next to Background Color, click the color
yellow that you want from the available selections, and click
Select.

f. Click Close on the Profile window to go back to the Terminal
window with the new colors.

g. Go back and reselect “Use colors from system theme” box to
go back to the default Terminal colors.

3. Find the mount command and tracepath man page.

a. Run type mount to see that the mount command's location is
either /usr/bin/mount or /bin/mount.

b. Run locate tracepath to see that the tracepath man page is
at /usr/share/man/man8/tracepath.8.gz.

4. Run, recall, and change these commands as described:

 $ cat /etc/passwd

 $ ls $HOME

 $ date

a. Press the up arrow until you see the cat /etc/passwd
command. If your cursor is not already at the end of the line,
press Ctrl+E to get there. Backspace over the word passwd,
type the word group, and press Enter.

b. Type man ls, and find the option to list by time (-t). Press the
up arrow until you see the ls $HOME command. Use the left
arrow key or Alt+B to position your cursor to the left of $HOME.
Type -t, so that the line appears as ls -t $HOME. Press Enter
to run the command.

c. Type man date to view the date man page. Use the up arrow to
recall the date command and add the format indicator that
you found. A single %D format indicator gets the results you
need:

 $ date +%D

 04/27/20

5. Use tab completion to type basename /usr/share/doc/. Type
basen<Tab> /u<Tab>sh<Tab>do<Tab> to get
basename/usr/share/doc/.

6. Pipe /etc/services to the less command: $ cat /etc/services |
less.

7. Make output from the date command appear in this format:

Today is Thursday, April 23, 2020.

 $ echo "Today is $(date +'%A, %B %d, %Y')"

8. View variables to find your current hostname, username, shell,
and home directories.

 $ echo $HOSTNAME

 $ echo $USERNAME

 $ echo $SHELL

 $ echo $HOME

9. Add a permanent mypass alias that displays the contents of the
/etc/passwd file.

a. Type nano $HOME/.bashrc.

b. Move the cursor to an open line at the bottom of the page.
(Press Enter to open a new line if needed.)

c. On its own line, type alias m="cat /etc/passwd".

d. Type Ctrl+O to save and Ctrl+X to exit the file.

e. Type source $HOME/.bashrc.

f. Type alias m to make sure that the alias was set properly:
alias m='cat /etc/passwd'.

g. Type m. (The /etc/passwd file displays on the screen.)

10. To display the man page for the mount system call, use the man -k
command to find man pages that include the word mount. Then
use the mount command with the correct section number (8) to get
the proper mount man page:

 $ man -k mount | grep ^mount

 mount (2) - mount filesystem

 mount (8) - mount a filesystem

 …

 mountpoint (1) - see if a directory is a

mountpoint

 mountstats (8) - Displays various NFS client per-

mount statistics

 $ man 2 mount

 MOUNT(2) Linux Programmer's Manual

MOUNT(2)

 NAME

 mount - mount file system

 SYNOPSIS

 #include <sys/mount.h>

.

.

.

Chapter 4: Moving Around the Filesystem
1. Create the projects directory, create nine empty files (house1 to

house9), and list just those files.

 $ mkdir $HOME/projects/

 $ touch $HOME/projects/house{1..9}

 $ ls $HOME/projects/house{1..9}

2. Make the $HOME/projects/houses/doors/ directory path, and
create some empty files in that path.

 $ cd

 $ mkdir $HOME/projects/houses

 $ touch $HOME/projects/houses/bungalow.txt

 $ mkdir $HOME/projects/houses/doors/

 $ touch $HOME/projects/houses/doors/bifold.txt

 $ mkdir -p $HOME/projects/outdoors/vegetation/

 $ touch

$HOME/projects/outdoors/vegetation/landscape.txt

3. Copy the files house1 and house5 to the $HOME/projects/houses/
directory.

 $ cp $HOME/projects/house[15] $HOME/projects/houses

4. Recursively copy the /usr/share/doc/initscripts* directory to
the $HOME/projects/ directory.

 $ cp -ra /usr/share/doc/initscripts*/

$HOME/projects/

5. Recursively list the contents of the $HOME/projects/ directory.
Pipe the output to the less command so that you can page
through the output.

 $ ls -lR $HOME/projects/ | less

6. Remove the files house6, house7, and house8 without being
prompted.

 $ rm -f $HOME/projects/house[678]

7. Move house3 and house4 to the $HOME/projects/houses/doors
directory.

 $ mv $HOME/projects/house{3,4}

$HOME/projects/houses/doors/

8. Remove the $HOME/projects/houses/doors directory and its
contents.

 $ rm -rf $HOME/projects/houses/doors/

9. Change the permissions on the $HOME/projects/house2 file so that
it can be read and written to by the user who owns the file, only
read by the group, and have no permission for others.

 $ chmod 640 $HOME/projects/house2

10. Recursively change the permissions of the $HOME/projects/
directory so that nobody has write permission to any files or
directories beneath that point in the file system.

 $ chmod -R a-w $HOME/projects/

 $ ls -lR $HOME/projects/

 /home/joe/projects/:

 total 12

 -r--r--r--. 1 joe joe 0 Jan 16 06:49 house1

 -r--r-----. 1 joe joe 0 Jan 16 06:49 house2

 -r--r--r--. 1 joe joe 0 Jan 16 06:49 house5

 -r--r--r--. 1 joe joe 0 Jan 16 06:49 house9

 dr-xr-xr-x. 2 joe joe 4096 Jan 16 06:57 houses

 dr-xr-xr-x. 2 joe joe 4096 Jul 1 2014 initscripts-

9.03.40

 dr-xr-xr-x. 3 joe joe 4096 Jan 16 06:53 outdoors

 …

Chapter 5: Working with Text Files
1. Follow these steps to create the /tmp/services file, and then edit it

so that WorldWideWeb appears as World Wide Web.

 $ cp /etc/services /tmp

 $ vi /tmp/services

 /WorldWideWeb<Enter>

 cwWorld Wide Web<Esc>

The next two lines show the before and after:

 http 80/tcp www www-http #

WorldWideWeb HTTP

 http 80/tcp www www-http # World

Wide Web HTTP

2. One way to move the paragraph in your /tmp/services file is to
search for the first line of the paragraph, delete five lines (5dd), go
to the end of the file (G), and put in the text (p):

 $ vi /tmp/services

 /Note that it is<Enter>

 5dd

 G

 p

3. To use ex mode to search for every occurrence of the term tcp
(case sensitive) in your /tmp/services file, and change it to
WHATEVER, you can enter the following:

 $ vi /tmp/services

 :g/tcp/s//WHATEVER/g>Enter>

4. To search the /etc directory for every file named passwd and
redirect errors from your search to /dev/null, you can enter the
following:

 $ find /etc -name passwd 2> /dev/null

5. Create a directory in your home directory called TEST. Create files
in that directory named one, two, and three that have full

read/write/execute permissions on for everyone (user, group, and
other). Construct a find command that would find those files and
any other files that have write permission open to “others” from
your home directory and below.

 $ mkdir $HOME/TEST

 $ touch $HOME/TEST/{one,two,three}

 $ chmod 777 $HOME/TEST/{one,two,three}

 $ find $HOME -perm -002 -type f -ls

 148120 0 -rwxrwxrwx 1 chris chris 0 Jan 1 08:56

/home/chris/TEST/two 148918 0 -rwxrwxrwx 1 chris

chris 0 Jan 1 08:56 home/chris/TEST/three

 147306 0 -rwxrwxrwx 1 chris chris 0 Jan 1 08:56

/home/chris/TEST/one

6. Find files under the /usr/share/doc directory that have not been
modified in more than 300 days.

 $ find /usr/share/doc -mtime +300

7. Create a /tmp/FILES directory. Find all files under the /usr/share
directory that are more than 5MB and less than 10MB, and copy
them to the /tmp/FILES directory.

 $ mkdir /tmp/FILES

 $ find /usr/share -size +5M -size -10M -exec cp {}

/tmp/FILES \;

 $ du -sh /tmp/FILES/*

 6.6M /tmp/FILES/BidiCharacterTest.txt

 7.6M /tmp/FILES/BidiTest.txt

 5.2M /tmp/FILES/day.jpg

8. Find every file in the /tmp/FILES directory, and make a backup
copy of each file in the same directory. Use each file's existing
name and append .mybackup to create each backup file.

 $ find /tmp/FILES/ -type f -exec cp {} {}.mybackup

\;

9. Install the kernel-doc package in Fedora or Red Hat Enterprise
Linux. Using grep, search inside the files contained in the
/usr/share/doc/kernel-doc* directory for the term e1000 (case
insensitive), and list the names of the files that contain that term.

 # yum install kernel-doc

 $ cd /usr/share/doc/kernel-doc*

 $ grep -rli e1000 .

 ./Documentation/powerpc/booting-without-of.txt

 ./Documentation/networking/e100.txt

 …

10. Search for the e1000 term again in the same location. However,
this time list every line that contains the term and highlight the
term in color.

 $ cd /usr/share/doc/kernel-doc-*

 $ grep -ri --color e1000 .

Chapter 6: Managing Running Processes
1. To list all processes running on your system with a full set of

columns, while piping the output to less, enter the following:

 $ ps -ef | less

2. To list all processes running on the system and sort those
processes by the name of the user running each process, enter the
following:

 $ ps -ef --sort=user | less

3. To list all processes running on the system with the column
names process ID, username, group name, nice value, virtual
memory size, resident memory size, and command, enter the
following:

 $ ps -eo 'pid,user,group,nice,vsz,rss,comm' | less

 PID USER GROUP NI VSZ RSS COMMAND

 1 root root 0 19324 1236 init

 2 root root 0 0 0 kthreadd

 3 root root - 0 0 migration/0

 4 root root 0 0 0 ksoftirqd/0

4. To run the top command and then go back and forth between
sorting by CPU usage and memory consumption, enter the
following:

 $ top

 P

 M

 P

 M

5. To start the gedit process from your desktop and use the System
Monitor window to kill that process, do the following:

 $ gedit &

Next, in GNOME 2, select Applications ➪ System Tools ➪
System Monitor, or in GNOME 3, from the Activities screen, type

System Monitor and press Enter. Find the gedit process on
the Processes tab. (You can sort alphabetically to make it easier
by clicking the Process Name heading.) Right-click the gedit
command, and then select either End Process or Kill Process; the
gedit window on your screen should disappear.

6. To run the gedit process and use the kill command to send a
signal to pause (stop) that process, enter the following:

 $ gedit &

 [1] 21532

 $ kill -SIGSTOP 21532

7. To use the killall command to tell the gedit command (paused
in the previous exercise) to continue working, do the following:

 $ killall -SIGCONT gedit

Make sure that the text you typed after gedit was paused now
appears in the window.

8. To install the xeyes command, run it about 20 times in the
background, and run killall to kill all 20 xeyes processes at once,
enter the following:

 # yum install xorg-x11-apps

 $ xeyes &

 $ xeyes &

 …

 $ killall xeyes &

Remember, you need to be the root user to install the package.
After that, remember to repeat the xeyes command 20 times.
Spread the windows around on your screen, and move the mouse
for fun to watch the eyes move. All the xeyes windows should
disappear at once when you type killall xeyes.

9. As a regular user, run the gedit command so that it starts with a
nice value of 5.

 # nice -n 5 gedit &

 [1] 21578

10. To use the renice command to change the nice value of the gedit
command you just started to 7, enter the following:

 # renice -n 7 21578

 21578: old priority 0, new priority 7

Use any command you like to verify that the current nice value
for the gedit command is now set to 7. For example, you could
type the following:

 # ps -eo 'pid,user,nice,comm' | grep gedit

 21578 chris 7 gedit

Chapter 7: Writing Simple Shell Scripts
1. Here's an example of how to create a script in your $HOME/bin

directory called myownscript. When the script runs, it should
output information that appears as follows:

 Today is Sat Jun 10 15:45:04 EDT 2019.

 You are in /home/joe and your host is

abc.example.com.

The following steps show one way to create the script named
myownscript:

a. If it doesn't already exist, create a bin directory:

 $ mkdir $HOME/bin

b. Using any text editor, create a script called
$HOME/bin/myownscript that contains the following:

 #!/bin/bash

 # myownscript

 # List some information about your current

system

 echo "Today is $(date)."

 echo "You are in $(pwd) and your host is

$(hostname)."

c. Make the script executable:

 $ chmod 755 $HOME/bin/myownscript

2. Create a script that reads in three positional parameters from the
command line, assigns those parameters to variables named ONE,
TWO, and THREE, respectively. Also, replace X with the number of
parameters and Y with all of the parameters entered. Then replace
A with the contents of variable ONE, B with variable TWO, and C with
variable THREE, as shown below:

a. To create the script, open a file named $HOME/bin/myposition
and add the following contents:

#!/bin/bash

myposition

ONE=$1

TWO=$2

THREE=$3

echo "There are $# parameters that include: $@"

echo "The first is $ONE, the second is $TWO, the third

is $THREE."

b. To make the script called $HOME/bin/myposition executable,
enter the following:

 $ chmod 755 $HOME/bin/myposition

c. To test it, run it with some command-line arguments, as in
the following:

 $ myposition Where Is My Hat Buddy?

 There are 5 parameters that include: Where Is My

Hat Buddy?

 The first is Where, the second is Is, the third

is My.

3. To create the script described, do the following:

a. To create a file called $HOME/bin/myhome and make it
executable, enter the following:

 $ touch $HOME/bin/myhome

 $ chmod 755 $HOME/bin/myhome

b. Here's what the script myhome might look like:

 #!/bin/bash

 # myhome

 read -p "What street did you grow up on? "

mystreet

 read -p "What town did you grow up in? " mytown

 echo "The street I grew up on was $mystreet and

the town was $mytown."

c. Run the script to check that it works. The following example
shows what the input and output for the script could look
like:

 $ myhome

 What street did you grow up on? Harrison

 What town did you grow up in? Princeton

 The street I grew up on was Harrison and the

town was Princeton.

4. To create the required script, do the following:

a. Using any text editor, create a script called $HOME/bin/myos
and make the script executable:

 $ touch $HOME/bin/myos

 $ chmod 755 $HOME/bin/myos

b. The script could contain the following:

 #!/bin/bash

 # myos

 read -p "What is your favorite operating system,

Mac, Windows or Linux? " opsys

 if [$opsys = Mac] ; then

 echo "Mac is nice, but not tough enough for

me."

 elif [$opsys = Windows] ; then

 echo "I used Windows once. What is that blue

screen for?"

 elif [$opsys = Linux] ; then

 echo "Great Choice!"

 else

 echo "Is $opsys an operating system?"

 fi

5. To create a script named $HOME/bin/animals that runs through the
words moose, cow, goose, and sow through a for loop and have
each of those words appended to the end of the line “I have a…,”
do the following:

a. Make the script executable:

 $ touch $HOME/bin/animals

 $ chmod 755 $HOME/bin/animals

b. The script could contain the following:

 #!/bin/bash

 # animals

 for ANIMALS in moose cow goose sow ; do

 echo "I have a $ANIMALS"

 done

c. When you run the script, the output should appear as follows:

 $ animals

 I have a moose

 I have a cow

 I have a goose

 I have a sow

Chapter 8: Learning System Administration
1. To enable Cockpit on your system, enter the following:

 # systemctl enable --now cockpit.socket

 Created symlink

/etc/systemd/system/sockets.target.wants/cockpit.socket

 → /usr/lib/systemd/system/cockpit.socket

2. To open the Cockpit interface in your web browser, enter the
hostname or IP address of the system holding your Cockpit
service, followed by port number 9090. For example, enter this
into the location box of your browser:

 https://host1.example.com:9090/

3. To find all of the files under the /var/spool directory that are
owned by users other than root and do a long listing of them,
enter the following. (I recommend becoming root to find files that
might be closed off to other users.)

 $ su -

 Password: *********

 # find /var/spool -not -user root -ls | less

4. To become root user and create an empty or plain-text file named
/mnt/test.txt, enter the following:

 $ su -

 Password: *********

 # touch /mnt/test.txt

 # ls -l /mnt/test.txt

 -rw-r--r--. 1 root root 0 Jan 9 21:51 /mnt/test.txt

5. To become root and edit the /etc/sudoers file to allow your
regular user account (for example, bill) to have full root privilege
via the sudo command, do the following:

 $ su -

 Password: *********

 # visudo

 o

 bill ALL=(ALL) ALL

 Esc ZZ

Because visudo opens the /etc/sudoers file in vi, the example
types o to open a line, and then it types in the line to allow bill to
have full root privilege. After the line is typed, press Esc to return
to command mode and type ZZ to write and quit.

6. To use the sudo command to create a file called /mnt/test2.txt
and verify that the file is there and owned by the root user, enter
the following:

 [bill]$ sudo touch /mnt/test2.txt

 We trust you have received the usual lecture from

the local System

 Administrator. It usually boils down to these three

things:

 #1) Respect the privacy of others.

 #2) Think before you type.

 #3) With great power comes great responsibility.

 [sudo] password for bill: *********

 [bill]$ ls -l /mnt/text2.txt

 -rw-r--r--. 1 root root 0 Jan 9 23:37

/mnt/text2.txt

7. Do the following to mount and unmount a USB drive and watch
the system journal during this process:

a. Run the journalctl -f command as root in a Terminal
window and watch the output from here for the next few
steps.

 # journalctl -f

 Jan 25 16:07:59 host2 kernel: usb 1-1.1: new

high-speed USB device

 number 16 using ehci-pci

 Jan 25 16:07:59 host2 kernel: usb 1-1.1: New USB

device found,

 idVendor=0ea0, idProduct=2168

 Jan 25 16:07:59 host2 kernel: usb 1-1.1: New USB

device strings:

 Mfr=1, Product=2, SerialNumber=3

 Jan 25 16:07:59 host2 kernel: usb 1-1.1:

Product: Flash Disk

 Jan 25 16:07:59 host2 kernel: usb 1-1.1:

Manufacturer: USB

 …

 Jan 25 16:08:01 host2 kernel: sd 18:0:0:0: [sdb]

Write Protect is off

 Jan 25 16:08:01 host2 kernel: sd 18:0:0:0: [sdb]

 Assuming drive cache: write through

 Jan 25 16:08:01 host2 kernel: sdb: sdb1

 Jan 25 16:08:01 host2 kernel: sd 18:0:0:0: [sdb]

 Attached SCSI removable disk

b. Plug in a USB storage drive that mounts a filesystem from
that drive automatically. If it does not, run the following
commands in a second terminal (as root) to create a mount
point directory and mount the device:

 $ mkdir /mnt/test

 $ mount /dev/sdb1 /mnt/test

 $ umount /dev/sdb1

8. To see what USB devices are connected to your computer, enter
the following:

 $ lsusb

9. To load the bttv module, list the modules that were loaded, and
unload it, enter the following:

 # modprobe -a bttv

 # lsmod | grep bttv

 ttv 167936 0

 tea575x 16384 1 bttv

 tveeprom 28672 1 bttv

 videobuf_dma_sg 24576 1 bttv

 videobuf_core 32768 2 videobuf_dma_sg,bttv

 v4l2_common 16384 1 bttv

 videodev 233472 3

tea575x,v4l2_common,bttv

 i2c_algo_bit 16384 1 bttv

Notice that other modules (v4l2_common, videodev, and others)
were loaded when you loaded bttv with modprobe -a.

10. Enter the following to remove the bttv module along with any
other modules that were loaded with it. Notice that they were all
gone after running modprobe -r.

 # modprobe -r bttv

 # lsmod | grep bttv

Chapter 9: Installing Linux
1. To install a Fedora system from Fedora Live media, follow the

instructions in the section “Installing Fedora from Live Media” in
Chapter 9. In general, those steps include the following:

a. Booting the Live media.

b. Selecting to install to the hard drive when the system boots
up.

c. Adding information from the summary page needed to
configure your system initially.

d. Rebooting your computer and removing the Live medium so
that the newly installed system boots from the hard drive.

2. To update the packages, after the Fedora Live media installation
is complete, do the following:

a. Reboot the computer and fill in the first boot questions as
prompted.

b. Using a wired or wireless connection, make sure that you
have a connection to the Internet. Refer to Chapter 14,
“Administering Networking,” if you have trouble getting your
networking connection to work properly. Open a shell as the
root user and type sudo dnf update.

c. When prompted, type y to accept the list of packages
displayed. The system begins downloading and installing the
packages.

3. To run the RHEL installation in text mode, do the following:

a. Boot the RHEL DVD.

b. When you see the boot menu, highlight one of the installation
boot entries and press Tab. Move the cursor right to the end
of the kernel line, and type the literal option text at the end
of that line. Press Enter to start the installer.

c. Try out the rest of the installation in text mode.

4. To set the disk partitioning as described in question 4 for a Red
Hat Enterprise Linux DVD installation, do the following:

4. NOTE
This procedure ultimately deletes all content on your hard
disk. If you just want to use this exercise to practice
partitioning, you can reboot your computer before starting the
actual installation process without harming your hard disk.
After you go forward and partition your disk, assume that all
data has been deleted.

a. On a computer that you can erase with at least 10GB of disk
space, insert a RHEL installation DVD, reboot, and begin
stepping through the installation screens.

b. When you get to the Installation Summary screen, select
Installation Destination.

c. From the Installation Destination screen, select the device to
use for the installation (probably sda if you have a single hard
disk that you can completely erase or vda for a virtual install).

d. Select the Custom button.

e. Select Done to get to the Manual Partitioning screen.

f. If the existing disk space is already consumed, you need to
delete the partitions before proceeding.

g. Click the plus (+) button at the bottom of the screen. Then
add each of the following mount points:

/boot - 400M

/ - 3G

/var - 2G

/home -2G

h. Select Done. You should see a summary of changes.

i. If the changes look acceptable, select Accept Changes. If you
are just practicing and don't actually want to change your

partitions, select Cancel & Return to Custom Partitioning.
Then simply exit the installer.

Chapter 10: Getting and Managing Software
1. To search the YUM repository for the package that provides the

mogrify command, enter the following:

 # yum provides mogrify

2. To display information about the package that provides the
mogrify command and determine what is that package's home
page (URL), enter the following:

 # yum info ImageMagick

You will see that the URL to the home page for ImageMagick is
http://www.imagemagick.org.

3. To install the package containing the mogrify command, enter the
following:

 # yum install ImageMagick

4. To list all of the documentation files contained in the package that
provides the mogrify command, enter the following:

 # rpm -qd ImageMagick

 …

 /usr/share/doc/ImageMagick/README.txt

 …

 /usr/share/man/man1/identify.1.gz

 /usr/share/man/man1/import.1.gz

 /usr/share/man/man1/mogrify.1.gz

5. To look through the change log of the package that provides the
mogrify command, enter the following:

 # rpm -q --changelog ImageMagick | less

6. To delete the mogrify command from your system and verify its
package against the RPM database to see that the command is
indeed missing, enter the following:

 # type mogrify

 mogrify is /usr/bin/mogrify

http://www.imagemagick.org

 # rm /usr/bin/mogrify

 rm remove regular file '/usr/bin/mogrify'? y

 # rpm -V ImageMagick

 missing /usr/bin/mogrify

7. To reinstall the package that provides the mogrify command and
make sure that the entire package is intact again, enter the
following:

 # yum reinstall ImageMagick

 # rpm -V ImageMagick

8. To download the package that provides the mogrify command to
your current directory, enter the following:

 # yum download ImageMagick

 ImageMagick-6.9.10.28-1.fc30.x86_64.rpm

9. To display general information about the package that you just
downloaded by querying the package's RPM file in the current
directory, enter the following:

 # rpm -qip ImageMagick-6.9.10.28-1.fc30.x86_64.rpm

 Name : ImageMagick

 Epoch : 1

 Version : 6.9.10.28

 Release : 1.fc30

 …

10. To remove the package containing the mogrify command from
your system, enter the following:

 # yum remove ImageMagick

Chapter 11: Managing User Accounts
For questions that involve adding and removing user accounts, you
can use the Users window, the User Manager window, or command-
line tools such as useradd and usermod. The point is to make sure that
you get the correct results shown in the answers that follow, not
necessarily to do it exactly in the same way that I did.

There are multiple ways that you can achieve the same results. The
answers here show how to complete the exercises from the command
line. (Become root user when you see a # prompt.)

1. To add a local user account to your Linux system that has a
username of jbaxter and a full name of John Baxter, which uses
/bin/sh as its default shell and is the next available UID (yours
may differ from the one shown here), enter the following. You can
use the grep command to check the new user account. Then set
the password for jbaxter to: My1N1te0ut!

 # useradd -c "John Baxter" -s /bin/sh jbaxter

 # grep jbaxter /etc/passwd

 jbaxter:x:1001:1001:John

Baxter:/home/jbaxter:/bin/sh

 # passwd jbaxter

 Changing password for user jbaxter

 New password: My1N1te0ut!

 Retype new password: My1N1te0ut!

 passwd: all authentication tokens updated

successfully

2. To create a group account named testing that uses group ID 315,
enter the following:

 # groupadd -g 315 testing

 # grep testing /etc/group

 testing:x:315:

3. To add jbaxter to the testing group and the bin group, enter the
following:

 # usermod -aG testing,bin jbaxter

 # grep jbaxter /etc/group

 bin:x:1:bin,daemon,jbaxter

 jbaxter:x:1001:

 testing:x:315:jbaxter

4. To become jbaxter and temporarily have the testing group be
jbaxter's default group, run touch /home/jbaxter/file.txt so that
the testing group is assigned as the file's group, and do the
following:

 $ su - jbaxter

 Password: My1N1te0ut!

 sh-4.2$ newgrp testing

 sh-4.2$ touch /home/jbaxter/file.txt

 sh-4.2$ ls -l /home/baxter/file.txt

 -rw-rw-r--. 1 jbaxter testing 0 Jan 25 06:42

/home/jbaxter/file.txt

 sh-4.2$ exit ; exit

5. Note what user ID has been assigned to jbaxter, and then delete
the user account without deleting the home directory assigned to
jbaxter.

 $ userdel jbaxter

6. Use the following command to find any files in the /home directory
(and any subdirectories) that are assigned to the user ID that
recently belonged to the user named jbaxter. (When I did it, the
UID/GID were both 1001; yours may differ.) Notice that the
username jbaxter is no longer assigned on the system, so any files
that user created are listed as belonging to UID 1001 and GID
1001, except for a couple of files that were assigned to the testing
group because of the newgrp command run earlier:

 # find /home -uid 1001 -ls

 262184 4 drwx------ 4 1001 1001 4096 Jan 25 08:00

/home/jbaxter

 262193 4 -rw-r--r-- 1 1001 1001 176 Jan 27 2011

/home/jbaxter/.bash_profile

 262196 4 -rw------- 1 13602 testing 93 Jan 25 08:00

/home/jbaxter/.bash_history

 262194 0 -rw-rw-r-- 1 13602 testing 0 Jan 25 07:59

/home/jbaxter/file.txt

 …

7. Run these commands to copy the /etc/services file to the
/etc/skel/ directory; then add a new user to the system named
mjones, with a full name of Mary Jones and a home directory of
/home/maryjones. List her home directory to make sure that the
services file is there.

 # cp /etc/services /etc/skel/

 # useradd -d /home/maryjones -c "Mary Jones" mjones

 # ls -l /home/maryjones

 total 628

 -rw-r--r--. 1 mjones mjones 640999 Jan 25 06:27

services

8. Run the following command to find all files under the /home
directory that belong to mjones. If you did the exercises in order,
notice that after you deleted the user with the highest user ID and
group ID, those numbers were assigned to mjones. As a result, any
files left on the system by jbaxter now belong to mjones. (For this
reason, you should remove or change ownership of files left
behind when you delete a user.)

 # find /home -user mjones -ls

 262184 4 drwx------ 4 mjones mjones 4096 Jan 25

08:00 /home/jbaxter

 262193 4 -rw-r--r-- 1 mjones mjones 176 Jan 27 2011

/home/jbaxter/.bash_profile

 262189 4 -rw-r--r-- 1 mjones mjones 18 Jan 27 2011

/home/jbaxter/.bash_logout

 262194 0 -rw-rw-r-- 1 mjones testing 0 Jan 25 07:59

/home/jbaxter/file.txt

 262188 4 -rw-r--r-- 1 mjones mjones 124 Jan 27 2011

/home/jbaxter/.bashrc

 262197 4 drwx------ 4 mjones mjones 4096 Jan 25

08:27 /home/maryjones

 262207 4 -rw-r--r-- 1 mjones mjones 176 Jan 27 2011

/home/maryjones/.bash_profile

 262202 4 -rw-r--r-- 1 mjones mjones 18 Jan 27 2011

/home/maryjones/.bash_logout

 262206 628 -rw-r--r-- 1 mjones mjones 640999 Jan 25

08:27 /home/maryjones/services

 262201 4 -rw-r--r-- 1 mjones mjones 124 Jan 27 2011

/home/maryjones/.bashrc

9. As the user mjones, you can use the following to create a file called

/tmp/maryfile.txt, and use ACLs to assign the bin user read/write
permission and the lp group read/write permission to that file.

 [mjones]$ touch /tmp/maryfile.txt

 [mjones]$ setfacl -m u:bin:rw /tmp/maryfile.txt

 [mjones]$ setfacl -m g:lp:rw /tmp/maryfile.txt

 [mjones]$ getfacl /tmp/maryfile.txt

 # file: tmp/maryfile.txt

 # owner: mjones

 # group: mjones

 user::rw-

 user:bin:rw-

 group::rw-

 group:lp:rw-

 mask::rw-

 other::r& —

10. Run this set of commands (as mjones) to create a directory named
/tmp/mydir, and use ACLs to assign default permissions to it so
that the adm user has read/write/execute permission to that
directory and any files or directories created in it. Test that it
worked by creating the /tmp/mydir/testing/ directory and
/tmp/mydir/newfile.txt.

 [mary]$ mkdir /tmp/mydir

 [mary]$ setfacl -m d:u:adm:rwx /tmp/mydir

 [mjones]$ getfacl /tmp/mydir

 # file: tmp/mydir

 # owner: mjones

 # group: mjones

 user::rwx

 group::rwx

 other::r-x

 default:user::rwx

 default:user:adm:rwx

 default:group::rwx

 default:mask::rwx

 default:other::r-x

 [mjones]$ mkdir /tmp/mydir/testing

 [mjones]$ touch /tmp/mydir/newfile.txt

 [mjones]$ getfacl /tmp/mydir/testing/

 # file: tmp/mydir/testing/

 # owner: mjones

 # group: mjones

 user::rwx

 user:adm:rwx

 group::rwx

 mask::rwx

 other::r-x

 default:user::rwx

 default:user:adm:rwx

 default:group::rwx

 default:mask::rwx

 default:other::r-x

 [mjones]$ getfacl /tmp/mydir/newfile.txt

 # file: tmp/mydir/newfile.txt

 # owner: mjones

 # group: mjones

 user::rw-

 user:adm:rwx #effective:rw-

 group::rwx #effective:rw-

 mask::rw-

 other::r--

Notice that the adm user effectively has only rw- permission. To
remedy that, you need to expand the permissions of the mask.
One way to do that is with the chmod command, as follows:

 [mjones]$ chmod 775 /tmp/mydir/newfile.txt

 [mjones]$ getfacl /tmp/mydir/newfile.txt

 # file: tmp/mydir/newfile.txt

 # owner: mjones

 # group: mjones

 user::rwx

 user:adm:rwx

 group::rwx

 mask::rwx

 other::r-x

Chapter 12: Managing Disks and Filesystems
1. To determine the device name of a USB flash drive that you want

to insert into your computer, enter the following and insert the
USB flash drive. (Press Ctrl+C after you have seen the appropriate
messages.)

 # journalctl -f

 kernel: [sdb] 15667200 512-byte logical blocks:

 (8.02 GB/7.47 GiB)

 Feb 11 21:55:59 cnegus kernel: sd 7:0:0:0:

 [sdb] Write Protect is off

 Feb 11 21:55:59 cnegus kernel: [sdb] Assuming

 drive cache: write through

 Feb 11 21:55:59 cnegus kernel: [sdb] Assuming

 drive cache: write through

2. To list partitions on the USB flash drive on a RHEL 6 system,
enter the following:

 # fdisk -c -u -l /dev/sdb

To list partitions on a RHEL 7, RHEL 8, or Fedora system, enter
the following:

 # fdisk -l /dev/sdb

3. To delete partitions on the USB flash drive, assuming device
/dev/sdb, do the following:

 # fdisk /dev/sdb

 Command (m for help): d

 Partition number (1-6): 6

 Command (m for help): d

 Partition number (1-5): 5

 Command (m for help): d

 Partition number (1-5): 4

 Command (m for help): d

 Partition number (1-4): 3

 Command (m for help): d

 Partition number (1-4): 2

 Command (m for help): d

 Selected partition 1

 Command (m for help): w

 # partprobe /dev/sdb

4. To add a 100MB Linux partition, 200MB swap partition, and
500MB LVM partition to the USB flash drive, enter the following:

 # fdisk /dev/sdb

 Command (m for help): n

 Command action

 e extended

 p primary partition (1-4)

 p

 Partition number (1-4): 1

 First sector (2048-15667199, default 2048): <ENTER>

 Last sector, +sectors or +size{K,M,G} (default

15667199): +100M

 Command (m for help): n

 Command action

 e extended

 p primary partition (1-4)

 p

 Partition number (1-4): 2

 First sector (616448-8342527, default 616448):

<ENTER>

 Last sector, +sectors or +size{K,M,G} (default

15667199): +200M

 Command (m for help): n

 Command action

 e extended

 p primary partition (1-4)

 p

 Partition number (1-4): 3

 First sector (616448-15667199, default 616448):

<ENTER>

 Using default value 616448

 Last sector, +sectors or +size{K,M,G} (default

15667199): +500M

 Command (m for help): t

 Partition number (1-4): 2

 Hex code (type L to list codes): 82

 Changed system type of partition 2 to 82 (Linux swap

/ Solaris)

 Command (m for help): t

 Partition number (1-4): 3

 Hex code (type L to list codes): 8e

 Changed system type of partition 3 to 8e (Linux LVM)

 Command (m for help): w

 # partprobe /dev/sdb

 # grep sdb /proc/partitions

 8 16 7833600 sdb

 8 17 102400 sdb1

 8 18 204800 sdb2

 8 19 512000 sdb3

5. To put an ext4 filesystem on the Linux partition, enter the
following:

 # mkfs -t ext4 /dev/sdb1

6. To create a mount point called /mnt/mypart and mount the Linux
partition on it, do the following:

 # mkdir /mnt/mypart

 # mount -t ext4 /dev/sdb1 /mnt/mypart

7. To enable the swap partition and turn it on so that additional
swap space is immediately available, enter the following:

 # mkswap /dev/sdb2

 # swapon /dev/sdb2

8. To create a volume group called abc from the LVM partition,
create a 200MB logical volume from that group called data, create
a VFAT filesystem on it, temporarily mount the logical volume on
a new directory named /mnt/test, and then check that it was
successfully mounted, enter the following:

 # pvcreate /dev/sdb3

 # vgcreate abc /dev/sdb3

 # lvcreate -n data -L 200M abc

 # mkfs -t vfat /dev/mapper/abc-data

 # mkdir /mnt/test

 # mount /dev/mapper/abc-data /mnt/test

9. To grow the logical volume from 200MB to 300MB, enter the
following:

 # lvextend -L +100M /dev/mapper/abc-data

 # resize2fs -p /dev/mapper/abc-data

10. To remove the USB flash drive safely from the computer, do the

following:

 # umount /dev/sdb1

 # swapoff /dev/sdb2

 # umount /mnt/test

 # lvremove /dev/mapper/abc-data

 # vgremove abc

 # pvremove /dev/sdb3

You can now safely remove the USB flash drive from the
computer.

Chapter 13: Understanding Server
Administration

1. To log in to any account on another computer using the ssh
command, enter the following and then enter the password when
prompted:

 $ ssh joe@localhost

 joe@localhost's password:

 [joe]$

2. To display the contents of a remote /etc/system-release file and
have its contents displayed on the local system using remote
execution with the ssh command, do the following:

 $ ssh joe@localhost "cat /etc/system-release"

 joe@localhost's password: *******

 Fedora release 30 (Thirty)

3. To use X11 forwarding to display a gedit window on your local
system and then save a file on the remote home directory, do the
following:

 $ ssh -X joe@localhost "gedit newfile"

 joe@localhost's password: ********

 $ ssh joe@localhost "cat newfile"

 joe@localhost's password: ********

 This is text from the file I saved in joe's remote

home directory

4. To copy all of the files from the /usr/share/selinux directory
recursively on a remote system to the /tmp directory on your local
system in such a way that all of the modification times on the files
are updated to the time on the local system when they are copied,
do the following:

 $ scp -r joe@localhost:/usr/share/selinux /tmp

 joe@localhost's password:

 irc.pp.bz2 100% 9673

9.5KB/s 00:00

 dcc.pp.bz2 100% 15KB

15.2KB/s 00:01

 $ ls -l /tmp/selinux | head

 total 20

 drwxr-xr-x. 3 root root 4096 Apr 18 05:52 devel

 drwxr-xr-x. 2 root root 4096 Apr 18 05:52 packages

 drwxr-xr-x. 2 root root 12288 Apr 18 05:52 targeted

5. To copy all of the files from the /usr/share/logwatch directory
recursively on a remote system to the /tmp directory on your local
system in such a way that all of the modification times on the files
from the remote system are maintained on the local system, try
the following:

 $ rsync -av joe@localhost:/usr/share/logwatch /tmp

 joe@localhost's password: ********

 receiving incremental file list

 logwatch/

 logwatch/default.conf/

 logwatch/default.conf/logwatch.conf

 $ ls -l /tmp/logwatch | head

 total 16

 drwxr-xr-x. 5 root root 4096 Apr 19 2011

default.conf

 drwxr-xr-x. 4 root root 4096 Feb 28 2011 dist.conf

 drwxr-xr-x. 2 root root 4096 Apr 19 2011 lib

6. To create a public/private key pair to use for SSH
communications (no passphrase on the key), copy the public key
file to a remote user's account with ssh-copy-id, and use key-
based authentication to log in to that user account without having
to enter a password, use the following code:

 $ ssh-keygen

 Generating public/private rsa key pair.

 Enter file in which to save the key

(/home/joe/.ssh/id_rsa): ENTER

 /home/joe/.ssh/id_rsa already exists.

 Enter passphrase (empty for no passphrase): ENTER

 Enter same passphrase again: ENTER

 Your identification has been saved in

/home/joe/.ssh/id_rsa.

 Your public key has been saved in

/home/joe/.ssh/id_rsa.pub.

 The key fingerprint is:

 58:ab:c1:95:b6:10:7a:aa:7c:c5:ab:bd:f3:4f:89:1e

joe@cnegus.csb

 The key's randomart image is:

 …

 $ ssh-copy-id -i ~/.ssh/id_rsa.pub joe@localhost

 joe@localhost's password: ********

 Now try logging into the machine, with "ssh

'joe@localhost'",

 and check in:

 .ssh/authorized_keys

 to make sure we haven't added extra keys that you

weren't expecting.

 $ ssh joe@localhost

 $ cat .ssh/authorized_keys

 ssh-rsa

AAAAB3NzaC1yc2EAAAABIwAAAQEAyN2Psp5/LRUC9E8BDCx53yPUa0qoOPd

v6H4sF3vmn04V6E7D1iXpzwPzdo4rpvmR1ZiinHR2xGAEr2uZag7feKgLnww2KPcQ6S

iR7lzrOhQjV+SGb/a1dxrIeZqKMq1Tk07G4EvboIrq//9J47vI4l7iNu0xRmjI3TTxa

DdCTbpG6J3uSJm1BKzdUtwb413x35W2bRgMI75aIdeBsDgQBBiOdu+zuTMrXJj2viCA

XeJ7gIwRvBaMQdOSvSdlkX353tmIjmJheWdgCccM/1jKdoELpaevg9anCe/yUP3so31

 tTo4I+qTfzAQD5+66oqW0LgMkWVvfZI7dUz3WUPmcMw==

chris@abc.example.com

7. To create an entry in /etc/rsyslog.conf that stores all
authentication messages at the info level and higher into a file
named /var/log/myauth, do the following. Watch from one
terminal as the data comes in.

 # vim /etc/rsyslog.conf

 authpriv.info

/var/log/myauth

 # service rsyslog restart

 or

 # systemctl restart rsyslog.service

 <Terminal 1> <Terminal

2>

 # tail -f /var/log/myauth $ ssh

joe@localhost

 Apr 18 06:19:34 abc unix_chkpwd[30631]

joe@localhost's password:

 Apr 18 06:19:34 abc sshd[30631] Permission

denied,try again

 :pam_unix(sshd:auth):

 authentication failure;logname= uid=501

 euid=501 tty=ssh ruser= rhost=localhost

 user=joe

 Apr 18 06:19:34 abc sshd[30631]:

 Failed password for joe from

 127.0.0.1 port 5564 ssh2

8. To determine the largest directory structures under /usr/share,
sort them from largest to smallest, and list the top 10 of those
directories in terms of size using the du command, enter the
following:

 $ du -s /usr/share/* | sort -rn | head

 527800 /usr/share/locale

 277108 /usr/share/fonts

 196232 /usr/share/help

 134984 /usr/share/backgrounds

 …

9. To show the space that is used and available from all of the
filesystems currently attached to the local system, but exclude any
tmpfs or devtmpfs filesystems by using the df command, enter the
following:

 $ df -h -x tmpfs -x devtmpfs

 Filesystem Size Used Avail Use% Mounted on

 /deev/sda4 20G 4.2G 16G 22% /

10. To find any files in the /usr directory that are more than 10MB in
size, do the following:

 $ find /usr -size +10M

 /usr/lib/locale/locale-archive

 /usr/lib/jvm/java-1.8.0-openjdk-1.8.0.212.b04-

0.fc30.x86_64/jre/lib/rt.jar

 /usr/libexec/cni/dhcp

 /usr/libexec/gdb

 /usr/libexec/gcc/x86_64-redhat-linux/9/lto1

 /usr/libexec/gcc/x86_64-redhat-linux/9/cc1

Chapter 14: Administering Networking
1. To use the desktop to check that NetworkManager has

successfully started your network interface (wired or wireless), do
the following:

a. Left-click the upper-right corner of your GNOME desktop to
see the drop-down menu. Any active wired or wireless
network connections should appear on that menu.

b. If it has not connected to the network, select from the list of
wired or wireless networks available, and then enter the
username and password, if prompted, to start an active
connection.

2. To run a command to check the active network interfaces
available on your computer, enter the following:

 $ ifconfig

or

 $ ip addr show

3. Try to contact google.com from the command line in a way that
ensures that DNS is working properly:

 $ ping google.com

 Ctrl-C

4. To run a command to check the routes being used to
communicate outside of your local network, enter the following:

 $ route

5. To trace the route being taken to connect to google.com, use the
traceroute command:

 $ traceroute google.com

6. To view the network interfaces and related network activities for
your Linux system through Cockpit, open a web browser to port

9090 using an IP address or hostname. For example:
https://localhost:9090/network.

7. To create a host entry that allows you to communicate with your
local host system using the name myownhost, edit the /etc/hosts
file (vi /etc/hosts), and add myownhost to the end of the localhost
entry so that it appears as follows (then ping myownhost to see if it
worked):

 127.0.0.1 localhost.localdomain localhost

myownhost

 # ping myownhost

 Ctrl+C

8. To see the DNS name servers being used to resolve hostnames
and IP addresses on your system (yours will be different than
those shown below), enter the following:

cat /etc/resolv.conf

 nameserver 10.83.14.9

 nameserver 10.18.2.10

 nameserver 192.168.1.254

 # dig google.com

 …

 google.com. 91941 IN NS

ns3.google.com.

 ;; Query time: 0 msec

 ;; SERVER: 10.18.2.9#53(10.18.2.9)

 ;; WHEN: Sat Nov 23 20:18:56 EST 2019

 ;; MSG SIZE rcvd: 276

9. To create a custom route that directs traffic destined for the
192.168.99.0/255.255.255.0 network to some IP address on your
local network, such as 192.168.0.5 (first ensuring that the
192.168.99 network is not being used at your location), do the
following:

a. Determine the name of your network interface, for example
enp4s0. In that case, as root run the following commands:

 # cd /etc/sysconfig/network-scripts

 # vi route-enp4s0

b. Add the following lines to that file:

 ADDRESS0=192.168.99.0

 NETMASK0=255.255.255.0

 GATEWAY0=192.168.0.5

c. Restart networking and run route to see that the route is
active:

 # systemctl restart NetworkManager

 # route -n

 Kernel IP routing table

 Destination Gateway Genmask Flags

Metric Ref Use Iface

 192.168.0.1 0.0.0.0 255.255.255.0 U

600 0 0 enp4s0

 192.168.99.0 192.168.0.5 255.255.255.0 UG

600 0 0 enp4s0

10. To check to see if your system has been configured to allow IPv4
packets to be routed between network interfaces on your system,
enter the following:

 # cat /proc/sys/net/ipv4/ip_forward

 0

A 0 shows that IPv4 packet forwarding is disabled; a 1 shows that
it is enabled.

Chapter 15: Starting and Stopping Services
1. To determine which initialization daemon your server is currently

using, consider the following:

a. In most cases today, PID 1 appears as the systemd daemon:

 # ps -ef | head

 UID PID PPID C STIME TTY TIME

CMD

 root 1 0 0 17:01 ? 00:00:04

/usr/lib/systemd/systemd --

 switched-root --system --deserialize 18

If you type ps -ef and PID 1 is init, it still might be the
systemd daemon. Use the strings command to see if systemd
is in use:

 # strings /sbin/init | grep -i systemd

 systemd.unit=

 systemd.log_target=

 systemd.log_level=

 …

b. Most likely, you have the Upstart, SysVinit, or BSD init
daemon if your init daemon is not systemd. But double-check
at http://wikipedia.org/wiki/Init.

2. The tools you use to manage services depend primarily on which
initialization system is in use. Try to run the systemctl and
service commands to determine the type of initialization script in
use for the ssh service on your system:

a. For systemd, a positive result, shown here, means that the
sshd has been converted to systemd:

 # systemctl status sshd.service

 sshd.service - OpenSSH server daemon

 Loaded: loaded

(/lib/systemd/system/sshd.service; enabled)

 Active: active (running) since Mon, 20 Apr

2020 12:35:20…

http://wikipedia.org/wiki/Init

b. If you don't see positive results for the preceding test, try the
following command for the SysVinit init daemon. A positive
result here, along with negative results for the preceding
tests, means that sshd is still using the SysVinit daemon.

 # service ssh status

 sshd (pid 2390) is running…

3. To determine your server’ previous and current runlevel, use the
runlevel command. It still works on all init daemons:

 $ runlevel

 N 3

4. To change the default runlevel or target unit on your Linux server,
you can do one of the following (depending upon your server's
init daemon):

a. For SysVinit, edit the file /etc/inittab and change the # in
the line id:#:initdefault: to 2, 3, 4, or 5.

b. For systemd, change the default.target to the desired
runlevel#.target, where # is 2, 3, 4, or 5. The following shows
you how to change the target unit to runlevel3.target.

 # systemctl set-default runlevel3.target

 Removed /etc/systemd/system/default.target.

 Created symlink

/etc/systemd/system/default.target →

 /usr/lib/systemd/system/multi-user.target.

5. To list out services running (or active) on your server, you need to
use different commands, depending upon the initialization
daemon you are using.

a. For SysVinit, use the service command as shown in this
example:

 # service --status-all | grep running | sort

 anacron (pid 2162) is running…

 atd (pid 2172) is running…

b. For systemd, use the systemctl command, as follows:

 # systemctl list-unit-files --type=service |

grep -v disabled

 UNIT FILE

STATE

 abrt-ccpp.service

enabled

 abrt-oops.service

enabled

 …

6. To list out the running (or active) services on your Linux server,
use the appropriate command(s) determined in answer 5 for the
initialization daemon that your server is using.

7. For each initialization daemon, the following command(s) show a
particular service's current status:

a. For SysVinit, the service service:name status command is
used.

b. For systemd, the systemctl status service:name command is
used.

8. To show the status of the cups daemon on your Linux server, use
the following:

a. For the SysVinit:

 # service cups status

 cupsd (pid 8236) is running…

b. For systemd:

 # systemctl status cups.service

 cups.service - CUPS Printing Service

 Loaded: loaded

(/lib/systemd/system/cups.service; enabled)

 Active: active (running) since Tue, 05 May 2020

04:43:5…

 Main PID: 17003 (cupsd)

 CGroup: name=systemd:/system/cups.service

 17003 /usr/sbin/cupsd -f

9. To attempt to restart the cups daemon on your Linux server, use
the following:

a. For SysVinit:

 # service cups restart

 Stopping cups: [OK]

b. For systemd:

 # systemctl restart cups.service

10. To attempt to reload the cups daemon on your Linux server, use
the following:

a. For SysVinit:

 # service cups reload

 Reloading cups: [OK]

b. For systemd, this is a trick question. You cannot reload the
cups daemon on a systemd Linux server!

 # systemctl reload cups.service

 Failed to issue method call: Job type reload is

 not applicable for unit cups.service.

Chapter 16: Configuring a Print Server
For questions that involve working with printers, you can use either
graphical or command-line tools in most cases. The point is to make
sure that you get the correct results, shown in the answers that follow.
The answers here include a mix of graphical and command-line ways
of solving the exercises. (Become root user when you see a # prompt.)

1. To use the Print Settings window to add a new printer called
myprinter to your system (generic PostScript printer, connected to
a port), do the following from Fedora 30:

a. Install the system-config-printer package:

 # dnf install system-config-printer

b. From the GNOME 3 desktop, select Print Settings from the
Activities screen.

c. Unlock the interface and enter the root password.

d. Select the Add button.

e. Select a USB or other port as the device and click Forward.

f. For the driver, choose Generic and click Forward; then
choose PostScript and click Forward.

g. Click Forward to skip any installable options, if needed.

h. For the printer name, call it myprinter, give it any description
and location you like, and click Apply.

i. Click Cancel in order not to print a test page. The printer
should appear in the Print Settings window.

2. To use the lpstat -t command to see the status of all of your
printers, enter the following:

 # lpstat -t

 deskjet-5550 accepting requests since Mon 02 Mar

2020 07:30:03 PM EST

3. To use the lpr command to print the /etc/hosts file, enter the

following:

 $ lp /etc/hosts -P myprinter

4. To check the print queue for that printer, enter the following:

 # lpq -P myprinter

 myprinter is not ready

 Rank Owner Job File(s) Total

Size

 1st root 655 hosts 1024

bytes

5. To remove the print job from the queue (cancel it), enter the
following.

 # lprm -P myprinter

6. To use the printing window to set the basic server setting that
publishes your printers so that other systems on your local
network can print to your printers, do the following:

a. On a GNOME 3 desktop, from the Activities screen, type
Print Settings and press Enter.

b. Select Server ➪ Settings and type the root password if
prompted.

c. Click the check box next to “Publish shared printers
connected to this system” and click OK.

7. To allow remote administration of your system from a web
browser, follow these steps:

a. On a GNOME 3 desktop, from the Activities screen, type
Print Settings, and press Enter.

b. Select Server ➪ Settings and type the root password if
prompted.

c. Click the check box next to “Allow remote administration”
and click OK.

8. To demonstrate that you can do remote administration of your
system from a web browser on another system, do the following:

a. In the location box from a browser window from another
computer on your network, enter the following, replacing
hostname with the name or IP address of the system running
your print service: http://hostname:631.

b. Type root as the user and the root password, when prompted.
The CUPS home page should appear from that system.

9. To use the netstat command to see on which addresses the cupsd
daemon is listening, enter the following:

 # netstat -tupln | grep 631

 tcp 0 0 0.0.0.0:631 0.0.0.0:* LISTEN

6492/cupsd

 tcp6 0 0 :::631 :::* LISTEN

6492/cupsd

10. To delete the myprinter printer entry from your system, do the
following:

a. Click the Unlock button and type the root password when
prompted.

b. From the Print Settings window, right-click the myprinter
icon and select Delete.

c. When prompted, select Delete again.

Chapter 17: Configuring a Web Server
1. To install all of the packages associated with the Web Server

group on a Fedora system, do the following:

 # yum groupinstall "Web Server"

2. To create a file called index.html in the directory assigned to
DocumentRoot in the main Apache configuration file (with the
words “My Own Web Server” inside), do the following:

a. Determine the location of DocumentRoot:

 # grep ^DocumentRoot /etc/httpd/conf/httpd.conf

 DocumentRoot "/var/www/html"

b. Echo the words “My Own Web Server” into the index.html
file located in DocumentRoot:

 # echo "My Own Web Server">

/var/www/html/index.html

3. To start the Apache web server and set it to start up automatically
at boot time, then check that it is available from a web browser on
your local host, do the following. (You should see the words “My
Own Web Server” displayed if it is working properly.)

The httpd service is started and enabled differently on different
Linux systems. In recent Fedora 30 or RHEL 7 or 8, enter the
following:

 # systemctl start httpd.service

 # systemctl enable httpd.service

In RHEL 6 or earlier, enter the following:

 # service httpd start

 # chkconfig httpd on

4. To use the netstat command to see on which ports the httpd
server is listening, enter the following:

 # netstat -tupln | grep httpd

 tcp6 0 0 :::80 :::* LISTEN

2496/httpd

 tcp6 0 0 :::443 :::* LISTEN

2496/httpd

5. Try to connect to your Apache web server from a web browser that
is outside of the local system. If it fails, correct any problems that
you encounter by investigating the firewall, SELinux, and other
security features.

If you don't have DNS set up yet, use the IP address of the server
to view your Apache server from a remote web browser, such as
http://192.168.0.1. If you are not able to connect, retry
connecting to the server from your browser after performing
each of the following steps on the system running the Apache
server:

 # iptables -F

 # setenforce 0

 # chmod 644 /var/www/html/index.html

The iptables -F command flushes the firewall rules temporarily.
If connecting to the web server succeeds after that, you need to
add new firewall rules to open tcp ports 80 and 443 on the
server. On a system using the firewalld service, do this by
clicking the check box next to those ports on the Firewall
window. For systems running the iptables service, add the
following rules before the last DROP or REJECT rule.

 -A INPUT -m state --state NEW -m tcp -p tcp --dport

80 -j ACCEPT

 -A INPUT -m state --state NEW -m tcp -p tcp --dport

443 -j ACCEPT

The setenforce 0 command puts SELinux in permissive mode
temporarily. If connecting to the web server succeeds after that,
you need to correct SELinux file context and/or Boolean issues
(probably file context in this case). The following should work:

 # chcon --reference=/var/www/html

/var/www/html/index.html

If the chmod command works, it means that the Apache user and
group did not have read permission to the file. You should be
able to leave the new permissions as they are.

6. To use the openssl or similar command to create your own private
RSA key and self-signed SSL certificate, do the following:

 # yum install openssl

 # cd /etc/pki/tls/private

 # openssl genrsa -out server.key 1024

 # chmod 600 server.key

 # cd /etc/pki/tls/certs

 # openssl req -new -x509 -nodes -sha1 -days 365 \

 -key /etc/pki/tls/private/server.key \

 -out server.crt

 Country Name (2 letter code) [AU]: US

 State or Province Name (full name) [Some-State]: NJ

 Locality Name (eg, city) []: Princeton

 Organization Name (eg, company) [Internet Widgits

Pty

 Ltd]:TEST USE ONLY

 Organizational Unit Name (eg, section) []:TEST USE

ONLY

 Common Name (eg, YOUR name) []:secure.example.org

 Email Address []:dom@example.org

You should now have a /etc/pki/tls/private/server.key key file
and a /etc/pki/tls/certs/server.crt certificate file.

7. To configure your Apache web server to use your key and self-
signed certificate to serve secure (HTTPS) content, do the
following:

a. Edit the /etc/httpd/conf.d/ssl.conf file to change the key
and certificate locations to use the ones that you just created:

 SSLCertificateFile /etc/pki/tls/certs/server.crt

 SSLCertificateKeyFile

/etc/pki/tls/private/server.key

b. Restart the httpd service:

 # systemctl restart httpd.service

8. To use a web browser to create an HTTPS connection to your web

server and view the contents of the certificate that you created, do
the following:

From the system running the Apache server, type
https://localhost in the browser's location box. You should see
a message that reads, “This Connection is Untrusted.” To
complete the connection, do the following:

a. Click I Understand the Risks.

b. Click Add Exception.

c. Click Get Certificate.

d. Click Confirm Security Exception.

9. To create a file named /etc/httpd/conf.d/example.org.conf,
which turns on name-based virtual hosting and creates a virtual
host that (1) listens on port 80 on all interfaces, (2) has a server
administrator of joe@example.org, (3) has a server name of
joe.example.org, (4) has a DocumentRoot of
/var/www/html/joe.example.org, and (5) has a DirectoryIndex that
includes at least index.html and then create an index.html file in
DocumentRoot that contains the words “Welcome to the House of
Joe” inside, do the following.

Create an example.org.conf file that looks like the following:

 NameVirtualHost *:80

 <VirtualHost *:80>

 ServerAdmin joe@

 example.org

 ServerName joe.

 example.org

 ServerAlias web.example.org

 DocumentRoot /var/www/html/joe.example.org/

 DirectoryIndex index.html

 </VirtualHost>

This is how you could create the text to go into the index.html
file:

 # echo "Welcome to the House of Joe"> \

 /var/www/html/joe.example.org/index.html

10. To add the text joe.example.org to the end of the localhost entry
in your /etc/hosts file on the machine that is running the web
server, and check it by typing http://joe.example.org into the
location box of your web browser to see “Welcome to the House of
Joe” when the page is displayed, do the following:

a. Reload the httpd.conf file modified in the previous exercise
in one of two ways:

 # apachectl graceful

 # systemctl restart httpd

b. Edit the /etc/hosts file with any text editor, so the local host
line appears as follows:

 127.0.0.1 localhost.localdomain localhost

joe.example.org

c. From a browser on the local system where httpd is running,
you should be able to type http://joe.example.org into the
location box to access the Apache web server using name-
based authentication.

Chapter 18: Configuring an FTP Server

CAUTION
Don't do the tasks described here on a working, public FTP server,
because these tasks will interfere with its operations. (You could,
however, use these tasks to set up a new FTP server.)

1. To determine which package provides the Very Secure FTP
Daemon service, enter the following as root:

 # yum search "Very Secure FTP"

 …

 ================ N/S Matched: Very Secure FTP

============

 vsftpd.i686 : Very Secure Ftp Daemon

The search found the vsftpd package.

2. To install the Very Secure FTP Daemon package on your system
and search for the configuration files in the vsftpd package, enter
the following:

 # yum install vsftpd

 # rpm -qc vsftpd | less

3. To enable anonymous FTP and disable local user login for the
Very Secure FTP Daemon service, set the following in the
/etc/vsftpd/vsftpd.conf file:

 anonymous_enable=YES

 write_enable=YES

 anon_upload_enable=YES

 local_enable=NO

4. To start the Very Secure FTP Daemon service and set it to start
when the system boots, enter the following on a current Fedora or
Red Hat Enterprise Linux system:

 # systemctl start vsftpd.service

 # systemctl enable vsftpd.service

On a Red Hat Enterprise Linux 6 system, enter the following:

 # service vsftpd start

 # chkconfig vsftpd on

5. On the system running your FTP server, enter the following to
create a file named test in the anonymous FTP directory that
contains the words “Welcome to your vsftpd server”:

 # echo "Welcome to your vsftpd server">

/var/ftp/test

6. To open the test file from the anonymous FTP home directory
using a web browser on the system running your FTP server, do
the following.

Open a web browser, enter the following in the location box, and
press Enter:

 ftp://localhost/test

The text “Welcome to your vsftpd server” should appear in the
browser window.

7. To access the test file in the anonymous FTP home directory, do
the following. (If you cannot access the file, check that your
firewall, SELinux, and TCP wrappers are configured to allow
access to that file, as described here.)

a. Enter the following into the location box of a browser on a
system on your network that can reach the FTP server
(replace host with your system's fully qualified hostname or
IP address):

 ftp://host/test

If you cannot see the welcome message in your browser
window, check what may be preventing access. To turn off
your firewall temporarily (flush your iptables rules), enter
the following command as the root user from a shell on your
FTP server system and then try to access the site again:

 # iptables -F

b. To disable SELinux temporarily, enter the following and then

try to access the site again:

 # setenforce 0

After you have determined what is causing the file on your FTP
server to be unavailable, go back to the section “Securing Your
FTP Server” in Chapter 18, and go through the steps to determine
what might be blocking access to your file. These are the likely
possibilities:

a. For iptables, make sure that there is a rule opening TCP port
21 on the server.

b. For SELinux, make sure that the file context is set to
public_content_t.

8. To configure your vsftpd server to allow file uploads by
anonymous users to a directory named in, do the following as root
on your FTP server:

a. Create the in directory as follows:

 # mkdir /var/ftp/in

 # chown ftp:ftp /var/ftp/in

 # chmod 777 /var/ftp/in

b. For a recent Fedora or RHEL, open the Firewall
Configuration window and check the FTP box under services
to open access to your FTP service. For earlier RHEL and
Fedora systems, configure your iptables firewall to allow new
requests on TCP port 21 by adding the following rule at some
point before a final DROP or REJECT rule in your
/etc/sysconfig/iptables file:

 -A INPUT -m state --state NEW -m tcp -p tcp --

dport 21 -j ACCEPT

c. Configure your iptables firewall to do connection tracking by
loading the appropriate module to the
/etc/sysconfig/iptables-config file:

 IPTABLES_MODULES="nf_conntrack_ftp"

d. For SELinux to allow uploading to the directory, first set file
contexts properly:

 # semanage fcontext -a -t public_content_rw_t

"/var/ftp/in(/.*)?"

 # restorecon -F -R -v /var/ftp/in

e. Next, set the SELinux Boolean to allow uploading:

 # setsebool -P allow_ftpd_anon_write on

f. Restart the vsftpd service (service vsftpd restart or
systemctl restart vsftpd.service).

9. To install the lftp FTP client (if you don't have a second Linux
system, install lftp on the same host running the FTP server).
Optionally, try to upload the /etc/hosts file to the in directory on
the server, to make sure it is accessible. Run the following
commands as the root user:

 # yum install lftp

 # lftp localhost

 lftp localhost:/> cd in

 lftp localhost:/in> put /etc/hosts

 89 bytes transferred

 lftp localhost:/in> quit

You won't be able to see that you copied the hosts file to the
incoming directory. However, enter the following from a shell on
the host running the FTP server to make sure that the hosts file is
there:

 # ls /var/ftp/in/hosts

If you cannot upload the file, troubleshoot the problem as
described in Exercise 7, recheck your vsftpd.conf settings, and
review the ownership and permissions on the /var/ftp/in
directory.

10. Using any FTP client you choose, visit the /pub/debian-meetings
directory on the ftp://ftp.gnome.org site and list the contents of
that directory. Here's how to do that with the lftp client:

 # lftp ftp://ftp.gnome.org/pub/debian-meetings/

 cd ok, cwd=/pub/debian-meetings

 lftp ftp.gnome.org:/pub/debian-meetings>> ls

 drwxr-xr-x 3 ftp ftp 3 Jan 13

2014 2004

 drwxr-xr-x 6 ftp ftp 6 Jan 13

2014 2005

 drwxr-xr-x 8 ftp ftp 8 Dec 20

2006 2006

 …

Chapter 19: Configuring a Windows File
Sharing (Samba) Server

1. To install the samba and samba-client packages, enter the
following as root from a shell on the local system:

 # yum install samba samba-client

2. To start and enable the smb and nmb services, enter the following as
root from a shell on the local system:

 # systemctl enable smb.service

 # systemctl start smb.service

 # systemctl enable nmb.service

 # systemctl start nmb.service

or

 # chkconfig smb on

 # service smb start

 # chkconfig nmb on

 # service nmb start

3. To set the Samba server's workgroup to TESTGROUP, the NetBIOS
name to MYTEST, and the server string to Samba Test System, as
root user in a text editor, open the /etc/samba/smb.conf file, and
change three lines so that they appear as follows:

 workgroup = TESTGROUP

 netbios name = MYTEST

 server string = Samba Test System

4. To add a Linux user named phil to your system, and add a Linux
password and Samba password for phil, enter the following as
root user from a shell. (Be sure to remember the passwords you
set.)

 # useradd phil

 # passwd phil

 New password: *******

 Retype new password: *******

 # smbpasswd -a phil

 New SMB password: *******

 Retype new SMB password: *******

 Added user phil.

5. To set the [homes] section so that home directories are browseable
(yes) and writeable (yes), and that phil is the only valid user,
open the /etc/samba/smb.conf file as root, and change the [homes]
section so that it appears as follows:

 [homes]

 comment = Home Directories

 browseable = Yes

 read only = No

 valid users = phil

6. To set SELinux Booleans that are necessary to make it so that phil
can access his home directory via a Samba client, enter the
following as root from a shell, and restart the smb and nmb services:

 # setsebool -P samba_enable_home_dirs on

 # systemctl restart smb

 # systemctl restart nmb

7. From the local system, use the smbclient command to list that the
homes share is available.

 # smbclient -L localhost

 Enter TESTGROUP\root's password: <ENTER>

 Anonymous login successful

 Sharename Type Comment

 --------- ---- -------

 homes Disk Home Directories

 …

8. To connect to the homes share from a Nautilus (file manager)
window on the Samba server's local system for the user phil in a
way that allows you to drag and drop files to that folder, do the
following:

a. Open the Nautilus window (select the files icon).

b. In the left pane, select Other Locations and then click in the
Connect to Server box.

c. Type the Server address. For example,
smb://localhost/phil/.

d. When prompted, select Registered User, type phil as the
username, enter the domain (TESTGROUP), and enter phil's
password.

e. Open another Nautilus window and drop a file to phil's
homes folder.

9. To open up the firewall so that anyone who has access to the
server can access the Samba service (smbd and nmbd daemons), you
can simply open the Firewall Configuration window and check the
samba and samba-client check boxes (for both Runtime and
Permanent). If your system is running basic iptables (and not the
firewalld service), change the /etc/sysconfig/iptables file so
that the firewall appears like the following (the rules you add
being those in bold):

 *filter

 :INPUT ACCEPT [0:0]

 :FORWARD ACCEPT [0:0]

 :OUTPUT ACCEPT [0:0]

 -A INPUT -m state --state ESTABLISHED,RELATED -j

ACCEPT

 -A INPUT -p icmp -j ACCEPT

 -A INPUT -i lo -j ACCEPT

 -I INPUT -m state --state NEW -m udp -p udp --dport

137 -j ACCEPT

 -I INPUT -m state --state NEW -m udp -p udp --dport

138 -j ACCEPT

 -I INPUT -m state --state NEW -m tcp -p tcp --dport

139 -j ACCEPT

 -I INPUT -m state --state NEW -m tcp -p tcp --dport

445 -j ACCEPT

 -A INPUT -j REJECT --reject-with icmp-host-

prohibited

 -A FORWARD -j REJECT --reject-with icmp-host-

prohibited

 COMMIT

Then enter the following for the firewall rules to be reloaded:

 # service iptables restart

10. To open the homes share again as the user phil from another
system on your network (Windows or Linux), and make sure that
you can drag and drop fles to it, do the following:

a. This step is really just repeating the Nautilus example
described previously or accessing a Windows File Explorer
window and opening the share (by selecting Network, then
the Samba server). The trick is to make sure that the service
has been made available through the Linux server security
features.

b. If you cannot access the Samba share, try disabling your
firewall and then disabling SELinux. If the share is accessible
when you turn off either of those services, go back and debug
the problems with the service that is not working:

 # setenforce 0

 # service iptables stop

c. When you have fixed the problem, set SELinux back to
Enforcing mode and restart iptables:

 # setenforce 1

 # service iptables start

Chapter 20: Configuring an NFS File Server
1. To install the packages needed to configure the NFS service on

your chosen Linux system, enter the following as root user at a
shell (Fedora or RHEL):

 # yum install nfs-utils

2. To list the documentation files that come in the package that
provides the NFS server software, enter the following:

 # rpm -qd nfs-utils

 /usr/share/doc/nfs-utils-1.2.5/ChangeLog

 …

 /usr/share/man/man5/exports.5.gz

 /usr/share/man/man5/nfs.5.gz

 /usr/share/man/man5/nfsmount.conf.5.gz

 /usr/share/man/man7/nfsd.7.gz

 /usr/share/man/man8/blkmapd.8.gz

 /usr/share/man/man8/exportfs.8.gz

 …

3. To start and enable the NFS service, enter the following as root
user on the NFS server:

 # systemctl start nfs-server.service

 # systemctl enable nfs-server.service

4. To check the status of the NFS service that you just started on the
NFS server, enter the following as root user:

 # systemctl status nfs-server.service

5. To share a directory /var/mystuff from your NFS server as
available to everyone, read-only, and with the root user on the
client having root access to the share, first create the mount
directory as follows:

 # mkdir /var/mystuff

Then create an entry in the /etc/exports file that is similar to the
following:

 /var/mystuff *(ro,no_root_squash,insecure)

To make the share available, enter the following:

 # exportfs -v -a

 exporting *:/var/mystuff

6. To make sure that the share you created is accessible to all hosts,
first check that rpcbind is not blocked by TCP wrappers by adding
the following entry to the beginning of the /etc/hosts.allow file:

 rpcbind: ALL

a. To open the firewall in systems that use firewalld (RHEL 8
and recent Fedora systems), install the firewall-config
package. Then run firewall-config. From the Firewall
Configuration window that appears, make sure that nfs and
rpc-bind are checked to On for the Permanent firewall
settings.

b. To open the ports needed to allow clients to reach NFS
through the iptables firewall (RHEL 6 and earlier Fedora
systems without firewalld), you need to open at least TCP
and UDP ports 111 (rpcbind), 20048 (mountd), and 2049 (nfs)
by adding the following rules to the /etc/sysconfig/iptables
file and starting the iptables service:

 -A INPUT -m state --state NEW -m tcp -p tcp --

dport 111 -j ACCEPT

 -A INPUT -m state --state NEW -m udp -p udp --

dport 111 -j ACCEPT

 -A INPUT -m state --state NEW -m tcp -p tcp --

dport 2049 -j ACCEPT

 -A INPUT -m state --state NEW -m udp -p udp --

dport 2049 -j ACCEPT

 -A INPUT -m state --state NEW -m tcp -p tcp --

dport 20048 -j ACCEPT

 -A INPUT -m state --state NEW -m udp -p udp --

dport 20048 -j ACCEPT

SELinux should be able to share NFS filesystems while in
enforcing mode without any changes to file contexts or Booleans.
To make sure that the share you created can be shared read-only,

run the following command as root user on the NFS server:

 # setsebool -P nfs_export_all_ro on

7. To view the shares available from the NFS server, assuming that
the NFS server is named nfsserver, enter the following from the
NFS client:

 # showmount -e nfsserver

 Export list for nfsserver:

 /var/mystuff *

8. To create a directory called /var/remote and temporarily mount
the /var/mystuff directory from the NFS server (named nfsserver
in this example) on that mount point, enter the following as root
user from the NFS client:

 # mkdir /var/remote

 # mount -t nfs nfsserver:/var/mystuff /var/remote

9. To add an entry so that the same mount is done automatically
when you reboot, first unmount /var/remote as follows:

 # umount /var/remote

Then add an entry like the following to the /etc/fstab on the
client system:

 /var/remote nfsserver:/var/mystuff nfs bg,ro 0 0

To test that the share is configured properly, enter the following
on the NFS client as the root user:

 # mount -a

 # mount -t nfs4

 nfsserver:/var/mystuff on /var/remote type nfs4

 (ro,vers=4,rsize=524288…

10. To copy some files to the /var/mystuff directory, enter the
following on the NFS server:

 # cp /etc/hosts /etc/services /var/mystuff

From the NFS client, to make sure that you can see the files just

added to that directory, and to make sure that you can't write
files to that directory from the client, enter the following:

 # ls /var/remote

 hosts services

 # touch /var/remote/file1

 touch: cannot touch '/var/remote/file1': Read-only

file system

Chapter 21: Troubleshooting Linux
1. To go into Setup mode from the BIOS screen on your computer,

do the following:

a. Reboot your computer.

b. Within a few seconds, you should see the BIOS screen, with
an indication of which function key to press to go into Setup
mode. (On my Dell workstation, it's the F2 function key.)

c. The BIOS screen should appear. (If the system starts booting
Linux, you didn't press the function key fast enough.)

2. From the BIOS setup screen, do the following to determine
whether your computer is 32-bit or 64-bit, whether it includes
virtualization support, and whether your network interface card is
capable of PXE booting.

Your experience may be a bit different from mine, depending on
your computer and Linux system. The BIOS setup screen is
different for different computers. In general, however, you can
use arrow keys and tab keys to move between different columns,
and press Enter to select an entry.

a. On my Dell workstation, under the System heading, I
highlight Processor Info to see that mine is a 64-bit
Technology computer. Look in the Processor Info section, or
a similar, section on your computer, to see the type of
processor that you have.

b. On my Dell workstation, under the Onboard Devices heading,
I highlight Integrated NIC and press Enter. The Integrated
NIC screen that appears to the right lets me choose to enable
or disable the NIC (On or Off) or enable with PXE or RPL (if I
intend to boot the computer over the network).

3. To interrupt the boot process to get to the GRUB boot loader, do
the following:

a. Reboot the computer.

b. Just after the BIOS screen disappears, when you see the
countdown to booting the Linux system, press any key
(perhaps the spacebar).

c. The GRUB boot loader menu should appear, ready to allow
you to select which operating system kernel to boot.

4. To boot up your computer to runlevel 1 so that you can do some
system maintenance, get to the GRUB boot screen (as described
in the previous exercise), and then do the following:

a. Use the arrow keys to highlight the operating system and
kernel that you want to boot.

b. Type e to see the entries needed to boot the operating system.

c. Move your cursor to the line that included the kernel. (It
should include the word vmlinuz somewhere on the line.)

d. Move the cursor to the end of that line, add a space, and then
type init=bash.

e. Follow the instructions to boot the new entry. You will
probably either press Ctrl+X or press Enter; if there is
another screen, type b. If it worked, your system should
bypass the login prompt and boot up directly to a root user
shell where you can do administrative tasks without
providing a password.

5. To look at the messages that were produced in the kernel ring
buffer (which shows the activity of the kernel as it booted up),
enter the following from the shell after the system finishes
booting:

 # dmesg | less

6. Or, on a system using systemd, enter the following:

 # journalctl -k

7. To run a trial yum update from Fedora or RHEL and exclude any
kernel package that is available, enter the following (when
prompted, type N to not actually go through with the update, if

updates are available):

 # yum update --exclude='kernel*'

8. To check to see what processes are listening for incoming
connections on your system, enter the following:

 # netstat -tupln | less

9. To check to see what ports are open on your external network
interface, do the following.

If possible, run the nmap command from another Linux system on
your network, replacing yourhost with the hostname or IP
address of your system:

 # nmap yourhost

10. To clear your system's page cache and watch the effect it has on
your memory usage, do the following:

a. Select Terminal from an application menu on your desktop
(it is located on different menus for different systems).

b. Run the top command (to watch processes currently running
on your system), and then type a capital M to sort processes by
those consuming the most memory.

c. From the Terminal window, select File and Open Terminal to
open a second Terminal window.

d. From the second Terminal window, become root user (su -).

e. While watching the Mem line (used column) in the first
Terminal window, enter the following from the second
Terminal window:

 # echo 3> /proc/sys/vm/drop_caches

f. The used RES memory should go down significantly on the Mem
line. The numbers in the RES column for each process should
go down as well.

11. To view memory and swap usage from Cockpit through your web

browser, open your browser to Cockpit for your host
(https://hostname:9090). Then select System ➪ Memory & Swap.

Chapter 22: Understanding Basic Linux
Security

1. To check log messages from the systemd journal for the
NetworkManager.service, sshd.service, and auditd.service
services, enter the following:

 # journalctl -u NetworkManager.service

 …

 # journalctl -u sshd.service

 …

 # journalctl -u auditd.service

 …

2. User passwords are stored in the /etc/shadow file. To see its
permissions, type ls -l /etc/shadow at the command line. (If no
shadow file exits, then you need to run pwconv.)

The following are the appropriate settings:

 # ls -l /etc/shadow

----------. 1 root root 1049 Feb 10 09:45 /etc/shadow

3. To determine your account's password aging and whether it will
expire using a single command, type chage -l user_name. For
example:

 # chage -l chris

4. To start auditing writes to the /etc/shadow with the auditd
daemon, enter the following at the command line:

 # auditctl -w /etc/shadow -p w

To check your audit settings, type in auditctl -l at the command
line.

5. To create a report from the auditd daemon on the /etc/shadow
file, enter ausearch -f /etc/shadow at the command line. To turn
off the auditing on that file, enter auditctl -W /etc/shadow -p w
at the command line.

6. To install the lemon package, damage the /usr/bin/lemon file,
verify that the file has been tampered with, and remove the lemon
package, enter the following:

 # yum install -y lemon

 # cp /etc/services /usr/bin/lemon

 # rpm -V lemon

 S.5….T. /usr/bin/lemon

 # yum erase lemon

From the original lemon file, the file size (S), the md4sum (5),
and the modification times (T) all differ. For Ubuntu, install the
package with apt-get install lemon and enter debsums lemon to
check it.

7. If you suspect that you have had a malicious attack on your
system today and important binary files have been modified, you
can find these modified files by entering the following at the
command line: find directory -mtime -1 for the directories, /bin,
/sbin, /usr/bin, and /usr/sbin.

8. To install and run chkrootkit to see if the malicious attack from
the exercise above installed a rootkit, choose your distribution
and do the following:

a. To install on a Fedora or RHEL distribution, enter yum
install chkrootkit at the command line.

b. To install on an Ubuntu or Debian-based distribution, enter
sudo apt-get install chkrootkit at the command line.

c. To run the check, enter chkrootkit at the command line and
review the results.

9. To find files anywhere in the system with the SUID or SGID
permission set, enter find / -perm /6000 -ls at the command
line.

10. To install the aide package, run the aide command to initialize the
aide database, copy the database to the correct location, and run
the aide command to check whether any important files on your
system have been modified, enter the following.

 # yum install aide

 # aide -i

 # cp /var/lib/aide/aide.db.new.gz

/var/lib/aide/aide.db.gz

 # aide -C

To make the output more interesting, you could install the lemon
package (described in an earlier exercise) before you run aide -
i, and modify it before running aide -C to see how a modified
binary looks from aide.

Chapter 23: Understanding Advanced Linux
Security
To do the first few exercises, you must have the gnupg2 package
installed. This is not installed by default in Ubuntu, although it is
installed for the latest Fedora and RHEL releases.

1. To encrypt a file using the gpg2 utility and a symmetric key, enter
the following command. (The gpg2 utility asks for a passphrase to
protect the symmetric key.)

 $ gpg2 -c filename

2. To generate a key pair using the gpg2 utility, enter the following:

 $ gpg2 --gen-key

You must provide the following information:

a. Your real name and email address

b. A passphrase for the private key

3. To list out the keys you generated, enter the following:

 $ gpg2 --list-keys

4. To encrypt a file and add your digital signature using the gpg2
utility, do the following:

a. You must have first generated a key ring (Exercise 2).

b. After you have generated the key ring, enter

 $ gpg2 --output EncryptedSignedFile --sign

FiletoEncryptSign

5. From the getfedora.org page, select one of the Fedora
distributions to download. When the download is complete, select
Verify your Download to see instructions for verifying your image.
For example, download the appropriate CHECKSUM file for your
image, then enter the following:

 $ curl https://getfedora.org/static/fedora.gpg | gpg

--import

 $ gpg --verify-files *-CHECKSUM

 $ sha256sum -c *-CHECKSUM

6. To determine if the su command on your Linux system is PAM-
aware, enter the following:

 $ ldd $(which su) | grep pam

 libpam.so.0 => /lib64/libpam.so.0

(0x00007fca14370000)

 ibpam_misc.so.0 => /lib64/libpam_misc.so.0

(0x00007fca1416c000

If the su command on your Linux system is PAM-aware, you
should see a PAM library name listed when you issue the ldd
command.

7. To determine if the su command has a PAM configuration file,
type the following:

 $ ls /etc/pam.d/su

 /etc/pam.d/su

If the file exists, type the following at the command line to
display its contents. The PAM contexts it uses include any of the
following: auth, account, password, or session.

 $ cat /etc/pam.d/su

8. To list out the various PAM modules on your Fedora or RHEL
system, enter the following:

 $ ls /usr/lib64/security/pam*.so

To list out the various PAM modules on your Ubuntu Linux
system, enter the following:

 # find / -name pam*.so

9. To find the PAM “other” configuration file on your system, enter
ls /etc/pam.d/other at the command line. An “other”
configuration file that enforces Implicit Deny should look similar
to the following code:

 $ cat /etc/pam.d/other

 #%PAM-1.0

 auth required pam_deny.so

 account required pam_deny.so

 password required pam_deny.so

 session required pam_deny.so

10. To find the PAM limits configuration file, enter the following:

 $ ls /etc/security/limits.conf

Display the file's contents by entering the following:

 $ cat /etc/security/limits.conf

Settings in this file to prevent a fork bomb look like the following:

@student hard nproc 50

@student - maxlogins 4

Chapter 24: Enhancing Linux Security with
SELinux

1. To set your system into the permissive mode for SELinux, enter
setenforce permissive at the command line. It would also be
acceptable to enter setenforce 0 at the command line.

2. To set your system into the enforcing operating mode for SELinux
without changing the SELinux primary configuration file, use
caution. It is best not to run this command on your system for an
exercise until you are ready for the SELinux to be enforced. Use
the following command at the command line: setenforce
enforcing. It would also be acceptable to enter setenforce 1 at the
command line.

3. To find and view the permanent SELinux policy type (set at boot
time), go to the main SELinux configuration file,
/etc/selinux/config. To view it, enter cat /etc/selinux/config |
grep SELINUX= at the command line. To be sure how it is currently
set, enter the getenforce command.

4. To list the /etc/hosts file security context and identify the
different security context attributes, enter ls -Z /etc/hosts at the
command line:

 $ ls -Z /etc/hosts

 -rw-r--r--. root root

system_u:object_r:net_conf_t:s0 /etc/hosts

a. The file's user context is system_u, indicating a system file.

b. The file's role is object_r, indicating an object in the file
system (a text file, in this case).

c. The file's type is net_conf_t, because the file is a network
configuration file.

d. The file's sensitivity level is s0, indicating the lowest security
level. (This number may be listed in a range of numbers from
s0-s3.)

e. The file's category level starts with a c and ends with a
number. It may be listed in a range of numbers, such as c0-
c102. This is not required except in highly secure
environments and is not set here.

5. To create a file called test.html and assign its type as
httpd_sys_content_t, enter the following:

 $ touch test.html

 $ chcon -t httpd_sys_content_t test.html

 $ ls -Z test.html

 -rw-rw-r--. chris chris

unconfined_u:object_r:httpd_sys_content_t:s0 test.html

6. To list the crond process's security context and identify the
different security context attributes, enter this at the command
line:

 $ ps -efZ | grep crond

 system_u:system_r:crond_t:s0-s0:c0.c1023 root 665 1

0

 Sep18 ? 00:00:00 /usr/sbin/crond -n

a. The process's user context is system_u, indicating a system
process.

b. The process's role is system_r, indicating a system role.

c. The process's type or domain is crond_t.

d. The process's sensitivity level starts s0-s0, indicating that it is
not highly sensitive. (It is secure by normal Linux standards,
however, because the process is run as the root user.)

e. The process's category level is c0.c1023, with the c0,
indicating that the category is also not highly secure from an
SELinux standpoint.

7. To create an /etc/test.txt file, change its file context to
user_tmp_t, restore it to its proper content (the default context for
the /etc directory), and remove the file, enter the following:

 # touch /etc/test.txt

 # ls -Z /etc/test.txt

 -rw-r--r--. root root unconfined_u:object_r:etc_t:s0

/etc/test.txt

 # chcon -t user_tmp_t /etc/test.txt

 # ls -Z /etc/test.txt

 -rw-r--r--. root root

unconfined_u:object_r:user_tmp_t:s0 /etc/test.txt

 # restorecon /etc/test.txt

 # ls -Z /etc/test.txt

 -rw-r--r--. root root unconfined_u:object_r:etc_t:s0

/etc/test.txt

 # rm /etc/test.txt

 rm: remove regular empty file `/etc/test.txt'? y

8. To determine what Booleans allow anonymous writes and access
to the tftp service's home directory, then turn those Booleans on
permanently, enter the following commands:

 # getsebool -a | grep tftp

 tftp_home_dir --> off

 tftpd_anon_write --> off

 …

 # setsebool -P tftp_home_dir=on

 # setsebool -P tftp_anon_write=on

 # getsebool tftp_home_dir tftp_anon_write

 tftp_home_dir --> on

 tftp_anon_write --> on

9. To list all SELinux policy modules on your system, along with
their version numbers, enter semodule –l.

9. NOTE
If you wrote ls
/etc/selinux/targeted/modules/active/modules/*.pp as your
answer, that is okay, but this command doesn't give you the
version numbers of the policy modules. Only semodule -l gives
the version numbers.

10. To tell SELinux to allow access to the sshd service through TCP
Port 54903, enter the following:

 # semanage port -a -t ssh_port_t -p tcp 54903

 # semanage port -l | grep ssh

 ssh_port_t tcp 54903, 22

Chapter 25: Securing Linux on a Network
1. To install the Network Mapper (aka nmap) utility on your local

Linux system:

a. On Fedora or RHEL, enter yum install nmap at the command
line.

b. On Ubuntu, nmap may come pre-installed. If not, enter sudo
apt-get install nmap at the command line.

2. To run a TCP Connect scan on your local loopback address, enter
nmap -sT 127.0.0.1 at the command line. The ports you have
running on your Linux server will vary. However, they may look
similar to the following:

 # nmap -sT 127.0.0.1

 …

 PORT STATE SERVICE

 25/tcp open smtp

 631/tcp open ipp

3. To run a UDP Connect scan on your Linux system from a remote
system:

a. Determine your Linux server's IP address by entering
ifconfig at the command line. The output will look similar to
the following, and your system's IP address follows inet
addr: in the ifconfig command's output.

 # ifconfig

 …

 p2p1 Link encap:Ethernet HWaddr

08:00:27:E5:89:5A

 inet addr:10.140.67.23

b. From a remote Linux system, enter the command nmap -sU
IP address at the command line, using the IP address you
obtained from above. For example:

 # nmap -sU 10.140.67.23

4. To check to see if your system is running the firewalld service,
and then install and start it if it is not:

a. Enter systemctl status firewalld.service.

b. If the firewalld service is not running, on a Fedora or RHEL
system, enter the following:

 # yum install firewalld firewall-config -y

 # systemctl start firewalld

 # systemctl enable firewalld

5. To open ports in your firewall to allow remote access to your local
web service, do the following:

a. Start the Firewall Configuration window (firewalld-config).

b. Make sure that Configuration: Runtime is selected.

c. Select your current zone (for example, FedoraWorkstation).

d. Under Services, select the http and https check boxes.

e. Select Configuration: Permanent.

f. Under Services, select the http and https check boxes.

6. To determine your Linux system's current netfilter/iptables
firewall policies and rules, enter iptables -vnL at the command
line.

7. To save, flush, and restore your Linux system's current firewall
rules:

a. To save your current rules:

 # iptables-save>/tmp/myiptables

b. To flush your current rules:

 # iptables -F

c. To restore the firewall's rules, enter:

 # iptables-restore < /tmp/myiptables

8. To set your Linux system's firewall filter table for the input chain

to a policy of DROP, enter iptables -P INPUT DROP at the command
line.

9. To change your Linux system firewall's filter table policy back to
accept for the input chain, enter the following:

 # iptables -P INPUT ACCEPT

To add a rule to drop all network packets from the IP address
10.140.67.23, enter the following:

 # iptables -A INPUT -s 10.140.67.23 -j DROP

10. To remove the rule that you just added, without flushing or
restoring your Linux system firewall's rules, enter iptables -D
INPUT 1 at the command line. This is assuming that the rule you
added above is rule 1. If not, change the 1 to the appropriate rule
number in your iptables command.

Chapter 26: Shifting to Clouds and Containers
1. To install and start either podman (for any RHEL or Fedora

system) or docker (RHEL 7):

 # yum install podman -y

 or

 # yum install docker -y

 # systemctl start docker

 # systemctl enable docker

2. To use either docker or podman to pull this image to your host,
registry.access.redhat.com/ubi7/ubi:

podman pull registry.access.redhat.com/ubi7/ubi

 or

docker pull registry.access.redhat.com/ubi7/ubi

3. To run the ubi7/ubi image to open a bash shell:

 # podman run -it ubi7/ubi bash

 or

 # docker run -it ubi7/ubi bash

4. To run commands to see the operating system on which the
container is based, install the proc-ps package, and run a
command to see the processes running inside the container:

 bash-4.4# cat /etc/os-release | grep ^NAME

 NAME="Red Hat Enterprise Linux"

 bash-4.4# yum install procps -y

 bash-4.4# ps -ef

 UID PID PPID C STIME TTY TIME CMD

 root 1 0 0 03:37 pts/0 00:00:00 bash

 root 20 1 0 03:43 pts/0 00:00:00 ps -

ef

 bash-4.4# exit

5. To restart and connect to the container that you just closed using
an interactive shell, enter the following:

 # podman ps -a

 CONTAINER ID IMAGE COMMAND CREATED

 STATUS PORTS NAMES

 eabf1fb57a3a …ubi8/ubi:latest bash 7 minutes

ago

 Exited (0) 4 seconds ago

compassionate_hawking

 # podman start -a eabf1fb57a3a

 bash-4.4# exit

6. To create a simple Dockerfile from a ubi7/ubi base image, include
a script named cworks.sh that echoes "The Container Works!",
and add that script to the image so that it runs, do the following:

a. Create and change to a new directory:

 # mkdir project

 # cd project

b. Create a file named Dockerfile with the following content:

 FROM registry.access.redhat.com/ubi7/ubi-minimal

 COPY ./cworks.sh /usr/local/bin/

 CMD ["/usr/local/bin/cworks.sh"]

c. Create a file named cworks.sh with the following content:

 #!/bin/bash

 set -o errexit

 set -o nounset

 set -o pipefail

 echo "The Container Works!"

7. Use docker or podman to build an image named containerworks
from the Dockerfile that you just created.

 # podman build -t myproject .

 or

 # docker build -t myproject .

8. To gain access to a container registry, either by installing the
docker-distribution package or getting an account on Quay.io or
Docker Hub:

 # yum install docker-distribution -y

 # systemctl start docker-distribution

 # systemctl enable docker-distribution

or get an account from Quay.io (https://quay.io/plans/) or

Docker Hub, then:

 # podman login quay.io

 Username: <username>

 Password: *********

9. To tag and push a new image to a chosen container registry:

 # podman tag aa0274872f23 \

 quay.io/<user>/<imagename>:v1.0

 # podman push \

 quay.io/<user>/<imagename>:v1.0

Chapter 27: Using Linux for Cloud Computing
1. To check your computer to see if it can support KVM

virtualization, enter the following:

 # cat /proc/cpuinfo | grep --color -E "vmx|svm|lm"

 flags : fpu vme de pse tsc msr pae mce cx8 apic sep

mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse

sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc

arch_perfmon pebs bts rep_good xtopology nonstop_tsc

aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx es…

 …

The CPU must support either vmx or svm. The lm indicates that it
is a 64-bit computer.

2. To install a Linux system along with the packages needed to use it
as a KVM host and, to run the Virtual Machine Manager
application, do the following:

a. Get a live or installation image from a Linux site (such as
getfedora.org), and burn it to a DVD (or otherwise make it
available to install).

b. Boot the installation image, and select to install it to a hard
drive.

c. For a Fedora Workstation, after the install is complete and
you have rebooted, install the following package (for different
Linux distributions, you might need to install a package that
provides libvirtd as well):

 # yum install virt-manager libvirt-daemon-

config-network

3. To make sure that the sshd and libvirtd services are running on
the system, enter the following:

 # systemctl start sshd.service

 # systemctl enable sshd.service

 # systemctl start libvirtd.service

 # systemctl enable libvirtd.service

4. Get a Linux installation ISO image that is compatible with your
hypervisor, and copy it to the default directory used by Virtual
Machine Manager to store images. For example, if the Fedora
Workstation DVD is in the current directory, you can enter the
following:

 # cp Fedora-Workstation-Live-x86_64-30-1.2.iso

/var/lib/libvirt/images/

5. To check the settings on the default network bridge (virbr0),
enter the following:

 # ip addr show virbr0

 4: virbr0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu

1500 qdisc

 noqueue state UP group default

 link/ether de:21:23:0e:2b:c1 brd

ff:ff:ff:ff:ff:ff

 inet 192.168.122.1/24 brd 192.168.122.255 scope

global virbr0

 valid_lft forever preferred_lft forever6.

6. To install a virtual machine using the ISO image you copied
earlier, do the following.

a. Enter this command:

 # virt-manager &

b. Select File and then select New Virtual Machine.

c. Select Local Install Media and click Forward.

d. Select Browse, choose the live or install ISO, click Choose
Volume, and click Forward.

e. Select memory and CPUs and click Forward.

f. Select the size of disk that you want to use and click Forward.

g. Select “Virtual network default: NAT” (it may already be
selected).

h. If it all looks okay, click Finish.

i. Follow the installation process indicated by the installation

ISO.

7. To make sure that you can log in to and use the virtual machine,
do the following:

a. Double-click the entry for the new virtual machine.

b. When the viewer window appears, log in as you would
normally.

8. To check that your virtual machine can connect to the Internet or
other network outside of the hypervisor, do one of the following:

a. Open a web browser, and try to connect to a website on the
Internet.

b. Open a Terminal window, enter ping redhat.com, and then
press Ctrl+C to exit.

9. To stop the virtual machine so that it is no longer running:

a. Right-click the entry for the VM in the virt-manager window.

b. Select Shut Down, and then select Shut Down again.

c. If the VM doesn't shut down immediately, you can select
Force Off instead, but that is like pulling the plug out and
risks data loss.

10. Start the virtual machine again so that it is running and available:

a. Right-click the entry for the VM in the virt-manager window.

b. Click Run.

Chapter 28: Deploying Linux to the Cloud
1. To install the genisoimage, cloud-init, qemu-img, and virt-viewer

packages, enter:

 # dnf install genisoimage cloud-init qemu-img virt-

viewer

2. To obtain a Fedora cloud image, go to
https://getfedora.org/en/cloud/download/, and download a
qcow2 image. There is one listed with OpenStack named Fedora-
Cloud-Base-31-1.9.x86_64.qcow2.

3. To create a snapshot of that image in qcow2 format called
myvm.qcow2, enter the following:

 # qemu-img create -f qcow2 \

-o backing_file=Fedora-Cloud-Base-31-1.9.x86_64.qcow2 \

myvm.qcow2

4. Create a cloud-init meta data file named meta-data that includes
the following content:

 instance-id: myvm

 local-hostname: myvm.example.com

5. Create a cloud-init user data file called user-data that includes
the following content:

 #cloud-config

 password: test

 chpasswd: {expire: False}

6. Run the genisoimage command to combine the meta-data and
user-data files to create a mydata.iso file:

 # genisoimage -output mydata.iso -volid cidata \

 -joliet-long -rock user-data meta-data

7. Use the virt-install command to combine the myvm.qcow2 virtual
machine image with the mydata.iso image to create a new virtual
machine image named newvm that runs as a virtual machine on

your hypervisor.

 # virt-install --import --name newvm \

 --ram 4096 --vcpus 2 \

 --disk path=myvm.qcow2,format=qcow2,bus=virtio \

 --disk path=mydata.iso,device=cdrom \

 --network network=default &

8. To open the newvm virtual machine with virt-viewer, enter the
following:

 # virt-viewer newvm

9. Log into the newvm virtual machine using the fedora user and
password test:

 Login: fedora

 Password: test

Chapter 29: Automating Apps and
Infrastructure with Ansible

1. To install the ansible package, do the following:

RHEL 8

 # subscription-manager repos \

 --enable ansible-2.9-for-rhel-8-x86_64-rpms

 # dnf install ansible -y

Fedora

 # dnf install ansible -y

Ubuntu

$ sudo apt update

$ sudo apt install software-properties-common

$ sudo apt-add-repository --yes --update ppa:ansible/ansible

$ sudo apt install ansible

2. To add sudo privileges for the user running Ansible commands,
run visudo and create an entry similar to the following (changing
joe to your user name):

 joe ALL=(ALL) NOPASSWD: ALL

3. Open a file named my_playbook.yaml, and add the following
content:

 - name: Create web server

 hosts: localhost

 tasks:

 - name: Install httpd

 yum:

 name: httpd

 state: present

4. To run the my_playbook.yaml playbook in check mode, do the
following. (It should fail because the user does not have privilege
to install a package.)

 $ ansible-playbook -C my_playbook.yaml

 …

 TASK [Install httpd]

 fatal: [localhost]: FAILED! => {"changed": false,

"msg": "This

 command has to be run under the root user.",

"results": []}

 …

5. Make the following changes to the my_playbook.yaml file:

 - name: Create web server

 hosts: localhost

 become: yes

 become_method: sudo

 become_user: root

 tasks:

 - name: Install httpd

 yum:

 name: httpd

 state: present

6. To run the my_playbook.yaml file again to install the httpd
package, enter the following:

 $ ansible-playbook my_playbook.yaml

 …

 TASK [Install httpd]

 changed: [localhost]

 PLAY RECAP

**

 localhost: ok=2 changed=1 unreachable=0 failed=0

skipped=0 rescued=0 ignored=0

7. Modify my_playbook.yaml as follows to start the httpd service, and
set it so that it will start every time the system boots:

 - name: Create web server

 hosts: localhost

 become: yes

 become_method: sudo

 become_user: root

 tasks:

 - name: Install httpd

 yum:

 name: httpd

 state: present

 - name: start httpd

 service:

 name: httpd

 state: started

8. To run an ansible command so that it checks whether or not the
httpd service is up on localhost, enter the following:

 $ ansible localhost -m service \

 -a "name=httpd state=started" --check

 localhost | SUCCESS => {

 "changed": false,

 "name": "httpd",

 "state": "started",

 "status": { …

9. To create an index.html file in the current directory that contains
the text "Web server is up" and runs the ansible command to
copy that file to the /var/www/html directory on localhost, do the
following (changing joe to your user name):

 $ echo "Web server is up"> index.html

 $ ansible localhost

 -m copy -a \

 "src=./index.html dest=/var/www/html/ \

 owner=apache group=apache mode=0644" \

 -b --user joe --become-user root --become-method

sudo

 host01 | CHANGED => { …

10. To use the curl command to view the contents of the file you just
copied to the web server, do the following:

 $ curl localhost

 Web server is up

Chapter 30: Deploying Applications as
Containers with Kubernetes

1. To gain access to a Minikube instance, either:

a. Install Minikube as described here:
https://kubernetes.io/docs/tasks/tools/install-minikube,

or

b. Access an available remote Minikube instance, such as
through the Kubernetes.io tutorials:
https://kubernetes.io/docs/tutorials/

2. To view the versions of your Minikube installation, kubectl client,
and Kubernetes service, enter the following:

$ minikube version

$ kubectl version

3. To create a deployment that manages a pod running the hello-
node container image, enter the following:

$ kubectl create deployment hello-node \

 --image=gcr.io/hello-minikube-zero-install/hello-node

4. To view the hello-node deployment and describe the deployment
in detail, enter the following:

 $ kubectl get deployment

 $ kubectl describe deployment hello-node

5. To view the current replica set associated with your hello-node
deployment, enter the following:

 $ kubectl get rs

6. To scale up the hello-node deployment to three (3) replicas, enter
the following:

 $ kubectl scale deployments/hello-node --replicas=3

7. To expose the hello-node deployment outside of the Kubernetes

cluster using LoadBalancer, enter the following:

 $ kubectl expose deployment hello-node \

 --type=LoadBalancer --port=8080

8. To get the IP address of your Minikube instance and port number
of the exposed hello-node service, enter the following:

 $ minikube ip

 192.168.39.150

 $ kubectl describe service hello-node | grep

NodePort

 NodePort: <unset> 31302/TCP

9. Use the curl command to query the hello-node service, using the
IP address and port number from the previous step. For example:

 $ curl 192.168.39.105:31302

 Hello World!

10. To delete the hello-node service and deployment and then stop
the Minikube virtual machine, enter the following:

 $ kubectl delete service hello-node

 $ kubectl delete deployment hello-node

 $ minikube stop

Index
((left parenthesis), 78

< (less than), 78

' (backtick), 80

? (question mark), 99

& (ampersand character), 78

; (semicolon), 78

) (right parenthesis), 78

| (pipe character), 78–79

; (semicolon), 79

{ } (curly braces), 101

~ (tilde) in commands, 97

shell prompt, 63

$ shell prompt, 63

> (greater than), 78

3D desktop effects, AIGLX, 54–57

A

absolute path, 96

ACLs (Access Control Lists)

directories, 267

enabling, 265–266

restricted deletion directory, 268–269

set GID directory, 267–268

setfacl command, 262–264

setting, 262–264

default, 264–265

AD (Active Directory), 712

ad-hoc commands, Ansible, 760–762

administrative commands

/bin directory, 179

/sbin, 178

/usr/bin directory, 179

/usr/sbin, 179

administrative privileges, 168

administrative utilities, 4–5

AIGLX (Accelerated Indirect GLX), 54–57

Alcatel-Lucent, 9

alias command, 81–83

aliases, 71

completion, 75

creating, 81–83

network interfaces, 360–361

using, 81–83

aliases file, 181

amanda, 566

Amazon EC2, cloud images, 744–746

ampersand character (&), 78

anaconda, Linux installation, 205

Anaconda installer, 17

anonymous FTP server, 456

Ansible, 749

ad-hoc commands, 760–762

applications, deployment, 749

containers, 749–750

deployment

prerequisites, 754

SSH keys, 754–755

host systems, configuring, 749

infrastructure, 749

installation

authentication, 757

inventories, 756–757

playbook creation, 757–758

playbook running, 758–760

inventories, 751–752

operators, 749–750

playbooks, 749

imports, 753

includes, 753

modules, 752–753

plays, 752

roles, 753

tasks, 752

Ansible Tower, 762–763

antivirus software, 591

Apache HTTPD web server, 427–428, 432–433

access denied error, 452

configuration files

default settings, 438–440

directives, 435–436, 435–438

httpd package, 428–431

index not found error, 452

installing, 431

security

file ownership, 433

file permissions, 433

firewalls, 433–434

SELinux and, 434–435

SSL/TLS and, 443–445

certificate signing request, 448–449

self-signed certificates, 447–448

SSL configuration, 445–447

SSL key generation, 447–448

troubleshooting

configuration errors, 449–451

errors, accessing, 451–452

user published content, 442–443

virtual hosts, 440–442

applets, GNOME, 51

application-layer firewalls, 674

applications

Ansible, 749–750

deploying as containers, 765–783

aptitude command, 226

arguments, commands, 67–68

arithmetic

expressions, expanding, 80

integer arithmetic, 152–153

shell scripts, 152–153

ASF (Apache Software Foundation), 428

ash shell, 61

AT&T, 8

audits, 595–596

network services, 663–665

nmap utility, 665–672

ports, 666

authentication, 4

cloud, 712

key-based, Secure Shell tools, 324–326

PAM

contexts, 619–620

control flags, 620–621

modules, 621–622

public key, 313

author rights, GPL and, 12
autofs

home directory automount, 518–520

/net directory, 517–518

automation, Ansible Tower and, 762–763

AWS (Amazon Web Services), 694

B

background commands, 79

background processes, 137–140

backtick ('), 80

backup script, 162

backup utilities, 566

base image, 696

container image, 694

bash shell, 61, 148

configuration files, 84

cut command, 159

grep, 159

prompt, characters, 86

sed command, 160

text manipulation, 159–161

tr command, 160

variables, untyped, 152–153

bashrc file, 181

Bell labs, 7–8

Bell-LaPadula Mandatory Access security model, 639

Berkeley distribution, 9–10

bigcommand process, 141

/bin directory, 94

BIOS (Basic Input Output System), 526–528

bond0 interface, 362

bonded network interfaces, 362

Booleans, SELinux, 653–654

/boot directory, 94

boot loaders

GRUB (GRand Unified Bootloader), 528–530

installation, 217–218

troubleshooting, 528–530

GRUB 2, 530–531

troubleshooting, 530–531

boot options

feature disable, 210

kickstarts, 211–212

mediacheck, 212

rescue mode, 212

special installation, 210–211

video problems, 210

boot order, troubleshooting, 527–528

boot up, 523–524

from firmware, 526–528

GRUB 2 boot loader, 530–531

GRUB boot loader, 528–530

kernel startup, 532–541

startup methods, 524

init facility, 524–525

systemd facility, 525

from USB drive, 791–792

bounties, software, 21

Bourne, Stephen, 61

Bourne shell, 61

brace expansion metacharacters, 101

browser-based admin tools, 173

BSD (Berkeley Software Distribution), 10, 12–13

FreeBSD, 13

init daemon, 371–377

NetBSD, 13

OpenBSD, 13

built-in commands, 71

C

C programming language, 9

Caesar Cipher, 602

case command, 156–157

cd command, 96–97

CDs/DVDs, burning, 792–795

Ceph, 5

certification, 21–22

RHCE (Red Hat Certified Engineer), 21, 22

topics, 23–25

RHCSA (Red Hat Certified System Administrator), 21, 22

topics, 22–23

cgroups, 143–144, 695

chage command, 72

chkconfig command, 385–386

chkrootkit, 592

chmod command, 100, 106–108, 162

chronyd package, 309

CIFS (Common Internet File System), 475–476

CISA (Cybersecurity and Infrastructure Security Agency), 596

classes

implicit, 404

printer classes, 404, 408

classification level, 639

cloning, cloud instances, 734–738

cloud, 3–4

hybrid, 731

hypervisors, 710, 713

configuring, 715–718

setup, 714

images

Amazon EC2, 744–746

OpenStack and, 739–744

instances, 730

cloning, 734–738

investigating, 733–734

networking, setup, 714

platforms, 712

private, 730

public, 730

storage, 711

configuring, 718–720

setup, 714

shared, 713

virtual machines, 713

creating, 720–724

cloud computing, 5

authentication, 712

configuration, 712

controllers, 711

deployment, 712

cloud-based installations, 204–205

cloud-init, 730

configuring, 731–733

enterprise computing, 738

running, 731–733

clustering, 5

cnegus-test-project, 739

Cockpit, 168, 169–171, 249–252

firewall rules, 677–678

storage management and, 301–303

command languages, shell and, 62

command-line

argument, 148, 150–151

completion, 75–76

editing, 73–75

network configuration, nmtui command, 354

NetworkManager TUI, editing connection, 354–355

recall, 76–78

commands, 418

' (backtick), 80

~ (tilde), 97

ad-hoc (Ansible), 760–762

administrative

/sbin, 178

/usr/sbin, 179

alias, 81–83

aliases, 71

aptitude, 226

arguments, 67–68

background, 79

built-in, 71

case, 156–157

cd, 96–97

chage, 72

chkconfig, 385–386

chmod, 100, 106–108, 162

completion, 75

connecting, 78–81

cp, 110

cryptsetup, 612

cut, 159

date, 66

df, 334

du, 334–335

expanding, 78, 80

exportfs, 507

files, 96–98

filesystem, 71

find, 122–128, 335–336

firewall-config, 674–675

functions, 71

gedit, 113–114

grep, 128–129

groupadd, 260–261

help, 88

here text, 100

history, 72–78

history, 72–78

id, 69

info, 89

information about, 88–90

journalctl, 184

kill, 140

killall, 140, 141–142

lftp, 470–472

locate, 72, 120–122

locating, 70–72

lp, 419

lprm, 419–420

lpstat, 419

ls, 67–68, 101–105

man, 89

mkfs, 300

mount, 297–298

mv, 109–110

nice, 142–143

nmtui, 354

one-command actions, 156

options, 67–68

path, 70

pipe (|)metacharacter, 78–79

podman, 694, 697

ps, 132–134

pwd, 67

renice, 142–143

reserved words, 71

rm, 110

rpm, 241–245

running, 66–72

sar, 332–333

secon, 648–649

sed, 160

sequential, 79

setfacl, 262–264

sftp, 324

ssh, 316

su, 168, 175–176

sudo, 168

syntax, 67–70

systemctl, 381

telinit, 374

text formatting, 79

top, 134–135

touch, 98–99

tr, 160

type, 71

umount, 299

useradd, 252–255

userdel, 258–259

usermod, 257–258

virsh, 711

virt-install, 720–721

virt-manager, 714

virt-viewer, 714

who am i, 65

yum, 229–232, 233–241

Compiz, 55

compliance reviews, 595–596

compute nodes, 710. See also cloud hypervisors

configuration

cloud, 712

hypervisors, 715–718

storage, 718–720

files, 310

administrative, 179–185

plain-text files, 179

security, 314

servers, 310–311

configuration files, 310

default configuration, 310–311

connecting commands, 78–81

connectionless protocols, UDP, 666

container registries, 694, 695–696

images

pushing to, 705–706

tagging, 705–706

containers, 693–694

Ansible, 749–750

in enterprise, 706

FTP, GitHub and, 703–705

images, 694

base image, 694, 696

building, 702–703

RPM packages and, 246

namespaces, 694, 695

pulling, 697–698

running FTP servers, 699–701

running shells, 698–699

sidecar, 766

starting/stopping, 701–702

control plane, 336

copying files, 110

interactive copying, 324

scp command, 321–324

copyrights, GPL and, 12

cp command, 110

cpio, 566

CPU (computer processing unit), 273

cracklib, 571

cron, software updates and, 545

crontab file, 182

cryptographic ciphers, 602–603

cryptography, 599–600

asymmetric keys, 604–605

block ciphers, 600

cipher keys, 603–608

ciphers, 600

decryption, 600

digital signatures, 608–610

email message encryption, 607–608

encryption/decryption

cipher keys, 603–608

ciphers, 602–603

digital signatures, 608–610

hashing, 600–601

implementing

directories, 613–615

encryption from desktop, 617–618

file encryption, 616

file integrity, 610–611

filesystem encryption, installation, 611–613

tools, 616–617

key pair generation, 605–606

public key sharing, 607

stream ciphers, 600

symmetric keys, 603–604

tar archive files, 604

tools, 617

cryptsetup command, 612

csh (C shell), 61, 65

csh.cshrc file, 182

CUPS (Common UNIX Printing System), 403–404

configuring

from a browser, 404

manual, 404, 417–418

printer drivers, 404

printers, adding automatically, 405–406

printing to from Windows, 405

remote printers, 413

server

configuring, 415–416

starting, 417

shared printers, 420–422

web-based administration, 406

automatic detection, 407–408

remote administration, 406–407

curly braces (), 101

cut command, 159

cutting text, 159

CVE (Common Vulnerabilities and Exposures), 580

D

DAC (Discretionary Access Control), 635–636

daemon processes, 5, 179, 307. See also services

apache, 185

avahi, 185

bin, 185

chrony, 185

configuration files, 311

lp, 185

news, 186

permissions and, 311

port numbers, 311

postfix, 185

rpc, 186

services, 369

dash shell, 61, 65

datasources, 738

date command, 66

DEB packaging, 225

Ubuntu Software Center, 225

Debian, 19

debugging, shell scripts, 148

dependencies, 369

dependent software, 224

deployment, automatic, 336

desktop. See also GNOME; GNOME 2; GNOME 3; X Window System

3D effects, AIGLX, 54–57

GNOME, 29, 30

GNOME 3, 31

KDE (K Desktop Environment), 29

LXDE (Lightweight X11 Desktop Environment), 29

window manager, 29

Xfce, 29

desktop networking

configuring, NetworkManager, 340–342

NetworkManager, 340–342

/dev directory, 94

df command, 334

DHCP, 340–341

digital signatures, 608–610

directories

/bin, 94

/boot, 94

/dev, 94

encrypting, 613–615

/etc, 94, 180

/etc/cron, 180

/etc/cups, 180, 405

/etc/default, 180

/etc/exports, 504, 505

/etc/httpd, 181

/etc/mail, 181

/etc/postfix, 181

/etc/ppp, 181

/etc/rc?.d, 181

/etc/security, 181

/etc/skel, 181

/etc/sysconfig, 181

/etc/systemd, 181

/etc/X11, 183

/etc/xinetd.d, 181

hard drive partitions, 216

hierarchy, 94

/home, 94

identifying, 104

/lib, 94

listing, 101–105

/media, 94

/misc, 94

/mnt, 94

number of characters, 103

/opt, 94

paths, 70

absolute path, 96

order, 71

/proc, 95

restricted deletion directory, 268–269

root, 93

/root, 95

/sbin, 95

/sys, 95

time and date column, 103

/tmp, 95

/usr, 95

/var, 95

disaster recovery, security, 566

disk images, mounting in loopback, 298–299

disk space, 197

disk storage, 273

distributions

components, 16

DEB packaging, 225

Debian, 19

Fedora, 18–19

GPL and, 12

Red Hat

Anaconda installer, 17

graphical administration, 17

RPM package management, 16–17

Red Hat OpenShift, 18

Red Hat OpenStack Platform, 18

RHEL (Red Hat Enterprise Linux), 17–18

RPM packaging, 225

Ubuntu, 19

DNF (Dandified YUM), 229

Docker, 697

docker command, 694, 697

docker daemon, 694

Docker Desktop, 768

Docker Hub, 696

Docker project, 694

drivers, printer drivers, 404

du command, 334–335

dual booting, 208–209

dumb terminals, 137

dump/restore, 566

DVD, installing Linux, 196

DVD drive, 197

E

echo statement, 148

ecryptfs, 613–615

emacs editor, 114

email, encrypting messages, 607–608

encryption/decryption

cipher keys

asymmetric keys, 604–605

email message encryption, 607–608

key pair generation, 605–606

public key sharing, 607

symmetric keys, 603–604

tar archive files, 604

ciphers, 602–603

digital signatures, 608–610

enterprise

cloud-init, 738

containers and, 706

installing Linux, 196

network configuration

Linux as DHCP server, 365

Linux as DNS server, 365–366

Linux as proxy server, 366

Linux as router, 364

Samba and, 497

server management, 336

software management, 245–246

user management, 261

ACLs (Access Control Lists), 262–269

permission setting, 262–269

enterprise networking, 340

environment variables, 81, 82–83

PATH, 70

shell, adding, 87

escaping shell characters, 149

/etc directory, 94

aliases file, 181

bashrc file, 181

crontab file, 182

csh.cshrc file, 182

exports file, 182

fstab file, 182

group file, 182

gshadow file, 182

host.conf file, 182

hostname file, 182

hosts file, 182

inittab file, 182

mtab file, 182

mtools.conf file, 182

named.conf file, 182

nsswitch.conf file, 182

ntp.conf file, 182

passwd file, 182

printcap file, 183

profile file, 183

protocols file, 183

rpc file, 183

rsyslog.conf file, 183

services file, 183

shadow file, 183

shells file, 183

sudoers file, 183

xinetd.conf file, 183

/etc/cron directory, 180

/etc/cups directory, 180, 405

/etc/default directory, 180

/etc/exports file

configuring, 504

hostnames, 505–506

nfsnobody, 506

options, 506

root user, 506

user mapping options, 506

/etc/fstab file, mountable file systems, 295–297

/etc/hostname file, 358

/etc/hosts file, 358

/etc/httpd directory, 181

/etc/mail directory, 181

/etc/nsswitch.conf file, 359–360

/etc/postfix directory, 181

/etc/ppp directory, 181

/etc/rc?.d directory, 181

/etc/rc.d/init.d directory, 375–376

/etc/resolv.conf file, 359

/etc/samba/smb.conf file

[global], 486–487

[homes], 486, 487–489

[printers], 486, 489–493

/etc/security directory, 181

/etc/services file, 663–664

/etc/skel directory, 181

/etc/sysconfig directory, 181

/etc/sysconfig/network file, 358

/etc/systemd directory, 181

/etc/X11 directory, 183

/etc/xinetd.d directory, 181

eth0 interface, 362

Ethernet, 339

channel bonding, 361–362

Execute permissions, 106

exercise answers

Ansible, 858–860

application automation, 858–860

cloud computing, 855–856

deploying to cloud, 857

shifting to, 853–854

desktop creation, 797–800

disk management, 819–821

file management, 819–821

filesystem, 802–803

FTP server configuration, 835–838

infrastructure automation, 858–860

Kubernetes, 860–861

Linux installation, 812–813

network administration, 825–827

NFS file server configuration, 841–843

print server configuration, 829–831

processes, running, 805–807

Samba server configuration, 838–841

security

advanced, 847–849

basic, 845–847

network security, 851–853

SELinux and, 849–851

server administration, 822–825

services, starting/stopping, 827–829

shell, 800–802

shell script writing, 807–810

software acquisition, 814–815

software management, 814–815

system administration, 810–812

text files, 804–805

troubleshooting, 843–845

user account management, 815–819

web server configuration, 831–835

exiting shell, 83–84

expanding commands, 78, 80

expanding parameters, 151–152

expanding variables, 80–81

exportfs command, 507

exporting shared filesystems, 507

exports file, 182

exports man page, 504

expressions

arithmetic, expanding, 80

test expressions, 154

operators, 155–156

extended memory, 4

F

FCoE (Fibre Channel over Ethernet Devices), 213

Fedora, 18–19, 27

downloading, 788–789

installing from Live media

bare metal system, 198

multi-boot, 198

single-boot, 198

virtual system, 198

Terminal window, 64

Fibre Channel, 5

file-matching metacharacters, 98–99

filenames, shell scripts, 148

file-redirection metacharacters, 99–100

files

commands, 96–98

copying, 110

scp command, 321–324

encrypting, 616

listing, 101–105

moving, 109–110

Nautilus, 42, 43

filesystem organization, 42–43

ownership

Apache web server, 433

changing, 109

password files, 574–576

permissions, 105–106

Apache web server, 433

changing, chmod, 106–108

default, 108–109

errors, 452

Execute, 106

Read, 106

vsftpd, 465

Write, 106

removing, 110

searching for

by date and time, 125–126

find command, 122–128

grep command, 128–129

locate command, 120

by name, 123–124

-not, 126–127

-or, 126–127

by permission, 125

by size, 124

by user, 124

filesystems, 4, 93, 273, 275, 500

commands, 71, 96–98

creating, 300

directories, 94

encryption at installation, 611–613

Linux compared to Windows-based, 95

mounting, 291–293

autofs, on demand, 517–520

defining mountable systems, 295–297

/etc/fstab file, 295–297

mount command, 297–298

NFS, 512–520

options, 515–517

swap areas

disabling, 294–295

enabling, 293–294

Nautilus organization, 42–43

noauto, 514–515

partitions, 273

root directory, 93

security

dangerous permissions, 576–577

lockdown, 578–579

securing files, 577–578

shared, exporting, 507

system administrator and, 168

filter table, 678

find command, 122–128, 335–336

Firefox, FTP access, 470

firefox package, 227

Firewall Configuration window, 509, 674–675

firewall-config command, 674–675

firewalld service, 674–675, 675–677

firewalls, 313, 672–674

Apache web server, 433–434

application-layer firewalls, 674

implementing, 674–688

iptables, 673

iptables, 313

network-layer firewalls, 674

rules, Cockpit and, 677–678

Samba, 482–483

troubleshooting and, 552–553

firmware

RAID devices, 213

starting from, 526–528

folders, Nautilus, 42, 43

creating, 43

Home folder, 42

for…do loop, 157–158

foreground processes, 137–138

commands, 139–140

FOSS (Free and Open Source Software), 12, 666

free distribution, GPL and, 12

free software, 12

Free Software Directory, 12

FreeBSD, 13

FSF (Free Software Foundation), 11

fstab file, 182

FTP (File Transfer Protocol), 455–456

active connection, 456

clients, 469–473

command-oriented clients, 456

containers, GitHub and, 703–705

passive connection, 456

server, 309

accessing, 470–472

anonymous, 456

firewall, 461–463

gFTP client, 472–473

graphical tools, 456

SELinux, configuring, 463–465

uploading, allowing, 467–468

user access, setup, 465–466

vsftpd, 457–461

servers, running from container, 699–701

functions, 71

completion, 75

G

gconf-editor, 173

gedit command, 113–114

general regular expression print. See grep command

Gentoo, 16, 207

gFTP client, 472–473

Gibson Research Corporation, 596

GitHub, FTP containers, 703–705

GlusterFS, 5

GNOME, 30–31

GNOME 2

Appearances Preference, 49

Compiz, 46

GNOME panels, 47

Metacity, 46, 48–49

Nautilus, 46

panels, 50

adding, 52

applets, 51

application launcher, 52–53

Applications menu, 51

drawers, 53

moving items, 50

properties, 54

resizing items, 51

System menu, 51

Window list, 51

Preferences, 47

GNOME 3, 31

applications, 41

additional, 34

launching, 37–38

opening, 32

Applications view, 37

Bluetooth, 39

bootup, 31

commands, launching, 37–38

dash, 36

devices, 39

keyboard, Windows key, 36

Nautilus

files, 42–43

folders, 42, 43

FTP with login, 43

Public FTP, 43

remote content, 43

Rhythmbox, 45–46

Secure (HTTPS), 43

software, 43–45

SSH and, 43

WebDav (HTTP), 43

Windows share, 43

navigation

keyboard, 36–38

mouse, 32–35

networking, 39

searches, 37

set up, 38–39

shell extensions, 39–40

sound, 39

stopping, 46

System Settings window, 38

toggling, 32

top bar, 36

Tweak Tool, 40–41

views, 36

window menu, 35

windows

active, 37

minimized, 33

opening, 32

Windows view, 36

workspaces, multiple, 34–35

GNOME Terminal, 64

gnome-disks, 173

gnome-utils, 173

GNU (GNU is Not UNIX), 11–12

BSD (Berkeley Software Distribution) License, 15

LGPL (Lesser General Public License), 15

MIT license, 15

Mozilla license, 15–16

GNU Project page, 11

GPL (GNU Public License), 12

graphical tools, 172

graphical windows, 168

graphics, Red Hat, 17

greater than (>), 78

grep command, 128–129, 159

group accounts, 259–261

group file, 182

groupadd command, 260–261

groups, 249

GRUB (GRand Unified Bootloader), 217–218, 528–530

troubleshooting, 528–530

GRUB 2 boot loader, 530–531

troubleshooting, 530–531

gshadow file, 182

GUID (Globally Unique Identifier), partition tables, 276

GUIs (graphical user interfaces), 61

H

hard drive, partitioning

assigning to directory, 216

filesystem types, 214

Linux partitions, 215

LVM partitions, 215

multiple operating systems, 214

multiple-partition disks, 281–285

partition tables, 275–276

RAID partitions, 215

single-partition disks, 277–281

swap partitions, 215

viewing partitions, 276–277

hardware, 4

checking, 187–189

kernel and, 186–193

modules, loadable, 191–193

removable, 189–191

requirements, 196–197

hashed passwords, 574–576

headers, packet headers, 673

help command, 88

here text, 100

hierarchy of directories, 94

history command, 72–78

/home directory, 94

host systems, generic, 336

host.conf file, 182

hostname

completion, 75

/etc/exports, 505

hostname file, 182

hosts

individual, 505

IP network, 505

TCP/IP domain, 505

hosts file, 182

httpd daemon, 442–443

httpd package, 310

hybrid cloud, 731

hypervisor, 709, 713

configuring, 715–718

DNS, setup, 718

/etc/hosts, editing, 718

Linux, installing, 716–717

naming, 717

services, 717–718

setup, 714

I

id command, 69

IDS (Intrusion Detection System), 592–595

if…then statements, 153–154

images, 694

building, 702–703

cloud

Amazon EC2, 744–746

OpenStack and, 739–744

for clouds, 731–733

container registries and, 705–706

virtual machines, 721

implicit classes, 404

Infiniband, 5

info command, 89

information about commands, 88–90

init, 369, 370–371, 371–377, 524–525

runlevels, 373–374

systemd, 370–371

SysVinit, 370

troubleshooting, 533

inittab file, 182

input/output redirection, 8

installation

Apache HTTPD web server, 431

boot options

feature disable, 210

kickstarts, 211–212

mediacheck, 212

rescue mode, 212

special installation, 210–211

video problems, 210

dual booting

defragmenting, 209

hard disk, adding, 208

Windows partition resize, 208

GRUB (GRand Unified Bootloader), 217–218

NFS server, 502

nmap utility, 665–666

Samba, 476–478

from scratch, 207

servers, 308–310

software, 221–222

storage, specialized, 213

installation server, 206

installing Linux

cloud based installations, 204–205

from DVD, 196

Red Hat Enterprise, 201–204

in enterprise, 196, 205–207

GRUB (GRand Unified Bootloader), 217–218

hard drives, partitioning, 214–217

from Live media, 195

Fedora installation, 198–201

from scratch, 207

virtualization and, 209

integer arithmetic, 152–153

interactive copying, 324

interfaces, 4

interpreter, shell script, 148

IP (Internet Protocol), 341

addresses

aliases, setting, 350–351

manually setting, 349–350

routes, setting, 351–352

source, blocking, 684–685

IP masquerading, 673

IPC (interprocess communications), 695

IPP (Internet Printing Protocol), 404

iptables firewall, 313

iptables utility, 673, 674, 680

chains, 679

configuration, saving, 687–688

DROP, 683

filter table, 678

mangle table, 678

nat table, 678

options, 683

policies, modifying, 680–683

port blocking, 685–687

protocol blocking, 685–687

raw table, 678

rules, modifying, 680–683

security table, 678

source IP address blocking, 684–685

iSCSI, 5, 213

ISO images, 787

J

Java, JBoss, 18

JBoss, 18

journalctl command, 184

K

Kali Linux, 595

KDE (K Desktop Environment), 29

Kerberos, 309, 712

kernel, 13, 16

hardware and, 186–193

ring buffer, 532

starting, 532–541

startup, 532–541

Kernighan, Brian, 9

key-based authentication, Secure Shell tools, 324–326

keystrokes

command history, 77–78

command-line editing, 74

kickstart files, 206

boot options and, 211–212

Linux installation, 205

RPM packages and, 246

killall command, 141–142

killing processes

kill command, 140

killall command, 140, 141–142

KNOPPIX, 16

ksh (Korn shell), 61, 65

Kubernetes, 5, 765–766

accessing, 769–771

applications, 767–768

clusters, 766

container engines, 767

containers and, 694

Docker Desktop, 768

interfaces, 768

Minikube and, 766, 768

starting, 770–771

nodes

master node, 766–767

worker node, 766, 767

OpenShift and, 782–783

pods, 766

services, 766

sidecar containers, 766

storage, 766

tutorials, 768

Kubernetes Basics Tutorial, 769–770, 771–772

application deployment, 772–773

applications

exposing, 776–777

scaling down, 781–782

scaling up, 779–780

load balancer, 780–781

pod information, 773–776

services

deleting, 778–779

labeling, 777–778

KVM (Kernel-based Virtual Machine), 5, 209, 710, 713

L

LAMP (Linux, Apache web server, MySQL database, PHP web

scripting language) stack, 3

laptops, networking, 340

LDAP (Lightweight Directory Access Protocol), 270, 309

LDP/LPR printers, 413

left parenthesis ((), 78

less than (<), 78

lftp command, 470–472

/lib directory, 94

Libvirt Service Daemon, 713

libvirtd service, 713, 715–718

libvirt-daemon-config-network package, 717

Linux

booting from USB drive, 791–792

compared to other OSs, 6

features, 4–5

history, 3

Bell labs, 7–8

BSD, 12–13

commercial UNIX, 9–11

GNU, 11–12

OSI, 14–16

UNIX, 7–8

kernel, 13

Minix, 7

as open source UNIX-like OS, 14

Linux Foundation, 14

Linux partitions, 215

listing

directories, 101–105

files, 101–105

Live media, installing Linux from, 195

Fedora, 198–201

locate command, 72, 120–122

logwatch service, 331–332

loopback, mounting disk image, 298–299

loops

for…do, 157–158

until…do, 158–159

while…do, 158–159

lp command, 419

lprm command, 419–420

lpstat command, 419

ls command, 67–68, 101–105

LUKS (Linux Unified Key Setup), 612

LVM (Logical Volume Manager), 273, 274, 538

partitions, 215, 285

creating logical volumes, 289–290

displaying, 286–288

volume growth, 290–291

physical volumes, 273

LXDE (Lightweight X11 Desktop Environment), 29

M

MAC addresses, 341

mail server, 309

man command, 89

man pages, 502

exports, 504

sections, 89

Mandrake, 16

Mandriva, 16

mangle table, 678

mangling packet headers, 673

master nodes, 336

MBR (Master Boot Record), 275

MCS (Multi-Category Security), 638

/media directory, 94

mediacheck, 212

memory, 4

OOM condition, 556

page caches, 558

processes, killing, 558

troubleshooting, 553–559

metacharacters, 78

brace expansion, 101

file-matching, 98–99

file-redirection, 99–100

meta-data, 730

Microsoft Active Directory. See AD (Active Directory)

migration, VMs, 725–727

Minikube, 766, 768

starting, 770–771

Minix, 7

/misc directory, 94

mkfs command, 300

MLS (multi-level security), 638–639

/mnt directory, 94

modules

loaded, listing, 191–192

loading, 192

removing, 192–193

monitoring servers

Cockpit, 314

crackers, 315

logging configuration, 314

software updates, 315

system activity reports, 314

mount command, 297–298

mounting, 274

disk images, in loopback, 298–299

filesystems, 291–293

defining mountable systems, 295–297

/etc/fstab file, 295–297

mount command, 297–298

options, 515–517

swap areas, 293–295

unmounting NFS, 520–521

NFS

autofs, on demand mounting, 517–520

at boot time, 513–517

manually, 512–513

umount command, 299

mount-level security, 499

moving files, 109–110

MS-DOS filesystems, 95

MTA (Mail Transport Agent) server, 309

mtab file, 182

mtools.conf file, 182

Multics, 8

multipath devices, 213

multitasking, 167

multiuser features, 167

mv command, 109–110

N

named.conf file, 182

namespaces, containers, 694, 695

nano editor, 114

nat table, 678

Nautilus

files, 42, 43

filesystem organization, 42–43

folders, 42, 43

creating, 43

Home folder, 42

FTP with login, 43

Public FTP, 43

remote content, 43

Rhythmbox, 45–46

Secure (HTTPS), 43

software

installing, 43–45

managing, 43–45

SSH and, 43

WebDav (HTTP), 43

Windows share, 43

NCSA (National Center for Supercomputing Applications), 428

NetBEUI, 475

NetBSD, 13

netfilter/iptables tables, 678–679

policies, 679–680

rules, 679–680

targets, 679–680

network bridge, VMs, 721

network cards, 197

network interfaces

aliases, 360–361

bonded, 362

Cockpit and, 343–345

command line and, 345–349

configuring

IP address aliases, 350–351

IP address manual set, 349–350

route setting, 351–352

domain names, 349

host names, 349

NetworkManager and, 342–343

routing information, 347–348

troubleshooting and, 547–548

viewing, from command line, 345–347

Network Mapper, 665

network services, auditing, 663–665

nmap utility, 665–672

networking

cloud, setup, 714

configuration

command line, 353–364

enterprise, 364–366

files, 355–360

custom routes, 363–364

desktop, 340–353

enterprise, 340

Ethernet channel bonding, 361–362

hostnames, troubleshooting and, 549–550

laptop, 340

physical connections, troubleshooting and, 548

proxy connections, configuring, 352–353

routes

custom, 363–364

troubleshooting and, 548–549

servers, 340

troubleshooting

incoming connections, 550–553

outgoing connections, 547–550

network-layer firewalls, 674

NetworkManager, 340

DHCP

server response, 340

service request, 340

domain name server, 341

gateway, default, 341

IP address, 341

lease time, 341

local settings, 342

network interfaces, activating, 340

network settings, 350

subnet mask, 341

NetworkManager TUI, connection, editing, 354–355

NFS (Network File System) server, 309, 499

filesystems, sharing, 503–507

installing, 502

mounting

autofs, on demand mounting, 517–520

at boot time, 513–517

client, 500

manually, 512–513

security, 508

filesystem structure exposure, 508

firewall, 508–510

root users, 508

SELinux configuration, 511–512

TCP wrappers, 510–511

unencrypted communications, 508

user mapping, 508

shares, viewing, 512

unmounting, 520–521

nfs-server service, starting, 502–503

nfs-utils package, 502

nice command, 142–143

NIS (Network Information Service), 270

groups, 506

nmap utility

installing, 665–666

port scans, 666

port states, 667

nmbd service

starting, 480–481

stopping, 481–482

nmtui command, 354

noauto filesystem, 514–515

Nokia, 9

nsswitch.conf file, 182

ntp.conf file, 182

ntpd package, 309

O

OEM (original equipment manufacture), 10

one-command actions, 156

OOM condition, 556

open source, storage platforms

Ceph, 5

GlusterFS, 5

Open Source Development Labs, 14

open source software, 12

OpenBSD, 13

OpenPGP, 616

OpenShift, 173

Kubernetes and, 782–783

openssh package, 316

openssh-clients package, 316

openssh-server package, 316–318

OpenStack, 5

cloud images, 739–744

remote access keys, 741–742

VM access via ssh, 743–744

VM launch, 742–743

operators

Ansible, 749–750

expressions, test expressions, 155–156

/opt directory, 94

options, commands, 67–68

OSI (Open Source Initiative), 14–16

OSs (operating systems), Linux and, 6

oVirt project, 5

ownership of files, 109

P

package collections, 308

packages

nfs-utils, 502

openssh, 316

openssh-clients, 316

openssh-server, 316

servers

directory server, 309

DNS server, 309

FTP server, 309

mail server, 309

Network Time Protocol server, 309

NFS file server, 309

print server, 309

rsyslog service, 308–309

SQL server, 309

system logging server, 308–309

web server, 309

Windows file server, 309

packet filters, 674

packet headers, mangling, 673

packets, blocking/allowing, 673

PAM (Pluggable Authentication Module), 312

administering

application configuring files, 622–623

password enforcement, 628–632

sudo and, 632–633

system event configuration files, 623–626

time restrictions, 626–627

authentication process, 619

contexts, 619–620

control flags, 620–621

modules, 621–622

resources, 633

PAM facility, 312

panels (GNOME), 50

adding, 52

applets, 51

application launcher, 52–53

Applications menu, 51

drawers, 53

moving items, 50

properties, 54

resizing items, 51

System menu, 51

Window list, 51

parameters, shell script

expanding, 151–152

reading in, 151

partition tables, GUID, 276

partitioning

filesystems, 273

hard drives

assigning to directory, 216

filesystem types, 214

Linux partitions, 215

LVM partitions, 215

multiple operating systems, 214

RAID partitions, 215

swap partitions, 215

hypervisors and, 717

LVM (Logical Volume Manager), 285

creating volumes, 289–290

displaying, 286–288

volume growth, 290–291

multiple-partition disks, 281–285

partition tables, 275–276

single-partition disks, 277–281

viewing, 276–277

passwd file, 182

passwords, 312–313

changing, 571–572

enforcing best practices, 572–574

files, 574–576

hashes, 574–576

PAM, 628–632

public key authentication, 313

selecting, 570–571

setting, 571–572

path, 70

absolute, 96

order, 71

PATH environment variable, 70, 88

PE (Physical Extent), 286

penetration testing, 595

permissions, 105–106

changing, chmod, 106–108

daemons and, 311

default, umask value, 108–109

errors, 452

Execute, 106

Read, 106

Write, 106

persistent services, enabling, 391–394

physical security, 565–566

PID (process ID), 131, 370

pipe character (|), 78

plain-text files, 179

playbooks (Ansible), 749

creating, 757–758

imports, 753

includes, 753

modules, 752–753

plays, 752

roles, 753

running, 758–760

tasks, 752

podman command, 694, 697

port numbers, daemon processes, 311

portability, 8–9

ports, 666

auditing, 666

blocking, 685–687

scans

TCP Connect, 666

UDP, 666

states, 667

positional parameters, 150–151

POSIX (Portable Operating System Interface), 10

PostgreSQL, 309

print server, 309

configuring

shared CUPS printer, 420–422

shared Samba printer, 422–424

Print Settings window, 403

local printers

adding, 409–411

editing, 411–412

remote CUPS printers, 413

remote LDP/LPR printers, 413

remote printers, configuring, 412–413

remote UNIX printers, 413

Windows (SMB) printer, 414–415

printcap file, 183

printer browsing, 404

printer classes, 404

printers, adding automatically, 405–406

printing. See also CUPS (Common UNIX Printing System)

canceling jobs, 408

commands, 418

lp, 419

lprm, 419–420

lpstat, 419

drivers, 404

/etc/cups directory, 405

IPP (Internet Printing Protocol), 404

listing print jobs, 407

moving jobs, 408

printer classes, 408

UNIX print commands, 404

viewing printers, 408

private cloud, 730

private key cryptography, 603

/proc directory, 95

processes, 4, 131–132

background, 137–138

commands, 139–140

bigcommand, 141

cgroups, 143–144

changing, 134–135

daemon processes, 5, 179

foreground, 137–138

commands, 139–140

killall command, 141–142

killing, 135, 558

kill command, 140

killall command, 140

limiting, 143–144

listing

ps command, 132–134

System Monitor, 136–137

top command, 134–135

(|)piping, 133

priorities, 142–143

renicing, 135

RSS (resident set size), 133

VSZ (virtual set size), 133

processors, 196

professional opportunities, 19–21

profile file, 183

programming, utilities, 5

prompt, setting, 85–87

protocols, blocking, 685–687

protocols file, 183

proxy servers, configuring connections, 352–353

ps command, 132–134

public cloud, 730

public key authentication, 313

pulling containers, 697–698

pwd command, 67

PXE server, 206

RPM packages and, 246

Q

QEMU, 713

qemu process, 713

question mark (?), 99

Qwest, 9

R

RAID partitions, 215

RAM (random access memory), 197, 273–274

troubleshooting and, 554–555

raw table, 678

RBAC (role-based access control), 635

TE (type enforcement) and, 637–638

rc.sysinit, troubleshooting, 533–534

Read permissions, 106

real-time computing, 5

Red Hat

Anaconda installer, 17

graphical administration, 17

RPM package management, 16–17

Red Hat Enterprise

downloading, 789–790

installing, from DVD, 201–204

Red Hat OpenShift, 18

Red Hat OpenStack Platform, 18

Red Hat Virtualization, 5

remote access, 307. See also Sec ure Shell tools

interactive copying, 324

removable hardware, 189–191

Removable Media window, 189–190

renice command, 142–143

repositories, software, 223

rescue mode, 212

troubleshooting in, 559–561

reserved words, 71

REST API, Ansible Tower and, 763

restricted deletion directory, 268–269

reviews

compliance, 595–596

security, 596

RHCE (Red Hat Certified Engineer), 21, 22

network services, 24–25

system configuration and management, 24

topics, 23–25

RHCSA (Red Hat Certified System Administrator), 21, 22

topics, 22–23

RHEL (Red Hat Enterprise Linux), 17–18

Terminal window, 64

RHELOSP (Red Hat Enterprise Linux OpenStack Platform), 173

RHEV (Red Hat Virtualization), 173

Rhythmbox (Nautilus), 45–46

right parenthesis ()), 78

Ritchie, Dennis, 8, 9

rlogin, 316

rm command, 110

root directory, 93

/root directory, 95

root user, 174

sudo facility, 176–178

via GUI, 176

via shell, 175–176

rootkits, 590–595

route-interface file, 363

rpc file, 183

rpcbind service, 503

rpm command

package installation, 241–242

package removal, 241–242

querying information, 242–244

RPM package management, 16–17

RPM (RPM Package Manager) packaging, 225, 226–228

container images, 246

dependencies, 228

installing, 228

kickstart files, 246

location, 228

origins, 227–228

PXE boot, 246

satellite server, 246

Spacewalk, 246

verifying packages, 244–245

YUM and, 229–232

third-party software repositories, 233

transition to DNF, 229

yum command, 233–241

RSS (resident set size), 133

rsync command, 322–323, 566

rsyslog service, 308, 326–331

rsyslog.conf file, 183, 327–329

rsyslogd daemon, 326–327

rsyslogd facility and, 184–185

runlevels, 369, 373–374

default, 369

configuring, 394–395

troubleshooting, 534–538

S

Samba, 475–476

enterprise, 497

/etc/samba/smb.conf file

[global], 486–487

[homes], 486, 487–489

[printers], 486, 489–493

firewalls, configuring, 482–483

folders

checking share, 490–493

shared, 489–490

host/user permissions, 486

installing, 476–478

printer configuration, 422–424

SELinux, configuring, 484–486

share access

Linux file manager, 493–495

mounting from command line, 495–496

Windows, 496–497

starting, 478–480

stopping, 481–482

samba package, 309, 476–478

samba-client package, 476

samba-common packages, 476

samba-winbind package, 476

SAN devices, 213

SANS institute, 596

sar command, 332–333

satellite server, RPM packages and, 246

/sbin directory, 95

SCO (Santa Cruz Operation), 10

scp command, file copy and, 321–324

scripts, backup script, 162

secon command, 648–649

secret key cryptography, 603

Secure Shell tools, 316

client tools, 318–324

key-based authentication, 324–326

security, 307

Apache web server

file ownership, 433

file permissions, 433

firewalls, 433–434

SELinux and, 434–435

Bell-LaPadula Mandatory Access model, 639

cryptography, 599–600

block ciphers, 600

ciphers, 600

decryption, 600

encryption/decryption, 602–610

hashing, 600–601

implementing, 610–618

stream ciphers, 600

disaster recovery, 566

filesystem, 576–579

firewalls, 672–674

application-layer firewalls, 674

Cockpit and, 677–678

implementing, 674–688

iptables, 673

network-layer firewalls, 674

MCS (Multi-Category Security), 638

MLS (multi-level security), 638–639

mount-level, 499

network services, auditing, 663–665, 665–672

PAM (Pluggable Authentication Modules), 618

administering, 622–633

authentication process, 619–622

resources, 633

passwords, 570–576

physical, 565–566

servers, 312–314

configuration file settings, 314

firewalls, 313

passwords, 312–313

SELinux, 313

TCP Wrappers, 313

services, 579–580

software, 579–580

system administration and, 169

systems monitoring, 580–581

filesystem, 587–595

log files, 581–584

user accounts, 584–587

user accounts, 566–569

security clearance, 639

security reviews, 596

security table, 678

sed command, 160

SELinux (Security Enhanced Linux), 313

benefits of, 635–636

Booleans and, 653–654

Booleans for Samba, 484–485

configuration, NFS server, 511–512

errors, 452

file contexts for Samba, 485–486

least privilege access, 636

mode, setting, 645–647

monitoring, 654–656

operational modes

disabled mode, 639–640

enforcing mode, 640

permissive mode, 640

policy rules, 644–645

package management, 651–653

policy types, 643

minimum, 644

MLS (Multi-Level Security), 644

setting, 647–648

targeted, 644

process sandboxing, 636

RBAC, 636

resources, 659

security contexts, 640–641

file security, 650–651

files, 642

level attribute, 641

processes, 642–643

role attribute, 641

secon command, 648–649

type attribute, 641

user, 649–650

user attribute, 641

users, 641–642

security models, implementing, 639–645

TE (type enforcement), 637–638

testing, 636

troubleshooting

Booleans set incorrectly, 658–659

context labels, lost, 658

logging, 656–657

nonstandard directory as service, 657

nonstandard port as service, 658

semicolon character (;), 78, 79

sequential commands, 79

servers, 307

checking, 316

configuring, 310–311

enterprise and, 336

installation server, 206

installing, 308–310

monitoring, 314–315

Cockpit, 314

crackers, 315

logging configuration, 314

software updates, 315

system activity reports, 314

network, 340

packages

directory server, 309

DNS server, 309

FTP server, 309

mail server, 309

Network Time Protocol server, 309

NFS file server, 309

print server, 309

rsyslog service, 308–309

SQL server, 309

system logging server, 308–309

web server, 309

Windows file server, 309

PXE, 206

securing, 312–314

configuration file settings, 314

firewalls, 313

passwords, 312–313

SELinux, 313

TCP Wrappers, 313

setting, 316

starting, 311–312

system administration and, 169

services

firewalld, 674–675, 675–677

persistent, enabling, 391–394

reloading, 388

security, 579–580

starting, 5

status, checking, 384–387

systemd, new, 399–401
SysVinit

new, 396–398

starting and stopping, 387–391

services file, 183

set GID bit, 267–268

set UID bit, 268

setfacl command, 262–264

sftp command, 324

sh shell, 65

shadow file, 183

shared filesystems, exporting, 507

shell, 4, 61

prompt, 63

$ prompt, 63

accessing, 62–63

ash, 61

bash shell, 61

configuration files, 84

Bourne shell, 61

command languages and, 62

configuring, 84–85

csh (C shell), 61, 65

dash, 65

dash shell, 61

environment, 84–87

environment variables, 87

exiting, 83–84

ksh, 65

metacharacters

brace expansion, 101

file-matching, 98–99

file-redirection, 99–100

prompt, 63

setting, 85–87

reasons to learn, 62

root user, 175–176

running from container, 698–699

selecting, 65–66

sh, 65

tcsh, 61, 65

variables, 81

shell history, 72–73

shell script

arithmetic in, 152–153

backup script, 162

case command, 156–157

chmod command, 162

command-line argument, 148, 150–151

cut command, 159

for…do loop, 157–158

grep, 159

if…then statements, 153–154

interpreter, 148

parameters

expanding, 151–152

reading in, 151

positional parameters, 150–151

programming constructs, 153–159

sed command, 160

special characters, escaping, 149

telephone list example, 161–162

text

cutting, 159–160

deleting, 160

translating, 160

text manipulation, 159–161

tr command, 160

until…do loop, 158–159

variables, 149

while…do loop, 158–159

shell scripts, 147–148

shells file, 183

sidecar containers, 766

signals, 141

single-partition disks, 277–281

Slackware, 16

SLES (SUSE Linux Enterprise Server), 730

SMB (Server Message Block), 475

smb.conf file, 422–423

software

bounties, 21

dependent software, 224

free software, 12

installation, 221–222

system administrator and, 168

Nautilus, 43–45

open source software, 12

repositories, 223

security, 579–580

advisories, 580

package updates, 579–580

subscriptions, 20–21

upstream software providers, 228

Software window, 222–223

source code, UNIX and, 10

Spacewalk, RPM packages and, 246

special characters, escaping, 149

specialized storage, 5

Squid Proxy Server, 366

SSH (Secure Shell), 307

ssh command, 316

remote execution, 320–321

remote login, 318–320

sshd service, 718

starting, 317–318

at boot, 318

status, 317

Stallman, Richard M., 11

startup methods

init facility, 524–525

systemd facility, 525

statements, echo, 148

sticky bits, 103, 268–269

storage

cloud, 711, 713

configuring, 718–720

setup, 714

Cockpit, 301–303

specialized, 5, 213

volume groups, 274

stream editor (sed), 160

su command, 168, 175–176

subscriptions, 20–21

sudo command, 168, 632–633

sudo facility, 176–178

sudoers file, 177, 183

superuser, 167

SVID (System V Interface Definition), 10

swap partitions, 215

swap space, 4, 274

troubleshooting and, 554–555

SYN (synchronize packet), 666

syntax, commands, 67–68

/sys directory, 95

sysstat package, sar command, 332–333

System Activity Reporter, 332–333. See also sar command

system administration, 167

browser-based tools, 173

Cockpit, 168, 169–171

commands, 178–179

configuration files, 179–185

daemon processes

apache, 185

avahi, 185

bin, 185

chrony, 185

lp, 185

news, 186

postfix, 185

rpc, 186

filesystems and, 168

graphical tools, 172

hardware

checking, 187–189

loadable modules, 191–193

removable, 189–191

log files, 183–184

rsyslogd facility and, 184–185

network interfaces, 169

root user, 174

via shell, 175–176

security, 169

servers, 169

software installation and, 168

system-config* tools, 171–173

systemd journal, 183–184

user accounts and, 168

system administrator, 167

system logging

enabling, 326–331

loghost, 330–331

logwatch, 331–332

message log file, 329

rsyslogd daemon, 326–327

System Monitor, processes

ending, 136

killing, 136

listing, 136–137

priorities, 137

stopping, 136

system space

disk consumption, 335–336

disk usage check, 334–335

displaying, 334

System V, init facility, 524–525

troubleshooting, 533

system-config* tools, 171

system-config-authentication, 172

system-config-bind, 172

system-config-date, 172

system-config-firewall, 172

system-config-httpd, 172

system-config-kickstart, 173

system-config-language, 172

system-config-nfs, 172

system-config-printer, 172

system-config-rootpassword, 172

system-config-samba, 172

system-config-selinux, 172

system-config-services, 172

system-config-users, 172

systemctl command, 381

systemd, 370–371, 525

initialization, 377–384

journal, 183–184

service units, 378–380

services

new, 399–401

reloading, 390–391

restarting, 389–390

starting, 389

stopping, 389

SysVinit, backward compatibility, 382–384

target units, 377, 378, 381–382, 395

troubleshooting, 538–541

units, 377

systems monitoring, 580–581

filesystem, 587

rootkits, 590–595

scanning, 589–590

software package verification, 588

virus detection, 590–595

log files, 581

special commands, 582–583

/var/log directory, 581–582

user accounts, 584

bad passwords, 586–587

counterfeit accounts and privileges, 584–586

SysVinit, 370, 372

backward compatibility, 382–384

runlevels, default, 394–395

services

checking, 385–387

new, 396–398

persistent, 391–394

starting/stopping, 387–391

T

tar, 566

encryption/decryption, 604

tarballs, 16, 224–225

target units, 377, 395

targeted policy, 638–639

targets, 369

TCP Connect port scan, 666, 668

TCP Wrappers, 313

NFS access, 510

tcsh shell, 61, 65

TE (type enforcement), 637–638

telinit command, 374

telnet, 316

Terminal emulator, 63–64

Terminal window, 63

GNOME Terminal, 64

launching, 64

terminal windows, 62–63

test expressions, 154–156

text

adding, vi editor, 115–116

changing, vi editor, 117

commands, 79

copying, vi editor, 117

cutting, 159

deleting, 160

vi editor, 117

grep, 159

here text, 100

moving within, vi editor, 116–117

pasting, vi editor, 118

searching for, vi editor, 119–120

translating, 160

text editors

emacs, 114

jed, 114

joe, 114

kate, 114

kedit, 114

mcedit, 114

nano, 114

nedit, 114

vi, 113–119

arrow keys, 116–117

command mode, 115

command repeat, 118

cursor, 115

ex mode, 120

exiting, 118–119

input mode, 115

moving around in file, 119

text, 115–120

vim, 113–114

Thompson, Ken, 8

tilde (~), 97

/tmp directory, 95

top command, 134–135

Torvalds, Linus, 7, 13–14

touch command, 98–99

tr command, 160

training, 21

translating text, 160

troubleshooting

BIOS (Basic Input Output System), 526–527

boot order, 527–528

boot up and, 523–524

from firmware, 526–528

kernel startup, 532–541

startup methods, 524–525

GRUB 2 boot loader, 530–531

GRUB boot loader, 528–530

init system, 533

memory, 553–554

uncovering issues, 554–559

networking

incoming connections, 550–553

outgoing connections, 547–550

RAM and, 554–555

rc.sysinit, 533–534

in rescue mode, 559–561

runlevels, 534–538

software packages, 542–545

RPM databases and caches, 545–546

systemd initialization, 538–541

type command, 71

U

Ubuntu, 19

downloading, 790–791

Ubuntu Software Center, 225

UDP port scan, 666

UEFI (Unified Extensible Firmware Interface), 526–528

umask value, 108–109

umount command, 299

units, systemd, 377

UNIX, 7–8

assembler, 9

commercial, Berkeley distribution, 9–10

filesystem, 8

input/output redirection, 8

laboratory, 10–11

portability, 8–9

print commands, 404

printers, remote, 413

published interfaces, 10

source code, 10

USL (UNIX System Laboratories), 10

unmounting filesystems, 520–521

untyped variables, 152–153

updates, Gentoo, 207

upgrades from scratch, 207

upstream software providers, 228

USB drive, 197

booting Linux from, 791–792

user accounts

centralizing, 269–270

Cockpit, 249–252

creating, 249–250

defaults, 255–257

deleting, 258–259

modifying, 257–258

security, 566

number of users, 567

root, access, 567

temporary account expiration, 567–568

unused, 568–569

system administrator and, 168

useradd command, 252–255

user interfaces, 4

useradd command

adding users, 252–255

defaults, setting, 255–257

userdel command, 258–259

usermod command, 257–258

username, completion, 75

USL (UNIX System Laboratories), 10

/usr directory, 95

utilities

administrative, 4–5

backup, 566

cracklib, 571

iptables, 673–674, 678–688

nmap, 665–672

programming, 5

UTS namespace, 695

V

/var directory, 95

variables

command output, 149

completion, 75

environment variables, 81, 82–83

adding to shell, 87

PATH, 70

expanding, 80–81

shell, 81

shell scripts, 149

untyped, 152–153

Verizon, 9

Very Secure FTP daemon, 309

VFAT, 275

vi editor, 85, 113–114

arrow keys, 116–117

command mode, 115

commands, repeating, 118

cursor, 115

ex mode, 120

exiting, 118–119

input mode, 115

moving around in file, 119

text

adding, 115–116

changing, 117

copying, 117

deleting, 117

moving in, 116–117

pasting, 118

searching for, 119–120

video, boot options, 210

vim editor, 113–114

vimtutor, 177

virsh command, 711

virt-install command, 720–721

virt-manager, 711, 717, 720–724, 722

virt-manager command, 714

virtual consoles, 65

Virtual Machine Manager, 711, 714

starting, 722

virtual memory, 556

VirtualBox, 209

virtualization, 5, 709

Linux installation, 209

viewer, 714

virt-viewer command, 714

virus detection, 590

intrusion detection, 592–595

monitoring for rootkits, 591–592

monitoring for viruses, 591

virus signature, 591

VMs (virtual machines), 693–694, 709, 713. See also hypervisor

connections, 722

creating, 720–724

images, 721

installing, 724

managing, 724–725

migrating, 725–727

network bridge and, 721

system, viewing, 724–725

VMware, 209

VNC installations, boot options, 212

volume groups, 274

VPN (virtual private network), 339

vsftpd, 309, 458–461

file permissions, 465

installing, 457–458

setup, 468–469

VSZ (virtual set size), 133

W

web server, 309

Apache HTTPD, 427–428

installing, 431

who am i command, 65

wildcards, 505

Winbind, 270

window manager, 29

windows

graphical, 168

terminal windows, 62–63

Windows (SMB) printer, 414–415

Windows-based filesystems, 95

wired networks, 339

wireless networks, 339

worker nodes, 710

Write permissions, 106

X

X Window System, 28

background, 28

clients, 28

servers, 28

window manager, 29

Xen, 5, 209, 710

Xfce, 29

xinetd.conf file, 183

Y–Z

YUM (YellowDog Update Modified)

DNF (Dandified YUM), 229

packages

groups, updating, 239–240

installing, 236–237

maintenance, 240

removing, 236–237

searching for, 234–235

updating, 238

RPM download, 241

third-party software repositories, 233

yum command, syntax, 229–232

yum cache, 546

yum command, 229–241

Copyright © 2020 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-119-57888-8
ISBN: 978-1-119-57891-8 (ebk)
ISBN: 978-1-119-57889-5 (ebk)

No part of this publication may be reproduced, stored in a retrieval system or transmitted in
any form or by any means, electronic, mechanical, photocopying, recording, scanning or
otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright
Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood
Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher
for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc.,
111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at
http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no
representations or warranties with respect to the accuracy or completeness of the contents of
this work and specifically disclaim all warranties, including without limitation warranties of
fitness for a particular purpose. No warranty may be created or extended by sales or
promotional materials. The advice and strategies contained herein may not be suitable for
every situation. This work is sold with the understanding that the publisher is not engaged in
rendering legal, accounting, or other professional services. If professional assistance is
required, the services of a competent professional person should be sought. Neither the
publisher nor the author shall be liable for damages arising herefrom. The fact that an
organization or Web site is referred to in this work as a citation and/or a potential source of
further information does not mean that the author or the publisher endorses the information
the organization or website may provide or recommendations it may make. Further, readers
should be aware that Internet websites listed in this work may have changed or disappeared
between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care
Department within the United States at (877) 762-2974, outside the United States at (317)
572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some
material included with standard print versions of this book may not be included in e-books or
in print-on-demand. If this book refers to media such as a CD or DVD that is not included in
the version you purchased, you may download this material at http://booksupport.wiley.com.
For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2019956690

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John
Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries, and may not
be used without written permission. Linux is a registered trademark of Linus Torvalds. All
other trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not
associated with any product or vendor mentioned in this book.

http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://www.wiley.com

As always, I dedicate this book to my wife, Sheree.

About the Author
Chris Negus is a principal technical writer for Red Hat, Inc. In more
than a decade with Red Hat, Chris has taught hundreds of IT
professionals to become Red Hat Certified Engineers (RHCEs), and he
has written scores of documents on everything from Linux to
virtualization to cloud computing and containerization.

Before joining Red Hat, Chris wrote or co-wrote dozens of books on
Linux and UNIX, including the Red Hat Linux Bible (all editions),
Docker Containers, CentOS Bible, Fedora Bible, Linux
Troubleshooting Bible, Linux Toys, Linux Toys II, and, nine editions
of this Linux Bible. Chris also co-authored several books for the Linux
Toolbox series for power users: Fedora Linux Toolbox, SUSE Linux
Toolbox, Ubuntu Linux Toolbox, Mac OS X Toolbox, and BSD UNIX
Toolbox.

Before becoming an independent author, Chris worked for eight years
with the organization at AT&T that developed the UNIX operating
system before moving to Utah to help contribute to Novell's UnixWare
project in the early 1990s. When not writing about Linux, Chris enjoys
playing soccer, hanging out with his wife, Sheree, and spending what
time he can with his sons, Seth and Caleb.

About the Technical Editors
Jason W. Eckert is an experienced technical trainer, consultant, and
best-selling author in the Information Technology (IT) industry. With
45 industry certifications, over 30 years of IT experience, 4 published
apps, and 24 published textbooks covering topics such as UNIX,
Linux, security, Windows Server, Microsoft Exchange Server,
PowerShell, BlackBerry Enterprise Server, and video game
development, Mr. Eckert brings his expertise to every class that he
teaches at triOS College in his role as the Dean of Technology. For
more information about Mr. Eckert, visit jasoneckert.net.

Derrick Ornelas is a senior software maintenance engineer at Red
Hat, Inc. In his current role as a product lead for Red Hat container
technologies, including OpenShift Container Platform and Red Hat
Enterprise Linux CoreOS, Derrick works to ensure both the
supportability and quality of Red Hat's products. Previously, he
worked as a senior technical support lead for Red Hat virtualization
technologies, such as libvirt, KVM, and the Red Hat Virtualization
product.

During his 12 years at Red Hat, Derrick earned the Red Hat Certified
Engineer and Red Hat Certified Virtualization Administrator
certifications, and he has applied his broad Linux knowledge to
architect, deploy, and maintain various hardware labs and
applications.

Derrick's nearly two decades of Linux experience began while earning
his BS in Computer Science from Appalachian State University. As a
devoted Linux supporter, he enjoys teaching and assisting new Linux
users both on and off the clock. When he's not working on his monitor
tan, Derrick enjoys mountain biking, motorcycling, and backpacking
with his wife, Carolyn.

http://jasoneckert.net

Acknowledgments
When I was hired at Red Hat about a dozen years ago, I didn't know
that Red Hat would grow to about seven times its size, be bought by
IBM for $34 billion, and (so far) still maintain the spirit of openness
and excitement that it had when I first signed on. Every day when I
come to work, I interact with many of the greatest Linux and cloud
developers, testers, instructors, and support professionals in the
world.

While I can't thank everyone individually, I would like to salute the
culture of cooperation and excellence at Red Hat that serves to
improve my own Linux skills every day. I don't speak well of Red Hat
because I work there; I work at Red Hat because it lives up to the
ideals of open source software in ways that match my own beliefs.

That said, there are a few Red Hatters that I want to acknowledge in
particular. At Red Hat, I'm able to take on so many cool and
challenging projects because of the freedom that I receive from the
people to whom I report. They include Michelle Bearer, Dawn Eisner,
and Sam Knuth. Sam, in particular, has had my back and encouraged
my work for more than a decade.

In my daily work, I want to give a shout out to Red Hatters Scott
McCarty, Ben Breard, Laurie Friedman, Dave Darrah, Micah Abbott,
Steve Milner, and Ian McLeod (container tools, RHCOS, and
OpenShift teams), and Tom McKay, Joey Schorr, Bill Dettelback,
Richa Marwaha, and Dirk Herrmann (Quay team). Finally, a special
thank you to Vikram Goyal, who luckily lives in Australia, so he is
always available to bail me out when I blow up git in the middle of the
night.

When it comes to support for writing this book, I have had the luxury
of two excellent technical editors: Jason Eckert and Derrick Ornelas. I
didn't know Jason before he took on this role, but his broad experience
with different Linux systems has helped call me out when I get too Red
Hat centric. Derrick, who I see almost every day, was asked to do this

work because of his attention to detail and deep understanding of how
Linux works and what people need to know to use it. Anyone reading
this book will have a better experience because of the work that Jason
and Derrick have done reviewing it.

As for the people at Wiley, thanks for letting me continue to develop
and improve this book over the years. Thanks to Gary Schwartz, who
applies constant, gentle pressure to keep me working on this book at
times when I had no spare cycles to work on it. When Gary's pressure
wasn't enough, Devon Lewis would step in to paint a clearer picture
about the importance of deadlines. Thanks also to Margot Maley
Hutchison from Waterside Productions for contracting the book for
me with Wiley and always looking out for my best interests.

Finally, thanks to my wife, Sheree, for sharing her life with me and
doing such a great job raising Seth and Caleb.

—Christopher Negus

WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wileyâ€™s ebook EULA.

http://www.wiley.com/go/eula

	Introduction
	How This Book Is Organized
	Conventions Used in This Book
	Jumping into Linux
	How to Contact Wiley or the Author

	Part I: Getting Started
	CHAPTER 1: Starting with Linux
	Understanding What Linux Is
	Understanding How Linux Differs from Other Operating Systems
	Exploring Linux History
	Understanding How Linux Distributions Emerged
	Finding Professional Opportunities with Linux Today
	Summary

	CHAPTER 2: Creating the Perfect Linux Desktop
	Understanding Linux Desktop Technology
	Starting with the Fedora GNOME Desktop Live image
	Using the GNOME 3 Desktop
	Using the GNOME 2 Desktop
	Summary
	Exercises

	Part II: Becoming a Linux Power User
	CHAPTER 3: Using the Shell
	About Shells and Terminal Windows
	Choosing Your Shell
	Running Commands
	Recalling Commands Using Command History
	Connecting and Expanding Commands
	Using Shell Variables
	Creating Your Shell Environment
	Getting Information about Commands
	Summary
	Exercises

	CHAPTER 4: Moving Around the Filesystem
	Using Basic Filesystem Commands
	Using Metacharacters and Operators
	Listing Files and Directories
	Understanding File Permissions and Ownership
	Moving, Copying, and Removing Files
	Summary
	Exercises

	CHAPTER 5: Working with Text Files
	Editing Files with vim and vi
	Finding Files
	Summary
	Exercises

	CHAPTER 6: Managing Running Processes
	Understanding Processes
	Listing Processes
	Managing Background and Foreground Processes
	Killing and Renicing Processes
	Limiting Processes with cgroups
	Summary
	Exercises

	CHAPTER 7: Writing Simple Shell Scripts
	Understanding Shell Scripts
	Summary
	Exercises

	Part III: Becoming a Linux System Administrator
	CHAPTER 8: Learning System Administration
	Understanding System Administration
	Using Graphical Administration Tools
	Using the root User Account
	Exploring Administrative Commands, Configuration Files, and Log Files
	Using Other Administrative Accounts
	Checking and Configuring Hardware
	Summary
	Exercises

	CHAPTER 9: Installing Linux
	Choosing a Computer
	Installing Fedora from Live Media
	Installing Red Hat Enterprise Linux from Installation Media
	Understanding Cloud-Based Installations
	Installing Linux in the Enterprise
	Exploring Common Installation Topics
	Summary
	Exercises

	CHAPTER 10: Getting and Managing Software
	Managing Software on the Desktop
	Going Beyond the Software Window
	Understanding Linux RPM and DEB Software Packaging
	Managing RPM Packages with YUM
	Installing, Querying, and Verifying Software with the rpm Command
	Managing Software in the Enterprise
	Summary
	Exercises

	CHAPTER 11: Managing User Accounts
	Creating User Accounts
	Understanding Group Accounts
	Managing Users in the Enterprise
	Centralizing User Accounts
	Summary
	Exercises

	CHAPTER 12: Managing Disks and Filesystems
	Understanding Disk Storage
	Partitioning Hard Disks
	Using Logical Volume Manager Partitions
	Mounting Filesystems
	Using the mkfs Command to Create a Filesystem
	Managing Storage with Cockpit
	Summary
	Exercises

	Part IV: Becoming a Linux Server Administrator
	CHAPTER 13: Understanding Server Administration
	Starting with Server Administration
	Checking and Setting Servers
	Managing Remote Access with the Secure Shell Service
	Configuring System Logging
	Checking System Resources with sar
	Checking System Space
	Managing Servers in the Enterprise
	Summary
	Exercises

	CHAPTER 14: Administering Networking
	Configuring Networking for Desktops
	Configuring Networking from the Command Line
	Configuring Networking in the Enterprise
	Summary
	Exercises

	CHAPTER 15: Starting and Stopping Services
	Understanding the Initialization Daemon (init or systemd)
	Checking the Status of Services
	Stopping and Starting Services
	Enabling Persistent Services
	Configuring a Default Runlevel or Target Unit
	Adding New or Customized Services
	Summary
	Exercises

	CHAPTER 16: Configuring a Print Server
	Common UNIX Printing System
	Setting Up Printers
	Working with CUPS Printing
	Using Printing Commands
	Configuring Print Servers
	Summary
	Exercises

	CHAPTER 17: Configuring a Web Server
	Understanding the Apache Web Server
	Getting and Installing Your Web Server
	Starting Apache
	Troubleshooting Your Web Server
	Summary
	Exercises

	CHAPTER 18: Configuring an FTP Server
	Understanding FTP
	Installing the vsftpd FTP Server
	Starting the vsftpd Service
	Securing Your FTP Server
	Configuring Your FTP Server
	Using FTP Clients to Connect to Your Server
	Summary
	Exercises

	CHAPTER 19: Configuring a Windows File Sharing (Samba) Server
	Understanding Samba
	Installing Samba
	Starting and Stopping Samba
	Securing Samba
	Configuring Samba
	Accessing Samba Shares
	Using Samba in the Enterprise
	Summary
	Exercises

	CHAPTER 20: Configuring an NFS File Server
	Installing an NFS Server
	Starting the NFS service
	Sharing NFS Filesystems
	Securing Your NFS Server
	Using NFS Filesystems
	Unmounting NFS filesystems
	Summary
	Exercises

	CHAPTER 21: Troubleshooting Linux
	Boot-Up Troubleshooting
	Troubleshooting Software Packages
	Troubleshooting Networking
	Troubleshooting Memory
	Troubleshooting in Rescue Mode
	Summary
	Exercises

	Part V: Learning Linux Security Techniques
	CHAPTER 22: Understanding Basic Linux Security
	Implementing Physical Security
	Monitoring Your Systems
	Auditing and Reviewing Linux
	Summary
	Exercises

	CHAPTER 23: Understanding Advanced Linux Security
	Implementing Linux Security with Cryptography
	Implementing Linux Security with PAM
	Summary
	Exercises

	CHAPTER 24: Enhancing Linux Security with SELinux
	Understanding SELinux Benefits
	Understanding How SELinux Works
	Configuring SELinux
	Monitoring and Troubleshooting SELinux
	Putting It All Together
	Obtaining More Information on SELinux
	Summary
	Exercises

	CHAPTER 25: Securing Linux on a Network
	Auditing Network Services
	Working with Firewalls
	Summary
	Exercises

	Part VI: Engaging with Cloud Computing
	CHAPTER 26: Shifting to Clouds and Containers
	Understanding Linux Containers
	Starting with Linux Containers
	Summary
	Exercises

	CHAPTER 27: Using Linux for Cloud Computing
	Overview of Linux and Cloud Computing
	Trying Basic Cloud Technology
	Setting Up a Small Cloud
	Summary
	Exercises

	CHAPTER 28: Deploying Linux to the Cloud
	Getting Linux to Run in a Cloud
	Creating Linux Images for Clouds
	Using OpenStack to Deploy Cloud Images
	Using Amazon EC2 to Deploy Cloud Images
	Summary
	Exercises

	CHAPTER 29: Automating Apps and Infrastructure with Ansible
	Understanding Ansible
	Exploring Ansible Components
	Stepping Through an Ansible Deployment
	Installing Ansible
	Running Ad-Hoc Ansible Commands
	Automating Tasks with Ansible Tower Automation Framework
	Summary
	Exercises

	CHAPTER 30: Deploying Applications as Containers with Kubernetes
	Understanding Kubernetes
	Trying Kubernetes
	Enterprise-Quality Kubernetes with OpenShift
	Summary
	Exercises

	Part VII: Appendixes
	APPENDIX A: MediaMedia
	Getting Fedora
	Getting Red Hat Enterprise Linux
	Getting Ubuntu
	Booting Linux from a USB Drive
	Creating Linux CDs and DVDs

	APPENDIX B: Exercise AnswersExercise Answers
	Chapter 1: Starting with Linux
	Chapter 2: Creating the Perfect Linux Desktop
	Chapter 3: Using the Shell
	Chapter 4: Moving Around the Filesystem
	Chapter 5: Working with Text Files
	Chapter 6: Managing Running Processes
	Chapter 7: Writing Simple Shell Scripts
	Chapter 8: Learning System Administration
	Chapter 9: Installing Linux
	Chapter 10: Getting and Managing Software
	Chapter 11: Managing User Accounts
	Chapter 12: Managing Disks and Filesystems
	Chapter 13: Understanding Server Administration
	Chapter 14: Administering Networking
	Chapter 15: Starting and Stopping Services
	Chapter 16: Configuring a Print Server
	Chapter 17: Configuring a Web Server
	Chapter 18: Configuring an FTP Server
	Chapter 19: Configuring a Windows File Sharing (Samba) Server
	Chapter 20: Configuring an NFS File Server
	Chapter 21: Troubleshooting Linux
	Chapter 22: Understanding Basic Linux Security
	Chapter 23: Understanding Advanced Linux Security
	Chapter 24: Enhancing Linux Security with SELinux
	Chapter 25: Securing Linux on a Network
	Chapter 26: Shifting to Clouds and Containers
	Chapter 27: Using Linux for Cloud Computing
	Chapter 28: Deploying Linux to the Cloud
	Chapter 29: Automating Apps and Infrastructure with Ansible
	Chapter 30: Deploying Applications as Containers with Kubernetes

	Index
	End User License Agreement

